1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023 |
- @c We need some definitions here.
- @ifclear mult
- @ifhtml
- @set mult ·
- @set infty ∞
- @set pie π
- @end ifhtml
- @iftex
- @set mult @cdot
- @set infty @infty
- @end iftex
- @ifclear mult
- @set mult *
- @set infty oo
- @set pie pi
- @end ifclear
- @macro mul
- @value{mult}
- @end macro
- @macro infinity
- @value{infty}
- @end macro
- @ifnottex
- @macro pi
- @value{pie}
- @end macro
- @end ifnottex
- @end ifclear
- @node Mathematics, Arithmetic, Syslog, Top
- @c %MENU% Math functions, useful constants, random numbers
- @chapter Mathematics
- This chapter contains information about functions for performing
- mathematical computations, such as trigonometric functions. Most of
- these functions have prototypes declared in the header file
- @file{math.h}. The complex-valued functions are defined in
- @file{complex.h}.
- @pindex math.h
- @pindex complex.h
- All mathematical functions which take a floating-point argument
- have three variants, one each for @code{double}, @code{float}, and
- @code{long double} arguments. The @code{double} versions are mostly
- defined in @w{ISO C89}. The @code{float} and @code{long double}
- versions are from the numeric extensions to C included in @w{ISO C99}.
- Which of the three versions of a function should be used depends on the
- situation. For most calculations, the @code{float} functions are the
- fastest. On the other hand, the @code{long double} functions have the
- highest precision. @code{double} is somewhere in between. It is
- usually wise to pick the narrowest type that can accommodate your data.
- Not all machines have a distinct @code{long double} type; it may be the
- same as @code{double}.
- @Theglibc{} also provides @code{_Float@var{N}} and
- @code{_Float@var{N}x} types. These types are defined in @w{ISO/IEC TS
- 18661-3}, which extends @w{ISO C} and defines floating-point types that
- are not machine-dependent. When such a type, such as @code{_Float128},
- is supported by @theglibc{}, extra variants for most of the mathematical
- functions provided for @code{double}, @code{float}, and @code{long
- double} are also provided for the supported type. Throughout this
- manual, the @code{_Float@var{N}} and @code{_Float@var{N}x} variants of
- these functions are described along with the @code{double},
- @code{float}, and @code{long double} variants and they come from
- @w{ISO/IEC TS 18661-3}, unless explicitly stated otherwise.
- Support for @code{_Float@var{N}} or @code{_Float@var{N}x} types is
- provided for @code{_Float32}, @code{_Float64} and @code{_Float32x} on
- all platforms.
- It is also provided for @code{_Float128} and @code{_Float64x} on
- powerpc64le (PowerPC 64-bits little-endian), x86_64, x86, ia64,
- aarch64, alpha, mips64, riscv, s390 and sparc.
- @menu
- * Mathematical Constants:: Precise numeric values for often-used
- constants.
- * Trig Functions:: Sine, cosine, tangent, and friends.
- * Inverse Trig Functions:: Arcsine, arccosine, etc.
- * Exponents and Logarithms:: Also pow and sqrt.
- * Hyperbolic Functions:: sinh, cosh, tanh, etc.
- * Special Functions:: Bessel, gamma, erf.
- * Errors in Math Functions:: Known Maximum Errors in Math Functions.
- * Pseudo-Random Numbers:: Functions for generating pseudo-random
- numbers.
- * FP Function Optimizations:: Fast code or small code.
- @end menu
- @node Mathematical Constants
- @section Predefined Mathematical Constants
- @cindex constants
- @cindex mathematical constants
- The header @file{math.h} defines several useful mathematical constants.
- All values are defined as preprocessor macros starting with @code{M_}.
- The values provided are:
- @vtable @code
- @item M_E
- The base of natural logarithms.
- @item M_LOG2E
- The logarithm to base @code{2} of @code{M_E}.
- @item M_LOG10E
- The logarithm to base @code{10} of @code{M_E}.
- @item M_LN2
- The natural logarithm of @code{2}.
- @item M_LN10
- The natural logarithm of @code{10}.
- @item M_PI
- Pi, the ratio of a circle's circumference to its diameter.
- @item M_PI_2
- Pi divided by two.
- @item M_PI_4
- Pi divided by four.
- @item M_1_PI
- The reciprocal of pi (1/pi)
- @item M_2_PI
- Two times the reciprocal of pi.
- @item M_2_SQRTPI
- Two times the reciprocal of the square root of pi.
- @item M_SQRT2
- The square root of two.
- @item M_SQRT1_2
- The reciprocal of the square root of two (also the square root of 1/2).
- @end vtable
- These constants come from the Unix98 standard and were also available in
- 4.4BSD; therefore they are only defined if
- @code{_XOPEN_SOURCE=500}, or a more general feature select macro, is
- defined. The default set of features includes these constants.
- @xref{Feature Test Macros}.
- All values are of type @code{double}. As an extension, @theglibc{}
- also defines these constants with type @code{long double}. The
- @code{long double} macros have a lowercase @samp{l} appended to their
- names: @code{M_El}, @code{M_PIl}, and so forth. These are only
- available if @code{_GNU_SOURCE} is defined.
- Likewise, @theglibc{} also defines these constants with the types
- @code{_Float@var{N}} and @code{_Float@var{N}x} for the machines that
- have support for such types enabled (@pxref{Mathematics}) and if
- @code{_GNU_SOURCE} is defined. When available, the macros names are
- appended with @samp{f@var{N}} or @samp{f@var{N}x}, such as @samp{f128}
- for the type @code{_Float128}.
- @vindex PI
- @emph{Note:} Some programs use a constant named @code{PI} which has the
- same value as @code{M_PI}. This constant is not standard; it may have
- appeared in some old AT&T headers, and is mentioned in Stroustrup's book
- on C++. It infringes on the user's name space, so @theglibc{}
- does not define it. Fixing programs written to expect it is simple:
- replace @code{PI} with @code{M_PI} throughout, or put @samp{-DPI=M_PI}
- on the compiler command line.
- @node Trig Functions
- @section Trigonometric Functions
- @cindex trigonometric functions
- These are the familiar @code{sin}, @code{cos}, and @code{tan} functions.
- The arguments to all of these functions are in units of radians; recall
- that pi radians equals 180 degrees.
