123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- #include "tommath_private.h"
- #ifdef BN_MP_ROOT_U32_C
- /* LibTomMath, multiple-precision integer library -- Tom St Denis */
- /* SPDX-License-Identifier: Unlicense */
- /* find the n'th root of an integer
- *
- * Result found such that (c)**b <= a and (c+1)**b > a
- *
- * This algorithm uses Newton's approximation
- * x[i+1] = x[i] - f(x[i])/f'(x[i])
- * which will find the root in log(N) time where
- * each step involves a fair bit.
- */
- mp_err mp_root_u32(const mp_int *a, uint32_t b, mp_int *c)
- {
- mp_int t1, t2, t3, a_;
- mp_ord cmp;
- int ilog2;
- mp_err err;
- /* input must be positive if b is even */
- if (((b & 1u) == 0u) && (a->sign == MP_NEG)) {
- return MP_VAL;
- }
- if ((err = mp_init_multi(&t1, &t2, &t3, NULL)) != MP_OKAY) {
- return err;
- }
- /* if a is negative fudge the sign but keep track */
- a_ = *a;
- a_.sign = MP_ZPOS;
- /* Compute seed: 2^(log_2(n)/b + 2)*/
- ilog2 = mp_count_bits(a);
- /*
- If "b" is larger than INT_MAX it is also larger than
- log_2(n) because the bit-length of the "n" is measured
- with an int and hence the root is always < 2 (two).
- */
- if (b > (uint32_t)(INT_MAX/2)) {
- mp_set(c, 1uL);
- c->sign = a->sign;
- err = MP_OKAY;
- goto LBL_ERR;
- }
- /* "b" is smaller than INT_MAX, we can cast safely */
- if (ilog2 < (int)b) {
- mp_set(c, 1uL);
- c->sign = a->sign;
- err = MP_OKAY;
- goto LBL_ERR;
- }
- ilog2 = ilog2 / ((int)b);
- if (ilog2 == 0) {
- mp_set(c, 1uL);
- c->sign = a->sign;
- err = MP_OKAY;
- goto LBL_ERR;
- }
- /* Start value must be larger than root */
- ilog2 += 2;
- if ((err = mp_2expt(&t2,ilog2)) != MP_OKAY) goto LBL_ERR;
- do {
- /* t1 = t2 */
- if ((err = mp_copy(&t2, &t1)) != MP_OKAY) goto LBL_ERR;
- /* t2 = t1 - ((t1**b - a) / (b * t1**(b-1))) */
- /* t3 = t1**(b-1) */
- if ((err = mp_expt_u32(&t1, b - 1u, &t3)) != MP_OKAY) goto LBL_ERR;
- /* numerator */
- /* t2 = t1**b */
- if ((err = mp_mul(&t3, &t1, &t2)) != MP_OKAY) goto LBL_ERR;
- /* t2 = t1**b - a */
- if ((err = mp_sub(&t2, &a_, &t2)) != MP_OKAY) goto LBL_ERR;
- /* denominator */
- /* t3 = t1**(b-1) * b */
- if ((err = mp_mul_d(&t3, b, &t3)) != MP_OKAY) goto LBL_ERR;
- /* t3 = (t1**b - a)/(b * t1**(b-1)) */
- if ((err = mp_div(&t2, &t3, &t3, NULL)) != MP_OKAY) goto LBL_ERR;
- if ((err = mp_sub(&t1, &t3, &t2)) != MP_OKAY) goto LBL_ERR;
- /*
- Number of rounds is at most log_2(root). If it is more it
- got stuck, so break out of the loop and do the rest manually.
- */
- if (ilog2-- == 0) {
- break;
- }
- } while (mp_cmp(&t1, &t2) != MP_EQ);
- /* result can be off by a few so check */
- /* Loop beneath can overshoot by one if found root is smaller than actual root */
- for (;;) {
- if ((err = mp_expt_u32(&t1, b, &t2)) != MP_OKAY) goto LBL_ERR;
- cmp = mp_cmp(&t2, &a_);
- if (cmp == MP_EQ) {
- err = MP_OKAY;
- goto LBL_ERR;
- }
- if (cmp == MP_LT) {
- if ((err = mp_add_d(&t1, 1uL, &t1)) != MP_OKAY) goto LBL_ERR;
- } else {
- break;
- }
- }
- /* correct overshoot from above or from recurrence */
- for (;;) {
- if ((err = mp_expt_u32(&t1, b, &t2)) != MP_OKAY) goto LBL_ERR;
- if (mp_cmp(&t2, &a_) == MP_GT) {
- if ((err = mp_sub_d(&t1, 1uL, &t1)) != MP_OKAY) goto LBL_ERR;
- } else {
- break;
- }
- }
- /* set the result */
- mp_exch(&t1, c);
- /* set the sign of the result */
- c->sign = a->sign;
- err = MP_OKAY;
- LBL_ERR:
- mp_clear_multi(&t1, &t2, &t3, NULL);
- return err;
- }
- #endif
|