123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237 |
- /* Implement powl for x86 using extra-precision log.
- Copyright (C) 2012-2019 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
- #include <math.h>
- #include <math_private.h>
- #include <math-underflow.h>
- #include <stdbool.h>
- /* High parts and low parts of -log (k/16), for integer k from 12 to
- 24. */
- static const long double powl_log_table[] =
- {
- 0x4.9a58844d36e49e1p-4L, -0x1.0522624fd558f574p-68L,
- 0x3.527da7915b3c6de4p-4L, 0x1.7d4ef4b901b99b9ep-68L,
- 0x2.22f1d044fc8f7bc8p-4L, -0x1.8e97c071a42fc388p-68L,
- 0x1.08598b59e3a0688ap-4L, 0x3.fd9bf503372c12fcp-72L,
- -0x0p+0L, 0x0p+0L,
- -0xf.85186008b15330cp-8L, 0x1.9b47488a6687672cp-72L,
- -0x1.e27076e2af2e5e9ep-4L, -0xa.87ffe1fe9e155dcp-72L,
- -0x2.bfe60e14f27a791p-4L, 0x1.83bebf1bdb88a032p-68L,
- -0x3.91fef8f353443584p-4L, -0xb.b03de5ff734495cp-72L,
- -0x4.59d72aeae98380e8p-4L, 0xc.e0aa3be4747dc1p-72L,
- -0x5.1862f08717b09f4p-4L, -0x2.decdeccf1cd10578p-68L,
- -0x5.ce75fdaef401a738p-4L, -0x9.314feb4fbde5aaep-72L,
- -0x6.7cc8fb2fe612fcbp-4L, 0x2.5ca2642feb779f98p-68L,
- };
- /* High 32 bits of log2 (e), and remainder rounded to 64 bits. */
- static const long double log2e_hi = 0x1.71547652p+0L;
- static const long double log2e_lo = 0xb.82fe1777d0ffda1p-36L;
- /* Given a number with high part HI and low part LO, add the number X
- to it and store the result in *RHI and *RLO. It is given that
- either |X| < |0.7 * HI|, or HI == LO == 0, and that the values are
- small enough that no overflow occurs. The result does not need to
- be exact to 128 bits; 78-bit accuracy of the final accumulated
- result suffices. */
- static inline void
- acc_split (long double *rhi, long double *rlo, long double hi, long double lo,
- long double x)
- {
- long double thi = hi + x;
- long double tlo = (hi - thi) + x + lo;
- *rhi = thi + tlo;
- *rlo = (thi - *rhi) + tlo;
- }
- extern long double __powl_helper (long double x, long double y);
- libm_hidden_proto (__powl_helper)
- /* Given X a value that is finite and nonzero, or a NaN, and Y a
- finite nonzero value with 0x1p-79 <= |Y| <= 0x1p78, compute X to
- the power Y. */
- long double
- __powl_helper (long double x, long double y)
- {
- if (isnan (x))
- return __ieee754_expl (y * __ieee754_logl (x));
- bool negate;
- if (x < 0)
- {
- long double absy = fabsl (y);
- if (absy >= 0x1p64L)
- negate = false;
- else
- {
- unsigned long long yll = absy;
- if (yll != absy)
- return __ieee754_expl (y * __ieee754_logl (x));
- negate = (yll & 1) != 0;
- }
- x = fabsl (x);
- }
- else
- negate = false;
- /* We need to compute Y * log2 (X) to at least 64 bits after the
- point for normal results (that is, to at least 78 bits
- precision). */
- int x_int_exponent;
- long double x_frac;
- x_frac = __frexpl (x, &x_int_exponent);
- if (x_frac <= 0x0.aaaaaaaaaaaaaaaap0L) /* 2.0L / 3.0L, rounded down */
- {
- x_frac *= 2.0;
- x_int_exponent--;
- }
- long double log_x_frac_hi, log_x_frac_lo;
- /* Determine an initial approximation to log (X_FRAC) using
- POWL_LOG_TABLE, and multiply by a value K/16 to reduce to an
- interval (24/25, 26/25). */
- int k = (int) ((16.0L / x_frac) + 0.5L);
- log_x_frac_hi = powl_log_table[2 * k - 24];
- log_x_frac_lo = powl_log_table[2 * k - 23];
- long double x_frac_low;
- if (k == 16)
- x_frac_low = 0.0L;
- else
- {
- /* Mask off low 5 bits of X_FRAC so the multiplication by K/16
- is exact. These bits are small enough that they can be
- corrected for by adding log2 (e) * X_FRAC_LOW to the final
- result. */
- int32_t se;
- uint32_t i0, i1;
- GET_LDOUBLE_WORDS (se, i0, i1, x_frac);
- x_frac_low = x_frac;
- i1 &= 0xffffffe0;
- SET_LDOUBLE_WORDS (x_frac, se, i0, i1);
- x_frac_low -= x_frac;
- x_frac_low /= x_frac;
- x_frac *= k / 16.0L;
- }
- /* Now compute log (X_FRAC) for X_FRAC in (24/25, 26/25). Separate