- @cindex pi (trigonometric constant)
- The math library normally defines @code{M_PI} to a @code{double}
- approximation of pi. If strict ISO and/or POSIX compliance
- are requested this constant is not defined, but you can easily define it
- yourself:
- @smallexample
- #define M_PI 3.14159265358979323846264338327
- @end smallexample
- @noindent
- You can also compute the value of pi with the expression @code{acos
- (-1.0)}.
- @deftypefun double sin (double @var{x})
- @deftypefunx float sinf (float @var{x})
- @deftypefunx {long double} sinl (long double @var{x})
- @deftypefunx _FloatN sinfN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx sinfNx (_Float@var{N}x @var{x})
- @standards{ISO, math.h}
- @standardsx{sinfN, TS 18661-3:2015, math.h}
- @standardsx{sinfNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return the sine of @var{x}, where @var{x} is given in
- radians. The return value is in the range @code{-1} to @code{1}.
- @end deftypefun
- @deftypefun double cos (double @var{x})
- @deftypefunx float cosf (float @var{x})
- @deftypefunx {long double} cosl (long double @var{x})
- @deftypefunx _FloatN cosfN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx cosfNx (_Float@var{N}x @var{x})
- @standards{ISO, math.h}
- @standardsx{cosfN, TS 18661-3:2015, math.h}
- @standardsx{cosfNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return the cosine of @var{x}, where @var{x} is given in
- radians. The return value is in the range @code{-1} to @code{1}.
- @end deftypefun
- @deftypefun double tan (double @var{x})
- @deftypefunx float tanf (float @var{x})
- @deftypefunx {long double} tanl (long double @var{x})
- @deftypefunx _FloatN tanfN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx tanfNx (_Float@var{N}x @var{x})
- @standards{ISO, math.h}
- @standardsx{tanfN, TS 18661-3:2015, math.h}
- @standardsx{tanfNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return the tangent of @var{x}, where @var{x} is given in
- radians.
- Mathematically, the tangent function has singularities at odd multiples
- of pi/2. If the argument @var{x} is too close to one of these
- singularities, @code{tan} will signal overflow.
- @end deftypefun
- In many applications where @code{sin} and @code{cos} are used, the sine
- and cosine of the same angle are needed at the same time. It is more
- efficient to compute them simultaneously, so the library provides a
- function to do that.
- @deftypefun void sincos (double @var{x}, double *@var{sinx}, double *@var{cosx})
- @deftypefunx void sincosf (float @var{x}, float *@var{sinx}, float *@var{cosx})
- @deftypefunx void sincosl (long double @var{x}, long double *@var{sinx}, long double *@var{cosx})
- @deftypefunx _FloatN sincosfN (_Float@var{N} @var{x}, _Float@var{N} *@var{sinx}, _Float@var{N} *@var{cosx})
- @deftypefunx _FloatNx sincosfNx (_Float@var{N}x @var{x}, _Float@var{N}x *@var{sinx}, _Float@var{N}x *@var{cosx})
- @standards{GNU, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return the sine of @var{x} in @code{*@var{sinx}} and the
- cosine of @var{x} in @code{*@var{cosx}}, where @var{x} is given in
- radians. Both values, @code{*@var{sinx}} and @code{*@var{cosx}}, are in
- the range of @code{-1} to @code{1}.
- All these functions, including the @code{_Float@var{N}} and
- @code{_Float@var{N}x} variants, are GNU extensions. Portable programs
- should be prepared to cope with their absence.
- @end deftypefun
- @cindex complex trigonometric functions
- @w{ISO C99} defines variants of the trig functions which work on
- complex numbers. @Theglibc{} provides these functions, but they
- are only useful if your compiler supports the new complex types defined
- by the standard.
- @c XXX Change this when gcc is fixed. -zw
- (As of this writing GCC supports complex numbers, but there are bugs in
- the implementation.)
- @deftypefun {complex double} csin (complex double @var{z})
- @deftypefunx {complex float} csinf (complex float @var{z})
- @deftypefunx {complex long double} csinl (complex long double @var{z})
- @deftypefunx {complex _FloatN} csinfN (complex _Float@var{N} @var{z})
- @deftypefunx {complex _FloatNx} csinfNx (complex _Float@var{N}x @var{z})
- @standards{ISO, complex.h}
- @standardsx{csinfN, TS 18661-3:2015, complex.h}
- @standardsx{csinfNx, TS 18661-3:2015, complex.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- @c There are calls to nan* that could trigger @mtslocale if they didn't get
- @c empty strings.
- These functions return the complex sine of @var{z}.
- The mathematical definition of the complex sine is
- @ifnottex
- @math{sin (z) = 1/(2*i) * (exp (z*i) - exp (-z*i))}.
- @end ifnottex
- @tex
- $$\sin(z) = {1\over 2i} (e^{zi} - e^{-zi})$$
- @end tex
- @end deftypefun
- @deftypefun {complex double} ccos (complex double @var{z})
- @deftypefunx {complex float} ccosf (complex float @var{z})
- @deftypefunx {complex long double} ccosl (complex long double @var{z})
- @deftypefunx {complex _FloatN} ccosfN (complex _Float@var{N} @var{z})
- @deftypefunx {complex _FloatNx} ccosfNx (complex _Float@var{N}x @var{z})
- @standards{ISO, complex.h}
- @standardsx{ccosfN, TS 18661-3:2015, complex.h}
- @standardsx{ccosfNx, TS 18661-3:2015, complex.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return the complex cosine of @var{z}.
- The mathematical definition of the complex cosine is
- @ifnottex
- @math{cos (z) = 1/2 * (exp (z*i) + exp (-z*i))}
- @end ifnottex
- @tex
- $$\cos(z) = {1\over 2} (e^{zi} + e^{-zi})$$
- @end tex
- @end deftypefun
- @deftypefun {complex double} ctan (complex double @var{z})
- @deftypefunx {complex float} ctanf (complex float @var{z})
- @deftypefunx {complex long double} ctanl (complex long double @var{z})
- @deftypefunx {complex _FloatN} ctanfN (complex _Float@var{N} @var{z})
- @deftypefunx {complex _FloatNx} ctanfNx (complex _Float@var{N}x @var{z})
- @standards{ISO, complex.h}
- @standardsx{ctanfN, TS 18661-3:2015, complex.h}
- @standardsx{ctanfNx, TS 18661-3:2015, complex.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return the complex tangent of @var{z}.
