123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482 |
- /*
- * This code was taken from http://ccodearchive.net/info/hash.html
- * The original file was modified to remove unwanted code
- * and some changes to fit the current build environment
- */
- /*
- -------------------------------------------------------------------------------
- lookup3.c, by Bob Jenkins, May 2006, Public Domain.
- These are functions for producing 32-bit hashes for hash table lookup.
- hash_word(), hashlittle(), hashlittle2(), hashbig(), mix(), and final()
- are externally useful functions. Routines to test the hash are included
- if SELF_TEST is defined. You can use this free for any purpose. It's in
- the public domain. It has no warranty.
- You probably want to use hashlittle(). hashlittle() and hashbig()
- hash byte arrays. hashlittle() is is faster than hashbig() on
- little-endian machines. Intel and AMD are little-endian machines.
- On second thought, you probably want hashlittle2(), which is identical to
- hashlittle() except it returns two 32-bit hashes for the price of one.
- You could implement hashbig2() if you wanted but I haven't bothered here.
- If you want to find a hash of, say, exactly 7 integers, do
- a = i1; b = i2; c = i3;
- mix(a,b,c);
- a += i4; b += i5; c += i6;
- mix(a,b,c);
- a += i7;
- final(a,b,c);
- then use c as the hash value. If you have a variable length array of
- 4-byte integers to hash, use hash_word(). If you have a byte array (like
- a character string), use hashlittle(). If you have several byte arrays, or
- a mix of things, see the comments above hashlittle().
- Why is this so big? I read 12 bytes at a time into 3 4-byte integers,
- then mix those integers. This is fast (you can do a lot more thorough
- mixing with 12*3 instructions on 3 integers than you can with 3 instructions
- on 1 byte), but shoehorning those bytes into integers efficiently is messy.
- -------------------------------------------------------------------------------
- */
- #include <netlink/hash.h>
- #if HAVE_LITTLE_ENDIAN
- #define HASH_LITTLE_ENDIAN 1
- #define HASH_BIG_ENDIAN 0
- #elif HAVE_BIG_ENDIAN
- #define HASH_LITTLE_ENDIAN 0
- #define HASH_BIG_ENDIAN 1
- #else
- #error Unknown endian
- #endif
- #define hashsize(n) ((uint32_t)1<<(n))
- #define hashmask(n) (hashsize(n)-1)
- #define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
- /*
- -------------------------------------------------------------------------------
- mix -- mix 3 32-bit values reversibly.
- This is reversible, so any information in (a,b,c) before mix() is
- still in (a,b,c) after mix().
- If four pairs of (a,b,c) inputs are run through mix(), or through
- mix() in reverse, there are at least 32 bits of the output that
- are sometimes the same for one pair and different for another pair.
- This was tested for:
- * pairs that differed by one bit, by two bits, in any combination
- of top bits of (a,b,c), or in any combination of bottom bits of
- (a,b,c).
- * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
- the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
- is commonly produced by subtraction) look like a single 1-bit
- difference.
- * the base values were pseudorandom, all zero but one bit set, or
- all zero plus a counter that starts at zero.
- Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that
- satisfy this are
- 4 6 8 16 19 4
- 9 15 3 18 27 15
- 14 9 3 7 17 3
- Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing
- for "differ" defined as + with a one-bit base and a two-bit delta. I
- used http://burtleburtle.net/bob/hash/avalanche.html to choose
- the operations, constants, and arrangements of the variables.
- This does not achieve avalanche. There are input bits of (a,b,c)
- that fail to affect some output bits of (a,b,c), especially of a. The
- most thoroughly mixed value is c, but it doesn't really even achieve
- avalanche in c.
- This allows some parallelism. Read-after-writes are good at doubling
- the number of bits affected, so the goal of mixing pulls in the opposite
- direction as the goal of parallelism. I did what I could. Rotates
- seem to cost as much as shifts on every machine I could lay my hands
- on, and rotates are much kinder to the top and bottom bits, so I used
- rotates.
- -------------------------------------------------------------------------------
- */
- #define mix(a,b,c) \
- { \
- a -= c; a ^= rot(c, 4); c += b; \
- b -= a; b ^= rot(a, 6); a += c; \
- c -= b; c ^= rot(b, 8); b += a; \
- a -= c; a ^= rot(c,16); c += b; \
- b -= a; b ^= rot(a,19); a += c; \
- c -= b; c ^= rot(b, 4); b += a; \
- }
- /*
- -------------------------------------------------------------------------------
- final -- final mixing of 3 32-bit values (a,b,c) into c
- Pairs of (a,b,c) values differing in only a few bits will usually
- produce values of c that look totally different. This was tested for
- * pairs that differed by one bit, by two bits, in any combination
- of top bits of (a,b,c), or in any combination of bottom bits of
- (a,b,c).
- * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed
- the output delta to a Gray code (a^(a>>1)) so a string of 1's (as
- is commonly produced by subtraction) look like a single 1-bit
- difference.
- * the base values were pseudorandom, all zero but one bit set, or
- all zero plus a counter that starts at zero.
- These constants passed:
- 14 11 25 16 4 14 24
- 12 14 25 16 4 14 24
- and these came close:
- 4 8 15 26 3 22 24
- 10 8 15 26 3 22 24
- 11 8 15 26 3 22 24
- -------------------------------------------------------------------------------
- */
- #define final(a,b,c) \
- { \
- c ^= b; c -= rot(b,14); \
- a ^= c; a -= rot(c,11); \
- b ^= a; b -= rot(a,25); \
- c ^= b; c -= rot(b,16); \
- a ^= c; a -= rot(c,4); \
- b ^= a; b -= rot(a,14); \
- c ^= b; c -= rot(b,24); \
- }
- /*
- -------------------------------------------------------------------------------
- hashlittle() -- hash a variable-length key into a 32-bit value
- k : the key (the unaligned variable-length array of bytes)
- length : the length of the key, counting by bytes
- val2 : IN: can be any 4-byte value OUT: second 32 bit hash.
- Returns a 32-bit value. Every bit of the key affects every bit of
- the return value. Two keys differing by one or two bits will have
- totally different hash values. Note that the return value is better
- mixed than val2, so use that first.
- The best hash table sizes are powers of 2. There is no need to do
- mod a prime (mod is sooo slow!). If you need less than 32 bits,
- use a bitmask. For example, if you need only 10 bits, do
- h = (h & hashmask(10));
- In which case, the hash table should have hashsize(10) elements.
- If you are hashing n strings (uint8_t **)k, do it like this:
- for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h);
- By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this
- code any way you wish, private, educational, or commercial. It's free.
- Use for hash table lookup, or anything where one collision in 2^^32 is
- acceptable. Do NOT use for cryptographic purposes.
- -------------------------------------------------------------------------------
- */
- static uint32_t hashlittle( const void *key, size_t length, uint32_t *val2 )
- {
- uint32_t a,b,c; /* internal state */
- union { const void *ptr; size_t i; } u; /* needed for Mac Powerbook G4 */
- /* Set up the internal state */
- a = b = c = 0xdeadbeef + ((uint32_t)length) + *val2;
- u.ptr = key;
- if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) {
- const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
- const uint8_t *k8;
- /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
- while (length > 12)
- {
- a += k[0];
- b += k[1];
- c += k[2];
- mix(a,b,c);
- length -= 12;
- k += 3;
- }
- /*----------------------------- handle the last (probably partial) block */
- /*
- * "k[2]&0xffffff" actually reads beyond the end of the string, but
- * then masks off the part it's not allowed to read. Because the
- * string is aligned, the masked-off tail is in the same word as the
- * rest of the string. Every machine with memory protection I've seen
- * does it on word boundaries, so is OK with this. But VALGRIND will
- * still catch it and complain. The masking trick does make the hash
- * noticably faster for short strings (like English words).
- *
- * Not on my testing with gcc 4.5 on an intel i5 CPU, at least --RR.
