123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132 |
- #include "tommath_private.h"
- #ifdef BN_MP_PRIME_NEXT_PRIME_C
- /* LibTomMath, multiple-precision integer library -- Tom St Denis */
- /* SPDX-License-Identifier: Unlicense */
- /* finds the next prime after the number "a" using "t" trials
- * of Miller-Rabin.
- *
- * bbs_style = 1 means the prime must be congruent to 3 mod 4
- */
- mp_err mp_prime_next_prime(mp_int *a, int t, int bbs_style)
- {
- int x, y;
- mp_ord cmp;
- mp_err err;
- mp_bool res = MP_NO;
- mp_digit res_tab[PRIVATE_MP_PRIME_TAB_SIZE], step, kstep;
- mp_int b;
- /* force positive */
- a->sign = MP_ZPOS;
- /* simple algo if a is less than the largest prime in the table */
- if (mp_cmp_d(a, s_mp_prime_tab[PRIVATE_MP_PRIME_TAB_SIZE-1]) == MP_LT) {
- /* find which prime it is bigger than "a" */
- for (x = 0; x < PRIVATE_MP_PRIME_TAB_SIZE; x++) {
- cmp = mp_cmp_d(a, s_mp_prime_tab[x]);
- if (cmp == MP_EQ) {
- continue;
- }
- if (cmp != MP_GT) {
- if ((bbs_style == 1) && ((s_mp_prime_tab[x] & 3u) != 3u)) {
- /* try again until we get a prime congruent to 3 mod 4 */
- continue;
- } else {
- mp_set(a, s_mp_prime_tab[x]);
- return MP_OKAY;
- }
- }
- }
- /* fall through to the sieve */
- }
- /* generate a prime congruent to 3 mod 4 or 1/3 mod 4? */
- if (bbs_style == 1) {
- kstep = 4;
- } else {
- kstep = 2;
- }
- /* at this point we will use a combination of a sieve and Miller-Rabin */
- if (bbs_style == 1) {
- /* if a mod 4 != 3 subtract the correct value to make it so */
- if ((a->dp[0] & 3u) != 3u) {
- if ((err = mp_sub_d(a, (a->dp[0] & 3u) + 1u, a)) != MP_OKAY) {
- return err;
- }
- }
- } else {
- if (MP_IS_EVEN(a)) {
- /* force odd */
- if ((err = mp_sub_d(a, 1uL, a)) != MP_OKAY) {
- return err;
- }
- }
- }
- /* generate the restable */
- for (x = 1; x < PRIVATE_MP_PRIME_TAB_SIZE; x++) {
- if ((err = mp_mod_d(a, s_mp_prime_tab[x], res_tab + x)) != MP_OKAY) {
- return err;
- }
- }
- /* init temp used for Miller-Rabin Testing */
- if ((err = mp_init(&b)) != MP_OKAY) {
- return err;
- }
- for (;;) {
- /* skip to the next non-trivially divisible candidate */
- step = 0;
- do {
- /* y == 1 if any residue was zero [e.g. cannot be prime] */
- y = 0;
- /* increase step to next candidate */
- step += kstep;
- /* compute the new residue without using division */
- for (x = 1; x < PRIVATE_MP_PRIME_TAB_SIZE; x++) {
- /* add the step to each residue */
- res_tab[x] += kstep;
- /* subtract the modulus [instead of using division] */
- if (res_tab[x] >= s_mp_prime_tab[x]) {
- res_tab[x] -= s_mp_prime_tab[x];
- }
- /* set flag if zero */
- if (res_tab[x] == 0u) {
- y = 1;
- }
- }
- } while ((y == 1) && (step < (((mp_digit)1 << MP_DIGIT_BIT) - kstep)));
- /* add the step */
- if ((err = mp_add_d(a, step, a)) != MP_OKAY) {
- goto LBL_ERR;
- }
- /* if didn't pass sieve and step == MP_MAX then skip test */
- if ((y == 1) && (step >= (((mp_digit)1 << MP_DIGIT_BIT) - kstep))) {
- continue;
- }
- if ((err = mp_prime_is_prime(a, t, &res)) != MP_OKAY) {
- goto LBL_ERR;
- }
- if (res == MP_YES) {
- break;
- }
- }
- err = MP_OKAY;
- LBL_ERR:
- mp_clear(&b);
- return err;
- }
- #endif
|