- The mathematical definition of the complex tangent is
- @ifnottex
- @math{tan (z) = -i * (exp (z*i) - exp (-z*i)) / (exp (z*i) + exp (-z*i))}
- @end ifnottex
- @tex
- $$\tan(z) = -i \cdot {e^{zi} - e^{-zi}\over e^{zi} + e^{-zi}}$$
- @end tex
- @noindent
- The complex tangent has poles at @math{pi/2 + 2n}, where @math{n} is an
- integer. @code{ctan} may signal overflow if @var{z} is too close to a
- pole.
- @end deftypefun
- @node Inverse Trig Functions
- @section Inverse Trigonometric Functions
- @cindex inverse trigonometric functions
- These are the usual arcsine, arccosine and arctangent functions,
- which are the inverses of the sine, cosine and tangent functions
- respectively.
- @deftypefun double asin (double @var{x})
- @deftypefunx float asinf (float @var{x})
- @deftypefunx {long double} asinl (long double @var{x})
- @deftypefunx _FloatN asinfN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx asinfNx (_Float@var{N}x @var{x})
- @standards{ISO, math.h}
- @standardsx{asinfN, TS 18661-3:2015, math.h}
- @standardsx{asinfNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions compute the arcsine of @var{x}---that is, the value whose
- sine is @var{x}. The value is in units of radians. Mathematically,
- there are infinitely many such values; the one actually returned is the
- one between @code{-pi/2} and @code{pi/2} (inclusive).
- The arcsine function is defined mathematically only
- over the domain @code{-1} to @code{1}. If @var{x} is outside the
- domain, @code{asin} signals a domain error.
- @end deftypefun
- @deftypefun double acos (double @var{x})
- @deftypefunx float acosf (float @var{x})
- @deftypefunx {long double} acosl (long double @var{x})
- @deftypefunx _FloatN acosfN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx acosfNx (_Float@var{N}x @var{x})
- @standards{ISO, math.h}
- @standardsx{acosfN, TS 18661-3:2015, math.h}
- @standardsx{acosfNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions compute the arccosine of @var{x}---that is, the value
- whose cosine is @var{x}. The value is in units of radians.
- Mathematically, there are infinitely many such values; the one actually
- returned is the one between @code{0} and @code{pi} (inclusive).
- The arccosine function is defined mathematically only
- over the domain @code{-1} to @code{1}. If @var{x} is outside the
- domain, @code{acos} signals a domain error.
- @end deftypefun
- @deftypefun double atan (double @var{x})
- @deftypefunx float atanf (float @var{x})
- @deftypefunx {long double} atanl (long double @var{x})
- @deftypefunx _FloatN atanfN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx atanfNx (_Float@var{N}x @var{x})
- @standards{ISO, math.h}
- @standardsx{atanfN, TS 18661-3:2015, math.h}
- @standardsx{atanfNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions compute the arctangent of @var{x}---that is, the value
- whose tangent is @var{x}. The value is in units of radians.
- Mathematically, there are infinitely many such values; the one actually
- returned is the one between @code{-pi/2} and @code{pi/2} (inclusive).
- @end deftypefun
- @deftypefun double atan2 (double @var{y}, double @var{x})
- @deftypefunx float atan2f (float @var{y}, float @var{x})
- @deftypefunx {long double} atan2l (long double @var{y}, long double @var{x})
- @deftypefunx _FloatN atan2fN (_Float@var{N} @var{y}, _Float@var{N} @var{x})
- @deftypefunx _FloatNx atan2fNx (_Float@var{N}x @var{y}, _Float@var{N}x @var{x})
- @standards{ISO, math.h}
- @standardsx{atan2fN, TS 18661-3:2015, math.h}
- @standardsx{atan2fNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- This function computes the arctangent of @var{y}/@var{x}, but the signs
- of both arguments are used to determine the quadrant of the result, and
- @var{x} is permitted to be zero. The return value is given in radians
- and is in the range @code{-pi} to @code{pi}, inclusive.
- If @var{x} and @var{y} are coordinates of a point in the plane,
- @code{atan2} returns the signed angle between the line from the origin
- to that point and the x-axis. Thus, @code{atan2} is useful for
- converting Cartesian coordinates to polar coordinates. (To compute the
- radial coordinate, use @code{hypot}; see @ref{Exponents and
- Logarithms}.)
- @c This is experimentally true. Should it be so? -zw
- If both @var{x} and @var{y} are zero, @code{atan2} returns zero.
- @end deftypefun
- @cindex inverse complex trigonometric functions
- @w{ISO C99} defines complex versions of the inverse trig functions.
- @deftypefun {complex double} casin (complex double @var{z})
- @deftypefunx {complex float} casinf (complex float @var{z})
- @deftypefunx {complex long double} casinl (complex long double @var{z})
- @deftypefunx {complex _FloatN} casinfN (complex _Float@var{N} @var{z})
- @deftypefunx {complex _FloatNx} casinfNx (complex _Float@var{N}x @var{z})
- @standards{ISO, complex.h}
- @standardsx{casinfN, TS 18661-3:2015, complex.h}
- @standardsx{casinfNx, TS 18661-3:2015, complex.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions compute the complex arcsine of @var{z}---that is, the
- value whose sine is @var{z}. The value returned is in radians.
- Unlike the real-valued functions, @code{casin} is defined for all
- values of @var{z}.
- @end deftypefun
- @deftypefun {complex double} cacos (complex double @var{z})
- @deftypefunx {complex float} cacosf (complex float @var{z})
- @deftypefunx {complex long double} cacosl (complex long double @var{z})
- @deftypefunx {complex _FloatN} cacosfN (complex _Float@var{N} @var{z})
- @deftypefunx {complex _FloatNx} cacosfNx (complex _Float@var{N}x @var{z})
- @standards{ISO, complex.h}
- @standardsx{cacosfN, TS 18661-3:2015, complex.h}
- @standardsx{cacosfNx, TS 18661-3:2015, complex.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions compute the complex arccosine of @var{z}---that is, the
- value whose cosine is @var{z}. The value returned is in radians.
- Unlike the real-valued functions, @code{cacos} is defined for all
- values of @var{z}.