- */
- #if 0
- switch(length)
- {
- case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
- case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break;
- case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break;
- case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break;
- case 8 : b+=k[1]; a+=k[0]; break;
- case 7 : b+=k[1]&0xffffff; a+=k[0]; break;
- case 6 : b+=k[1]&0xffff; a+=k[0]; break;
- case 5 : b+=k[1]&0xff; a+=k[0]; break;
- case 4 : a+=k[0]; break;
- case 3 : a+=k[0]&0xffffff; break;
- case 2 : a+=k[0]&0xffff; break;
- case 1 : a+=k[0]&0xff; break;
- case 0 : return c; /* zero length strings require no mixing */
- }
- #else /* make valgrind happy */
- k8 = (const uint8_t *)k;
- switch(length)
- {
- case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
- case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
- case 10: c+=((uint32_t)k8[9])<<8; /* fall through */
- case 9 : c+=k8[8]; /* fall through */
- case 8 : b+=k[1]; a+=k[0]; break;
- case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
- case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */
- case 5 : b+=k8[4]; /* fall through */
- case 4 : a+=k[0]; break;
- case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
- case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */
- case 1 : a+=k8[0]; break;
- case 0 : return c;
- }
- #endif /* !valgrind */
- } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) {
- const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */
- const uint8_t *k8;
- /*--------------- all but last block: aligned reads and different mixing */
- while (length > 12)
- {
- a += k[0] + (((uint32_t)k[1])<<16);
- b += k[2] + (((uint32_t)k[3])<<16);
- c += k[4] + (((uint32_t)k[5])<<16);
- mix(a,b,c);
- length -= 12;
- k += 6;
- }
- /*----------------------------- handle the last (probably partial) block */
- k8 = (const uint8_t *)k;
- switch(length)
- {
- case 12: c+=k[4]+(((uint32_t)k[5])<<16);
- b+=k[2]+(((uint32_t)k[3])<<16);
- a+=k[0]+(((uint32_t)k[1])<<16);
- break;
- case 11: c+=((uint32_t)k8[10])<<16; /* fall through */
- case 10: c+=k[4];
- b+=k[2]+(((uint32_t)k[3])<<16);
- a+=k[0]+(((uint32_t)k[1])<<16);
- break;
- case 9 : c+=k8[8]; /* fall through */
- case 8 : b+=k[2]+(((uint32_t)k[3])<<16);
- a+=k[0]+(((uint32_t)k[1])<<16);
- break;
- case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */
- case 6 : b+=k[2];
- a+=k[0]+(((uint32_t)k[1])<<16);
- break;
- case 5 : b+=k8[4]; /* fall through */
- case 4 : a+=k[0]+(((uint32_t)k[1])<<16);
- break;
- case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */
- case 2 : a+=k[0];
- break;
- case 1 : a+=k8[0];
- break;
- case 0 : return c; /* zero length requires no mixing */
- }
- } else { /* need to read the key one byte at a time */
- const uint8_t *k = (const uint8_t *)key;
- /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
- while (length > 12)
- {
- a += k[0];
- a += ((uint32_t)k[1])<<8;
- a += ((uint32_t)k[2])<<16;
- a += ((uint32_t)k[3])<<24;
- b += k[4];
- b += ((uint32_t)k[5])<<8;
- b += ((uint32_t)k[6])<<16;
- b += ((uint32_t)k[7])<<24;
- c += k[8];
- c += ((uint32_t)k[9])<<8;
- c += ((uint32_t)k[10])<<16;
- c += ((uint32_t)k[11])<<24;
- mix(a,b,c);
- length -= 12;
- k += 12;
- }
- /*-------------------------------- last block: affect all 32 bits of (c) */
- switch(length) /* all the case statements fall through */
- {
- case 12: c+=((uint32_t)k[11])<<24;
- case 11: c+=((uint32_t)k[10])<<16;
- case 10: c+=((uint32_t)k[9])<<8;
- case 9 : c+=k[8];
- case 8 : b+=((uint32_t)k[7])<<24;
- case 7 : b+=((uint32_t)k[6])<<16;
- case 6 : b+=((uint32_t)k[5])<<8;
- case 5 : b+=k[4];
- case 4 : a+=((uint32_t)k[3])<<24;
- case 3 : a+=((uint32_t)k[2])<<16;
- case 2 : a+=((uint32_t)k[1])<<8;
- case 1 : a+=k[0];
- break;
- case 0 : return c;
- }
- }
- final(a,b,c);
- *val2 = b;
- return c;
- }
- /*
- * hashbig():
- * This is the same as hash_word() on big-endian machines. It is different
- * from hashlittle() on all machines. hashbig() takes advantage of
- * big-endian byte ordering.
- */
- static uint32_t hashbig( const void *key, size_t length, uint32_t *val2)
- {
- uint32_t a,b,c;
- union { const void *ptr; size_t i; } u; /* to cast key to (size_t) happily */
- /* Set up the internal state */
- a = b = c = 0xdeadbeef + ((uint32_t)length) + *val2;
- u.ptr = key;
- if (HASH_BIG_ENDIAN && ((u.i & 0x3) == 0)) {
- const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */
- const uint8_t *k8;
- /*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */
- while (length > 12)
- {
- a += k[0];
- b += k[1];
- c += k[2];
- mix(a,b,c);
- length -= 12;
- k += 3;
- }
- /*----------------------------- handle the last (probably partial) block */
- /*
- * "k[2]<<8" actually reads beyond the end of the string, but
- * then shifts out the part it's not allowed to read. Because the
- * string is aligned, the illegal read is in the same word as the
- * rest of the string. Every machine with memory protection I've seen
- * does it on word boundaries, so is OK with this. But VALGRIND will
- * still catch it and complain. The masking trick does make the hash
- * noticably faster for short strings (like English words).
