123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115 |
- /* Private function declarations for libm.
- Copyright (C) 2011-2019 Free Software Foundation, Inc.
- This file is part of the GNU C Library.
- The GNU C Library is free software; you can redistribute it and/or
- modify it under the terms of the GNU Lesser General Public
- License as published by the Free Software Foundation; either
- version 2.1 of the License, or (at your option) any later version.
- The GNU C Library is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
- Lesser General Public License for more details.
- You should have received a copy of the GNU Lesser General Public
- License along with the GNU C Library; if not, see
- <http://www.gnu.org/licenses/>. */
- #define __MSUF_X(x, suffix) x ## suffix
- #define __MSUF_S(...) __MSUF_X (__VA_ARGS__)
- #define __MSUF(x) __MSUF_S (x, _MSUF_)
- #define __MSUF_R_X(x, suffix) x ## suffix ## _r
- #define __MSUF_R_S(...) __MSUF_R_X (__VA_ARGS__)
- #define __MSUF_R(x) __MSUF_R_S (x, _MSUF_)
- /* IEEE style elementary functions. */
- extern _Mdouble_ __MSUF (__ieee754_acos) (_Mdouble_);
- extern _Mdouble_ __MSUF (__ieee754_acosh) (_Mdouble_);
- extern _Mdouble_ __MSUF (__ieee754_asin) (_Mdouble_);
- extern _Mdouble_ __MSUF (__ieee754_atan2) (_Mdouble_, _Mdouble_);
- extern _Mdouble_ __MSUF (__ieee754_atanh) (_Mdouble_);
- extern _Mdouble_ __MSUF (__ieee754_cosh) (_Mdouble_);
- extern _Mdouble_ __MSUF (__ieee754_exp) (_Mdouble_);
- extern _Mdouble_ __MSUF (__ieee754_exp10) (_Mdouble_);
- extern _Mdouble_ __MSUF (__ieee754_exp2) (_Mdouble_);
- extern _Mdouble_ __MSUF (__ieee754_fmod) (_Mdouble_, _Mdouble_);
- extern _Mdouble_ __MSUF (__ieee754_gamma) (_Mdouble_);
- extern _Mdouble_ __MSUF_R (__ieee754_gamma) (_Mdouble_, int *);
- extern _Mdouble_ __MSUF (__ieee754_hypot) (_Mdouble_, _Mdouble_);
- extern _Mdouble_ __MSUF (__ieee754_j0) (_Mdouble_);
- extern _Mdouble_ __MSUF (__ieee754_j1) (_Mdouble_);
- extern _Mdouble_ __MSUF (__ieee754_jn) (int, _Mdouble_);
- extern _Mdouble_ __MSUF (__ieee754_lgamma) (_Mdouble_);
- extern _Mdouble_ __MSUF_R (__ieee754_lgamma) (_Mdouble_, int *);
- extern _Mdouble_ __MSUF (__ieee754_log) (_Mdouble_);
- extern _Mdouble_ __MSUF (__ieee754_log10) (_Mdouble_);
- extern _Mdouble_ __MSUF (__ieee754_log2) (_Mdouble_);
- extern _Mdouble_ __MSUF (__ieee754_pow) (_Mdouble_, _Mdouble_);
- extern _Mdouble_ __MSUF (__ieee754_remainder) (_Mdouble_, _Mdouble_);
- extern _Mdouble_ __MSUF (__ieee754_sinh) (_Mdouble_);
- extern _Mdouble_ __MSUF (__ieee754_sqrt) (_Mdouble_);
- extern _Mdouble_ __MSUF (__ieee754_y0) (_Mdouble_);
- extern _Mdouble_ __MSUF (__ieee754_y1) (_Mdouble_);
- extern _Mdouble_ __MSUF (__ieee754_yn) (int, _Mdouble_);
- extern _Mdouble_ __MSUF (__ieee754_scalb) (_Mdouble_, _Mdouble_);
- extern int __MSUF (__ieee754_ilogb) (_Mdouble_);
- extern int32_t __MSUF (__ieee754_rem_pio2) (_Mdouble_, _Mdouble_ *);
- /* fdlibm kernel functions. */
- extern _Mdouble_ __MSUF (__kernel_sin) (_Mdouble_, _Mdouble_, int);
- extern _Mdouble_ __MSUF (__kernel_cos) (_Mdouble_, _Mdouble_);
- extern _Mdouble_ __MSUF (__kernel_tan) (_Mdouble_, _Mdouble_, int);
- #if defined __MATH_DECLARING_LONG_DOUBLE || defined __MATH_DECLARING_FLOATN
- extern void __MSUF (__kernel_sincos) (_Mdouble_, _Mdouble_,
- _Mdouble_ *, _Mdouble_ *, int);
- #endif
- #if !defined __MATH_DECLARING_LONG_DOUBLE || defined __MATH_DECLARING_FLOATN
- extern int __MSUF (__kernel_rem_pio2) (_Mdouble_ *, _Mdouble_ *, int,
- int, int, const int32_t *);
- #endif
- /* Internal functions. */
- /* Return X^2 + Y^2 - 1, computed without large cancellation error.
- It is given that 1 > X >= Y >= epsilon / 2, and that X^2 + Y^2 >=
- 0.5. */
- extern _Mdouble_ __MSUF (__x2y2m1) (_Mdouble_ x, _Mdouble_ y);
- /* Compute the product of X + X_EPS, X + X_EPS + 1, ..., X + X_EPS + N
- - 1, in the form R * (1 + *EPS) where the return value R is an
- approximation to the product and *EPS is set to indicate the
- approximate error in the return value. X is such that all the
- values X + 1, ..., X + N - 1 are exactly representable, and X_EPS /
- X is small enough that factors quadratic in it can be
- neglected. */
- extern _Mdouble_ __MSUF (__gamma_product) (_Mdouble_ x, _Mdouble_ x_eps,
- int n, _Mdouble_ *eps);
- /* Compute lgamma of a negative argument X, if it is in a range
- (depending on the floating-point format) for which expansion around
- zeros is used, setting *SIGNGAMP accordingly. */
- extern _Mdouble_ __MSUF (__lgamma_neg) (_Mdouble_ x, int *signgamp);
- /* Compute the product of 1 + (T / (X + X_EPS)), 1 + (T / (X + X_EPS +
- 1)), ..., 1 + (T / (X + X_EPS + N - 1)), minus 1. X is such that
- all the values X + 1, ..., X + N - 1 are exactly representable, and
- X_EPS / X is small enough that factors quadratic in it can be
- neglected. */
- #if !defined __MATH_DECLARING_FLOAT
- extern _Mdouble_ __MSUF (__lgamma_product) (_Mdouble_ t, _Mdouble_ x,
- _Mdouble_ x_eps, int n);
- #endif
- #undef __MSUF_X
- #undef __MSUF_S
- #undef __MSUF
- #undef __MSUF_R_X
- #undef __MSUF_R_S
- #undef __MSUF_R
|