- @end deftypefun
- @deftypefun {complex double} catan (complex double @var{z})
- @deftypefunx {complex float} catanf (complex float @var{z})
- @deftypefunx {complex long double} catanl (complex long double @var{z})
- @deftypefunx {complex _FloatN} catanfN (complex _Float@var{N} @var{z})
- @deftypefunx {complex _FloatNx} catanfNx (complex _Float@var{N}x @var{z})
- @standards{ISO, complex.h}
- @standardsx{catanfN, TS 18661-3:2015, complex.h}
- @standardsx{catanfNx, TS 18661-3:2015, complex.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions compute the complex arctangent of @var{z}---that is,
- the value whose tangent is @var{z}. The value is in units of radians.
- @end deftypefun
- @node Exponents and Logarithms
- @section Exponentiation and Logarithms
- @cindex exponentiation functions
- @cindex power functions
- @cindex logarithm functions
- @deftypefun double exp (double @var{x})
- @deftypefunx float expf (float @var{x})
- @deftypefunx {long double} expl (long double @var{x})
- @deftypefunx _FloatN expfN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx expfNx (_Float@var{N}x @var{x})
- @standards{ISO, math.h}
- @standardsx{expfN, TS 18661-3:2015, math.h}
- @standardsx{expfNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions compute @code{e} (the base of natural logarithms) raised
- to the power @var{x}.
- If the magnitude of the result is too large to be representable,
- @code{exp} signals overflow.
- @end deftypefun
- @deftypefun double exp2 (double @var{x})
- @deftypefunx float exp2f (float @var{x})
- @deftypefunx {long double} exp2l (long double @var{x})
- @deftypefunx _FloatN exp2fN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx exp2fNx (_Float@var{N}x @var{x})
- @standards{ISO, math.h}
- @standardsx{exp2fN, TS 18661-3:2015, math.h}
- @standardsx{exp2fNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions compute @code{2} raised to the power @var{x}.
- Mathematically, @code{exp2 (x)} is the same as @code{exp (x * log (2))}.
- @end deftypefun
- @deftypefun double exp10 (double @var{x})
- @deftypefunx float exp10f (float @var{x})
- @deftypefunx {long double} exp10l (long double @var{x})
- @deftypefunx _FloatN exp10fN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx exp10fNx (_Float@var{N}x @var{x})
- @standards{ISO, math.h}
- @standardsx{exp10fN, TS 18661-4:2015, math.h}
- @standardsx{exp10fNx, TS 18661-4:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions compute @code{10} raised to the power @var{x}.
- Mathematically, @code{exp10 (x)} is the same as @code{exp (x * log (10))}.
- The @code{exp10} functions are from TS 18661-4:2015.
- @end deftypefun
- @deftypefun double log (double @var{x})
- @deftypefunx float logf (float @var{x})
- @deftypefunx {long double} logl (long double @var{x})
- @deftypefunx _FloatN logfN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx logfNx (_Float@var{N}x @var{x})
- @standards{ISO, math.h}
- @standardsx{logfN, TS 18661-3:2015, math.h}
- @standardsx{logfNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions compute the natural logarithm of @var{x}. @code{exp (log
- (@var{x}))} equals @var{x}, exactly in mathematics and approximately in
- C.
- If @var{x} is negative, @code{log} signals a domain error. If @var{x}
- is zero, it returns negative infinity; if @var{x} is too close to zero,
- it may signal overflow.
- @end deftypefun
- @deftypefun double log10 (double @var{x})
- @deftypefunx float log10f (float @var{x})
- @deftypefunx {long double} log10l (long double @var{x})
- @deftypefunx _FloatN log10fN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx log10fNx (_Float@var{N}x @var{x})
- @standards{ISO, math.h}
- @standardsx{log10fN, TS 18661-3:2015, math.h}
- @standardsx{log10fNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return the base-10 logarithm of @var{x}.
- @code{log10 (@var{x})} equals @code{log (@var{x}) / log (10)}.
- @end deftypefun
- @deftypefun double log2 (double @var{x})
- @deftypefunx float log2f (float @var{x})
- @deftypefunx {long double} log2l (long double @var{x})
- @deftypefunx _FloatN log2fN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx log2fNx (_Float@var{N}x @var{x})
- @standards{ISO, math.h}
- @standardsx{log2fN, TS 18661-3:2015, math.h}
- @standardsx{log2fNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return the base-2 logarithm of @var{x}.
- @code{log2 (@var{x})} equals @code{log (@var{x}) / log (2)}.
- @end deftypefun
- @deftypefun double logb (double @var{x})
- @deftypefunx float logbf (float @var{x})
- @deftypefunx {long double} logbl (long double @var{x})
- @deftypefunx _FloatN logbfN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx logbfNx (_Float@var{N}x @var{x})
- @standards{ISO, math.h}
- @standardsx{logbfN, TS 18661-3:2015, math.h}
- @standardsx{logbfNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions extract the exponent of @var{x} and return it as a
- floating-point value. If @code{FLT_RADIX} is two, @code{logb} is equal
- to @code{floor (log2 (x))}, except it's probably faster.
- If @var{x} is de-normalized, @code{logb} returns the exponent @var{x}
- would have if it were normalized. If @var{x} is infinity (positive or
- negative), @code{logb} returns @math{@infinity{}}. If @var{x} is zero,
- @code{logb} returns @math{@infinity{}}. It does not signal.
- @end deftypefun
- @deftypefun int ilogb (double @var{x})
- @deftypefunx int ilogbf (float @var{x})
- @deftypefunx int ilogbl (long double @var{x})
- @deftypefunx int ilogbfN (_Float@var{N} @var{x})
- @deftypefunx int ilogbfNx (_Float@var{N}x @var{x})
- @deftypefunx {long int} llogb (double @var{x})
- @deftypefunx {long int} llogbf (float @var{x})
- @deftypefunx {long int} llogbl (long double @var{x})
- @deftypefunx {long int} llogbfN (_Float@var{N} @var{x})
- @deftypefunx {long int} llogbfNx (_Float@var{N}x @var{x})
- @standards{ISO, math.h}
- @standardsx{ilogbfN, TS 18661-3:2015, math.h}
- @standardsx{ilogbfNx, TS 18661-3:2015, math.h}
- @standardsx{llogbfN, TS 18661-3:2015, math.h}
- @standardsx{llogbfNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions are equivalent to the corresponding @code{logb}
- functions except that they return signed integer values. The
- @code{ilogb}, @code{ilogbf}, and @code{ilogbl} functions are from ISO
- C99; the @code{llogb}, @code{llogbf}, @code{llogbl} functions are from
- TS 18661-1:2014; the @code{ilogbfN}, @code{ilogbfNx}, @code{llogbfN},
- and @code{llogbfNx} functions are from TS 18661-3:2015.