- *
- * Not on my testing with gcc 4.5 on an intel i5 CPU, at least --RR.
- */
- #if 0
- switch(length)
- {
- case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
- case 11: c+=k[2]&0xffffff00; b+=k[1]; a+=k[0]; break;
- case 10: c+=k[2]&0xffff0000; b+=k[1]; a+=k[0]; break;
- case 9 : c+=k[2]&0xff000000; b+=k[1]; a+=k[0]; break;
- case 8 : b+=k[1]; a+=k[0]; break;
- case 7 : b+=k[1]&0xffffff00; a+=k[0]; break;
- case 6 : b+=k[1]&0xffff0000; a+=k[0]; break;
- case 5 : b+=k[1]&0xff000000; a+=k[0]; break;
- case 4 : a+=k[0]; break;
- case 3 : a+=k[0]&0xffffff00; break;
- case 2 : a+=k[0]&0xffff0000; break;
- case 1 : a+=k[0]&0xff000000; break;
- case 0 : return c; /* zero length strings require no mixing */
- }
- #else /* make valgrind happy */
- k8 = (const uint8_t *)k;
- switch(length) /* all the case statements fall through */
- {
- case 12: c+=k[2]; b+=k[1]; a+=k[0]; break;
- case 11: c+=((uint32_t)k8[10])<<8; /* fall through */
- case 10: c+=((uint32_t)k8[9])<<16; /* fall through */
- case 9 : c+=((uint32_t)k8[8])<<24; /* fall through */
- case 8 : b+=k[1]; a+=k[0]; break;
- case 7 : b+=((uint32_t)k8[6])<<8; /* fall through */
- case 6 : b+=((uint32_t)k8[5])<<16; /* fall through */
- case 5 : b+=((uint32_t)k8[4])<<24; /* fall through */
- case 4 : a+=k[0]; break;
- case 3 : a+=((uint32_t)k8[2])<<8; /* fall through */
- case 2 : a+=((uint32_t)k8[1])<<16; /* fall through */
- case 1 : a+=((uint32_t)k8[0])<<24; break;
- case 0 : return c;
- }
- #endif /* !VALGRIND */
- } else { /* need to read the key one byte at a time */
- const uint8_t *k = (const uint8_t *)key;
- /*--------------- all but the last block: affect some 32 bits of (a,b,c) */
- while (length > 12)
- {
- a += ((uint32_t)k[0])<<24;
- a += ((uint32_t)k[1])<<16;
- a += ((uint32_t)k[2])<<8;
- a += ((uint32_t)k[3]);
- b += ((uint32_t)k[4])<<24;
- b += ((uint32_t)k[5])<<16;
- b += ((uint32_t)k[6])<<8;
- b += ((uint32_t)k[7]);
- c += ((uint32_t)k[8])<<24;
- c += ((uint32_t)k[9])<<16;
- c += ((uint32_t)k[10])<<8;
- c += ((uint32_t)k[11]);
- mix(a,b,c);
- length -= 12;
- k += 12;
- }
- /*-------------------------------- last block: affect all 32 bits of (c) */
- switch(length) /* all the case statements fall through */
- {
- case 12: c+=k[11];
- case 11: c+=((uint32_t)k[10])<<8;
- case 10: c+=((uint32_t)k[9])<<16;
- case 9 : c+=((uint32_t)k[8])<<24;
- case 8 : b+=k[7];
- case 7 : b+=((uint32_t)k[6])<<8;
- case 6 : b+=((uint32_t)k[5])<<16;
- case 5 : b+=((uint32_t)k[4])<<24;
- case 4 : a+=k[3];
- case 3 : a+=((uint32_t)k[2])<<8;
- case 2 : a+=((uint32_t)k[1])<<16;
- case 1 : a+=((uint32_t)k[0])<<24;
- break;
- case 0 : return c;
- }
- }
- final(a,b,c);
- *val2 = b;
- return c;
- }
- uint32_t nl_hash_any(const void *key, size_t length, uint32_t base)
- {
- if (HASH_BIG_ENDIAN)
- return hashbig(key, length, &base);
- else
- return hashlittle(key, length, &base);
- }
|