- W = X_FRAC - 1 into high 16 bits and remaining bits, so that
- multiplications for low-order power series terms are exact. The
- remaining bits are small enough that adding a 64-bit value of
- log2 (1 + W_LO / (1 + W_HI)) will be a sufficient correction for
- them. */
- long double w = x_frac - 1;
- long double w_hi, w_lo;
- int32_t se;
- uint32_t i0, i1;
- GET_LDOUBLE_WORDS (se, i0, i1, w);
- i0 &= 0xffff0000;
- i1 = 0;
- SET_LDOUBLE_WORDS (w_hi, se, i0, i1);
- w_lo = w - w_hi;
- long double wp = w_hi;
- acc_split (&log_x_frac_hi, &log_x_frac_lo, log_x_frac_hi, log_x_frac_lo, wp);
- wp *= -w_hi;
- acc_split (&log_x_frac_hi, &log_x_frac_lo, log_x_frac_hi, log_x_frac_lo,
- wp / 2.0L);
- wp *= -w_hi;
- acc_split (&log_x_frac_hi, &log_x_frac_lo, log_x_frac_hi, log_x_frac_lo,
- wp * 0x0.5555p0L); /* -W_HI**3 / 3, high part. */
- acc_split (&log_x_frac_hi, &log_x_frac_lo, log_x_frac_hi, log_x_frac_lo,
- wp * 0x0.5555555555555555p-16L); /* -W_HI**3 / 3, low part. */
- wp *= -w_hi;
- acc_split (&log_x_frac_hi, &log_x_frac_lo, log_x_frac_hi, log_x_frac_lo,
- wp / 4.0L);
- /* Subsequent terms are small enough that they only need be computed
- to 64 bits. */
- for (int i = 5; i <= 17; i++)
- {
- wp *= -w_hi;
- acc_split (&log_x_frac_hi, &log_x_frac_lo, log_x_frac_hi, log_x_frac_lo,
- wp / i);
- }
- /* Convert LOG_X_FRAC_HI + LOG_X_FRAC_LO to a base-2 logarithm. */
- long double log2_x_frac_hi, log2_x_frac_lo;
- long double log_x_frac_hi32, log_x_frac_lo64;
- GET_LDOUBLE_WORDS (se, i0, i1, log_x_frac_hi);
- i1 = 0;
- SET_LDOUBLE_WORDS (log_x_frac_hi32, se, i0, i1);
- log_x_frac_lo64 = (log_x_frac_hi - log_x_frac_hi32) + log_x_frac_lo;
- long double log2_x_frac_hi1 = log_x_frac_hi32 * log2e_hi;
- long double log2_x_frac_lo1
- = log_x_frac_lo64 * log2e_hi + log_x_frac_hi * log2e_lo;
- log2_x_frac_hi = log2_x_frac_hi1 + log2_x_frac_lo1;
- log2_x_frac_lo = (log2_x_frac_hi1 - log2_x_frac_hi) + log2_x_frac_lo1;
- /* Correct for the masking off of W_LO. */
- long double log2_1p_w_lo;
- asm ("fyl2xp1"
- : "=t" (log2_1p_w_lo)
- : "0" (w_lo / (1.0L + w_hi)), "u" (1.0L)
- : "st(1)");
- acc_split (&log2_x_frac_hi, &log2_x_frac_lo, log2_x_frac_hi, log2_x_frac_lo,
- log2_1p_w_lo);
- /* Correct for the masking off of X_FRAC_LOW. */
- acc_split (&log2_x_frac_hi, &log2_x_frac_lo, log2_x_frac_hi, log2_x_frac_lo,
- x_frac_low * M_LOG2El);
- /* Add the integer and fractional parts of the base-2 logarithm. */
- long double log2_x_hi, log2_x_lo;
- log2_x_hi = x_int_exponent + log2_x_frac_hi;
- log2_x_lo = ((x_int_exponent - log2_x_hi) + log2_x_frac_hi) + log2_x_frac_lo;
- /* Compute the base-2 logarithm of the result. */
- long double log2_res_hi, log2_res_lo;
- long double log2_x_hi32, log2_x_lo64;
- GET_LDOUBLE_WORDS (se, i0, i1, log2_x_hi);
- i1 = 0;
- SET_LDOUBLE_WORDS (log2_x_hi32, se, i0, i1);
- log2_x_lo64 = (log2_x_hi - log2_x_hi32) + log2_x_lo;
- long double y_hi32, y_lo32;
- GET_LDOUBLE_WORDS (se, i0, i1, y);
- i1 = 0;
- SET_LDOUBLE_WORDS (y_hi32, se, i0, i1);
- y_lo32 = y - y_hi32;
- log2_res_hi = log2_x_hi32 * y_hi32;
- log2_res_lo = log2_x_hi32 * y_lo32 + log2_x_lo64 * y;
- /* Split the base-2 logarithm of the result into integer and
- fractional parts. */
- long double log2_res_int = roundl (log2_res_hi);
- long double log2_res_frac = log2_res_hi - log2_res_int + log2_res_lo;
- /* If the integer part is very large, the computed fractional part
- may be outside the valid range for f2xm1. */
- if (fabsl (log2_res_int) > 16500)
- log2_res_frac = 0;
- /* Compute the final result. */
- long double res;
- asm ("f2xm1" : "=t" (res) : "0" (log2_res_frac));
- res += 1.0L;
- if (negate)
- res = -res;
- asm ("fscale" : "=t" (res) : "0" (res), "u" (log2_res_int));
- math_check_force_underflow (res);
- return res;
- }
- libm_hidden_def (__powl_helper)
|