- @end deftypefun
- @noindent
- Since integers cannot represent infinity and NaN, @code{ilogb} instead
- returns an integer that can't be the exponent of a normal floating-point
- number. @file{math.h} defines constants so you can check for this.
- @deftypevr Macro int FP_ILOGB0
- @standards{ISO, math.h}
- @code{ilogb} returns this value if its argument is @code{0}. The
- numeric value is either @code{INT_MIN} or @code{-INT_MAX}.
- This macro is defined in @w{ISO C99}.
- @end deftypevr
- @deftypevr Macro {long int} FP_LLOGB0
- @standards{ISO, math.h}
- @code{llogb} returns this value if its argument is @code{0}. The
- numeric value is either @code{LONG_MIN} or @code{-LONG_MAX}.
- This macro is defined in TS 18661-1:2014.
- @end deftypevr
- @deftypevr Macro int FP_ILOGBNAN
- @standards{ISO, math.h}
- @code{ilogb} returns this value if its argument is @code{NaN}. The
- numeric value is either @code{INT_MIN} or @code{INT_MAX}.
- This macro is defined in @w{ISO C99}.
- @end deftypevr
- @deftypevr Macro {long int} FP_LLOGBNAN
- @standards{ISO, math.h}
- @code{llogb} returns this value if its argument is @code{NaN}. The
- numeric value is either @code{LONG_MIN} or @code{LONG_MAX}.
- This macro is defined in TS 18661-1:2014.
- @end deftypevr
- These values are system specific. They might even be the same. The
- proper way to test the result of @code{ilogb} is as follows:
- @smallexample
- i = ilogb (f);
- if (i == FP_ILOGB0 || i == FP_ILOGBNAN)
- @{
- if (isnan (f))
- @{
- /* @r{Handle NaN.} */
- @}
- else if (f == 0.0)
- @{
- /* @r{Handle 0.0.} */
- @}
- else
- @{
- /* @r{Some other value with large exponent,}
- @r{perhaps +Inf.} */
- @}
- @}
- @end smallexample
- @deftypefun double pow (double @var{base}, double @var{power})
- @deftypefunx float powf (float @var{base}, float @var{power})
- @deftypefunx {long double} powl (long double @var{base}, long double @var{power})
- @deftypefunx _FloatN powfN (_Float@var{N} @var{base}, _Float@var{N} @var{power})
- @deftypefunx _FloatNx powfNx (_Float@var{N}x @var{base}, _Float@var{N}x @var{power})
- @standards{ISO, math.h}
- @standardsx{powfN, TS 18661-3:2015, math.h}
- @standardsx{powfNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These are general exponentiation functions, returning @var{base} raised
- to @var{power}.
- Mathematically, @code{pow} would return a complex number when @var{base}
- is negative and @var{power} is not an integral value. @code{pow} can't
- do that, so instead it signals a domain error. @code{pow} may also
- underflow or overflow the destination type.
- @end deftypefun
- @cindex square root function
- @deftypefun double sqrt (double @var{x})
- @deftypefunx float sqrtf (float @var{x})
- @deftypefunx {long double} sqrtl (long double @var{x})
- @deftypefunx _FloatN sqrtfN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx sqrtfNx (_Float@var{N}x @var{x})
- @standards{ISO, math.h}
- @standardsx{sqrtfN, TS 18661-3:2015, math.h}
- @standardsx{sqrtfNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return the nonnegative square root of @var{x}.
- If @var{x} is negative, @code{sqrt} signals a domain error.
- Mathematically, it should return a complex number.
- @end deftypefun
- @cindex cube root function
- @deftypefun double cbrt (double @var{x})
- @deftypefunx float cbrtf (float @var{x})
- @deftypefunx {long double} cbrtl (long double @var{x})
- @deftypefunx _FloatN cbrtfN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx cbrtfNx (_Float@var{N}x @var{x})
- @standards{BSD, math.h}
- @standardsx{cbrtfN, TS 18661-3:2015, math.h}
- @standardsx{cbrtfNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return the cube root of @var{x}. They cannot
- fail; every representable real value has a representable real cube root.
- @end deftypefun
- @deftypefun double hypot (double @var{x}, double @var{y})
- @deftypefunx float hypotf (float @var{x}, float @var{y})
- @deftypefunx {long double} hypotl (long double @var{x}, long double @var{y})
- @deftypefunx _FloatN hypotfN (_Float@var{N} @var{x}, _Float@var{N} @var{y})
- @deftypefunx _FloatNx hypotfNx (_Float@var{N}x @var{x}, _Float@var{N}x @var{y})
- @standards{ISO, math.h}
- @standardsx{hypotfN, TS 18661-3:2015, math.h}
- @standardsx{hypotfNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return @code{sqrt (@var{x}*@var{x} +
- @var{y}*@var{y})}. This is the length of the hypotenuse of a right
- triangle with sides of length @var{x} and @var{y}, or the distance
- of the point (@var{x}, @var{y}) from the origin. Using this function
- instead of the direct formula is wise, since the error is
- much smaller. See also the function @code{cabs} in @ref{Absolute Value}.
- @end deftypefun
- @deftypefun double expm1 (double @var{x})
- @deftypefunx float expm1f (float @var{x})
- @deftypefunx {long double} expm1l (long double @var{x})
- @deftypefunx _FloatN expm1fN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx expm1fNx (_Float@var{N}x @var{x})
- @standards{ISO, math.h}
- @standardsx{expm1fN, TS 18661-3:2015, math.h}
- @standardsx{expm1fNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return a value equivalent to @code{exp (@var{x}) - 1}.
- They are computed in a way that is accurate even if @var{x} is
- near zero---a case where @code{exp (@var{x}) - 1} would be inaccurate owing
- to subtraction of two numbers that are nearly equal.
- @end deftypefun
- @deftypefun double log1p (double @var{x})
- @deftypefunx float log1pf (float @var{x})
- @deftypefunx {long double} log1pl (long double @var{x})
- @deftypefunx _FloatN log1pfN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx log1pfNx (_Float@var{N}x @var{x})
- @standards{ISO, math.h}
- @standardsx{log1pfN, TS 18661-3:2015, math.h}
- @standardsx{log1pfNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return a value equivalent to @w{@code{log (1 + @var{x})}}.
- They are computed in a way that is accurate even if @var{x} is
- near zero.
- @end deftypefun
- @cindex complex exponentiation functions
- @cindex complex logarithm functions
- @w{ISO C99} defines complex variants of some of the exponentiation and
- logarithm functions.
- @deftypefun {complex double} cexp (complex double @var{z})
- @deftypefunx {complex float} cexpf (complex float @var{z})
- @deftypefunx {complex long double} cexpl (complex long double @var{z})
- @deftypefunx {complex _FloatN} cexpfN (complex _Float@var{N} @var{z})
- @deftypefunx {complex _FloatNx} cexpfNx (complex _Float@var{N}x @var{z})
- @standards{ISO, complex.h}
- @standardsx{cexpfN, TS 18661-3:2015, complex.h}
- @standardsx{cexpfNx, TS 18661-3:2015, complex.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return @code{e} (the base of natural
- logarithms) raised to the power of @var{z}.
- Mathematically, this corresponds to the value
- @ifnottex
- @math{exp (z) = exp (creal (z)) * (cos (cimag (z)) + I * sin (cimag (z)))}
- @end ifnottex
- @tex
- $$\exp(z) = e^z = e^{{\rm Re}\,z} (\cos ({\rm Im}\,z) + i \sin ({\rm Im}\,z))$$
- @end tex
- @end deftypefun
- @deftypefun {complex double} clog (complex double @var{z})
- @deftypefunx {complex float} clogf (complex float @var{z})
- @deftypefunx {complex long double} clogl (complex long double @var{z})
- @deftypefunx {complex _FloatN} clogfN (complex _Float@var{N} @var{z})
- @deftypefunx {complex _FloatNx} clogfNx (complex _Float@var{N}x @var{z})
- @standards{ISO, complex.h}
- @standardsx{clogfN, TS 18661-3:2015, complex.h}
- @standardsx{clogfNx, TS 18661-3:2015, complex.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return the natural logarithm of @var{z}.
- Mathematically, this corresponds to the value
- @ifnottex
- @math{log (z) = log (cabs (z)) + I * carg (z)}
- @end ifnottex
- @tex
- $$\log(z) = \log |z| + i \arg z$$
- @end tex
- @noindent
- @code{clog} has a pole at 0, and will signal overflow if @var{z} equals
- or is very close to 0. It is well-defined for all other values of
- @var{z}.
- @end deftypefun
- @deftypefun {complex double} clog10 (complex double @var{z})
- @deftypefunx {complex float} clog10f (complex float @var{z})
- @deftypefunx {complex long double} clog10l (complex long double @var{z})
- @deftypefunx {complex _FloatN} clog10fN (complex _Float@var{N} @var{z})
- @deftypefunx {complex _FloatNx} clog10fNx (complex _Float@var{N}x @var{z})
- @standards{GNU, complex.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return the base 10 logarithm of the complex value
- @var{z}. Mathematically, this corresponds to the value
- @ifnottex
- @math{log10 (z) = log10 (cabs (z)) + I * carg (z) / log (10)}
- @end ifnottex
- @tex
- $$\log_{10}(z) = \log_{10}|z| + i \arg z / \log (10)$$
- @end tex
- All these functions, including the @code{_Float@var{N}} and
- @code{_Float@var{N}x} variants, are GNU extensions.
- @end deftypefun
- @deftypefun {complex double} csqrt (complex double @var{z})
- @deftypefunx {complex float} csqrtf (complex float @var{z})
- @deftypefunx {complex long double} csqrtl (complex long double @var{z})
- @deftypefunx {complex _FloatN} csqrtfN (_Float@var{N} @var{z})
- @deftypefunx {complex _FloatNx} csqrtfNx (complex _Float@var{N}x @var{z})
- @standards{ISO, complex.h}
- @standardsx{csqrtfN, TS 18661-3:2015, complex.h}
- @standardsx{csqrtfNx, TS 18661-3:2015, complex.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return the complex square root of the argument @var{z}. Unlike
- the real-valued functions, they are defined for all values of @var{z}.
- @end deftypefun
- @deftypefun {complex double} cpow (complex double @var{base}, complex double @var{power})
- @deftypefunx {complex float} cpowf (complex float @var{base}, complex float @var{power})
- @deftypefunx {complex long double} cpowl (complex long double @var{base}, complex long double @var{power})
- @deftypefunx {complex _FloatN} cpowfN (complex _Float@var{N} @var{base}, complex _Float@var{N} @var{power})
- @deftypefunx {complex _FloatNx} cpowfNx (complex _Float@var{N}x @var{base}, complex _Float@var{N}x @var{power})
- @standards{ISO, complex.h}
- @standardsx{cpowfN, TS 18661-3:2015, complex.h}
- @standardsx{cpowfNx, TS 18661-3:2015, complex.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return @var{base} raised to the power of
- @var{power}. This is equivalent to @w{@code{cexp (y * clog (x))}}
- @end deftypefun
- @node Hyperbolic Functions
- @section Hyperbolic Functions
- @cindex hyperbolic functions
- The functions in this section are related to the exponential functions;
- see @ref{Exponents and Logarithms}.
- @deftypefun double sinh (double @var{x})
- @deftypefunx float sinhf (float @var{x})
- @deftypefunx {long double} sinhl (long double @var{x})
- @deftypefunx _FloatN sinhfN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx sinhfNx (_Float@var{N}x @var{x})
- @standards{ISO, math.h}
- @standardsx{sinhfN, TS 18661-3:2015, math.h}
- @standardsx{sinhfNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return the hyperbolic sine of @var{x}, defined
- mathematically as @w{@code{(exp (@var{x}) - exp (-@var{x})) / 2}}. They
- may signal overflow if @var{x} is too large.
- @end deftypefun
- @deftypefun double cosh (double @var{x})
- @deftypefunx float coshf (float @var{x})
- @deftypefunx {long double} coshl (long double @var{x})
- @deftypefunx _FloatN coshfN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx coshfNx (_Float@var{N}x @var{x})
- @standards{ISO, math.h}
- @standardsx{coshfN, TS 18661-3:2015, math.h}
- @standardsx{coshfNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return the hyperbolic cosine of @var{x},
- defined mathematically as @w{@code{(exp (@var{x}) + exp (-@var{x})) / 2}}.
- They may signal overflow if @var{x} is too large.
- @end deftypefun
- @deftypefun double tanh (double @var{x})
- @deftypefunx float tanhf (float @var{x})
- @deftypefunx {long double} tanhl (long double @var{x})
- @deftypefunx _FloatN tanhfN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx tanhfNx (_Float@var{N}x @var{x})
- @standards{ISO, math.h}
- @standardsx{tanhfN, TS 18661-3:2015, math.h}
- @standardsx{tanhfNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return the hyperbolic tangent of @var{x},
- defined mathematically as @w{@code{sinh (@var{x}) / cosh (@var{x})}}.
- They may signal overflow if @var{x} is too large.
- @end deftypefun
- @cindex hyperbolic functions
- There are counterparts for the hyperbolic functions which take
- complex arguments.
- @deftypefun {complex double} csinh (complex double @var{z})
- @deftypefunx {complex float} csinhf (complex float @var{z})
- @deftypefunx {complex long double} csinhl (complex long double @var{z})
- @deftypefunx {complex _FloatN} csinhfN (complex _Float@var{N} @var{z})
- @deftypefunx {complex _FloatNx} csinhfNx (complex _Float@var{N}x @var{z})
- @standards{ISO, complex.h}
- @standardsx{csinhfN, TS 18661-3:2015, complex.h}
- @standardsx{csinhfNx, TS 18661-3:2015, complex.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return the complex hyperbolic sine of @var{z}, defined
- mathematically as @w{@code{(exp (@var{z}) - exp (-@var{z})) / 2}}.
- @end deftypefun
- @deftypefun {complex double} ccosh (complex double @var{z})
- @deftypefunx {complex float} ccoshf (complex float @var{z})
- @deftypefunx {complex long double} ccoshl (complex long double @var{z})
- @deftypefunx {complex _FloatN} ccoshfN (complex _Float@var{N} @var{z})
- @deftypefunx {complex _FloatNx} ccoshfNx (complex _Float@var{N}x @var{z})
- @standards{ISO, complex.h}
- @standardsx{ccoshfN, TS 18661-3:2015, complex.h}
- @standardsx{ccoshfNx, TS 18661-3:2015, complex.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return the complex hyperbolic cosine of @var{z}, defined
- mathematically as @w{@code{(exp (@var{z}) + exp (-@var{z})) / 2}}.
- @end deftypefun
- @deftypefun {complex double} ctanh (complex double @var{z})
- @deftypefunx {complex float} ctanhf (complex float @var{z})
- @deftypefunx {complex long double} ctanhl (complex long double @var{z})
- @deftypefunx {complex _FloatN} ctanhfN (complex _Float@var{N} @var{z})
- @deftypefunx {complex _FloatNx} ctanhfNx (complex _Float@var{N}x @var{z})
- @standards{ISO, complex.h}
- @standardsx{ctanhfN, TS 18661-3:2015, complex.h}
- @standardsx{ctanhfNx, TS 18661-3:2015, complex.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return the complex hyperbolic tangent of @var{z},
- defined mathematically as @w{@code{csinh (@var{z}) / ccosh (@var{z})}}.
- @end deftypefun
- @cindex inverse hyperbolic functions
- @deftypefun double asinh (double @var{x})
- @deftypefunx float asinhf (float @var{x})
- @deftypefunx {long double} asinhl (long double @var{x})
- @deftypefunx _FloatN asinhfN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx asinhfNx (_Float@var{N}x @var{x})
- @standards{ISO, math.h}
- @standardsx{asinhfN, TS 18661-3:2015, math.h}
- @standardsx{asinhfNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return the inverse hyperbolic sine of @var{x}---the
- value whose hyperbolic sine is @var{x}.
- @end deftypefun
- @deftypefun double acosh (double @var{x})
- @deftypefunx float acoshf (float @var{x})
- @deftypefunx {long double} acoshl (long double @var{x})
- @deftypefunx _FloatN acoshfN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx acoshfNx (_Float@var{N}x @var{x})
- @standards{ISO, math.h}
- @standardsx{acoshfN, TS 18661-3:2015, math.h}
- @standardsx{acoshfNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return the inverse hyperbolic cosine of @var{x}---the
- value whose hyperbolic cosine is @var{x}. If @var{x} is less than
- @code{1}, @code{acosh} signals a domain error.
- @end deftypefun
- @deftypefun double atanh (double @var{x})
- @deftypefunx float atanhf (float @var{x})
- @deftypefunx {long double} atanhl (long double @var{x})
- @deftypefunx _FloatN atanhfN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx atanhfNx (_Float@var{N}x @var{x})
- @standards{ISO, math.h}
- @standardsx{atanhfN, TS 18661-3:2015, math.h}
- @standardsx{atanhfNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return the inverse hyperbolic tangent of @var{x}---the
- value whose hyperbolic tangent is @var{x}. If the absolute value of
- @var{x} is greater than @code{1}, @code{atanh} signals a domain error;
- if it is equal to 1, @code{atanh} returns infinity.
- @end deftypefun
- @cindex inverse complex hyperbolic functions
- @deftypefun {complex double} casinh (complex double @var{z})
- @deftypefunx {complex float} casinhf (complex float @var{z})
- @deftypefunx {complex long double} casinhl (complex long double @var{z})
- @deftypefunx {complex _FloatN} casinhfN (complex _Float@var{N} @var{z})
- @deftypefunx {complex _FloatNx} casinhfNx (complex _Float@var{N}x @var{z})
- @standards{ISO, complex.h}
- @standardsx{casinhfN, TS 18661-3:2015, complex.h}
- @standardsx{casinhfNx, TS 18661-3:2015, complex.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return the inverse complex hyperbolic sine of
- @var{z}---the value whose complex hyperbolic sine is @var{z}.
- @end deftypefun
- @deftypefun {complex double} cacosh (complex double @var{z})
- @deftypefunx {complex float} cacoshf (complex float @var{z})
- @deftypefunx {complex long double} cacoshl (complex long double @var{z})
- @deftypefunx {complex _FloatN} cacoshfN (complex _Float@var{N} @var{z})
- @deftypefunx {complex _FloatNx} cacoshfNx (complex _Float@var{N}x @var{z})
- @standards{ISO, complex.h}
- @standardsx{cacoshfN, TS 18661-3:2015, complex.h}
- @standardsx{cacoshfNx, TS 18661-3:2015, complex.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return the inverse complex hyperbolic cosine of
- @var{z}---the value whose complex hyperbolic cosine is @var{z}. Unlike
- the real-valued functions, there are no restrictions on the value of @var{z}.
- @end deftypefun
- @deftypefun {complex double} catanh (complex double @var{z})
- @deftypefunx {complex float} catanhf (complex float @var{z})
- @deftypefunx {complex long double} catanhl (complex long double @var{z})
- @deftypefunx {complex _FloatN} catanhfN (complex _Float@var{N} @var{z})
- @deftypefunx {complex _FloatNx} catanhfNx (complex _Float@var{N}x @var{z})
- @standards{ISO, complex.h}
- @standardsx{catanhfN, TS 18661-3:2015, complex.h}
- @standardsx{catanhfNx, TS 18661-3:2015, complex.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- These functions return the inverse complex hyperbolic tangent of
- @var{z}---the value whose complex hyperbolic tangent is @var{z}. Unlike
- the real-valued functions, there are no restrictions on the value of
- @var{z}.
- @end deftypefun
- @node Special Functions
- @section Special Functions
- @cindex special functions
- @cindex Bessel functions
- @cindex gamma function
- These are some more exotic mathematical functions which are sometimes
- useful. Currently they only have real-valued versions.
- @deftypefun double erf (double @var{x})
- @deftypefunx float erff (float @var{x})
- @deftypefunx {long double} erfl (long double @var{x})
- @deftypefunx _FloatN erffN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx erffNx (_Float@var{N}x @var{x})
- @standards{SVID, math.h}
- @standardsx{erffN, TS 18661-3:2015, math.h}
- @standardsx{erffNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- @code{erf} returns the error function of @var{x}. The error
- function is defined as
- @tex
- $$\hbox{erf}(x) = {2\over\sqrt{\pi}}\cdot\int_0^x e^{-t^2} \hbox{d}t$$
- @end tex
- @ifnottex
- @smallexample
- erf (x) = 2/sqrt(pi) * integral from 0 to x of exp(-t^2) dt
- @end smallexample
- @end ifnottex
- @end deftypefun
- @deftypefun double erfc (double @var{x})
- @deftypefunx float erfcf (float @var{x})
- @deftypefunx {long double} erfcl (long double @var{x})
- @deftypefunx _FloatN erfcfN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx erfcfNx (_Float@var{N}x @var{x})
- @standards{SVID, math.h}
- @standardsx{erfcfN, TS 18661-3:2015, math.h}
- @standardsx{erfcfNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- @code{erfc} returns @code{1.0 - erf(@var{x})}, but computed in a
- fashion that avoids round-off error when @var{x} is large.
- @end deftypefun
- @deftypefun double lgamma (double @var{x})
- @deftypefunx float lgammaf (float @var{x})
- @deftypefunx {long double} lgammal (long double @var{x})
- @deftypefunx _FloatN lgammafN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx lgammafNx (_Float@var{N}x @var{x})
- @standards{SVID, math.h}
- @standardsx{lgammafN, TS 18661-3:2015, math.h}
- @standardsx{lgammafNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtunsafe{@mtasurace{:signgam}}@asunsafe{}@acsafe{}}
- @code{lgamma} returns the natural logarithm of the absolute value of
- the gamma function of @var{x}. The gamma function is defined as
- @tex
- $$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \hbox{d}t$$
- @end tex
- @ifnottex
- @smallexample
- gamma (x) = integral from 0 to @infinity{} of t^(x-1) e^-t dt
- @end smallexample
- @end ifnottex
- @vindex signgam
- The sign of the gamma function is stored in the global variable
- @var{signgam}, which is declared in @file{math.h}. It is @code{1} if
- the intermediate result was positive or zero, or @code{-1} if it was
- negative.
- To compute the real gamma function you can use the @code{tgamma}
- function or you can compute the values as follows:
- @smallexample
- lgam = lgamma(x);
- gam = signgam*exp(lgam);
- @end smallexample
- The gamma function has singularities at the non-positive integers.
- @code{lgamma} will raise the zero divide exception if evaluated at a
- singularity.
- @end deftypefun
- @deftypefun double lgamma_r (double @var{x}, int *@var{signp})
- @deftypefunx float lgammaf_r (float @var{x}, int *@var{signp})
- @deftypefunx {long double} lgammal_r (long double @var{x}, int *@var{signp})
- @deftypefunx _FloatN lgammafN_r (_Float@var{N} @var{x}, int *@var{signp})
- @deftypefunx _FloatNx lgammafNx_r (_Float@var{N}x @var{x}, int *@var{signp})
- @standards{XPG, math.h}
- @standardsx{lgammafN_r, GNU, math.h}
- @standardsx{lgammafNx_r, GNU, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- @code{lgamma_r} is just like @code{lgamma}, but it stores the sign of
- the intermediate result in the variable pointed to by @var{signp}
- instead of in the @var{signgam} global. This means it is reentrant.
- The @code{lgammaf@var{N}_r} and @code{lgammaf@var{N}x_r} functions are
- GNU extensions.
- @end deftypefun
- @deftypefun double gamma (double @var{x})
- @deftypefunx float gammaf (float @var{x})
- @deftypefunx {long double} gammal (long double @var{x})
- @standards{SVID, math.h}
- @safety{@prelim{}@mtunsafe{@mtasurace{:signgam}}@asunsafe{}@acsafe{}}
- These functions exist for compatibility reasons. They are equivalent to
- @code{lgamma} etc. It is better to use @code{lgamma} since for one the
- name reflects better the actual computation, and moreover @code{lgamma} is
- standardized in @w{ISO C99} while @code{gamma} is not.
- @end deftypefun
- @deftypefun double tgamma (double @var{x})
- @deftypefunx float tgammaf (float @var{x})
- @deftypefunx {long double} tgammal (long double @var{x})
- @deftypefunx _FloatN tgammafN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx tgammafNx (_Float@var{N}x @var{x})
- @standardsx{tgamma, XPG, math.h}
- @standardsx{tgamma, ISO, math.h}
- @standardsx{tgammaf, XPG, math.h}
- @standardsx{tgammaf, ISO, math.h}
- @standardsx{tgammal, XPG, math.h}
- @standardsx{tgammal, ISO, math.h}
- @standardsx{tgammafN, TS 18661-3:2015, math.h}
- @standardsx{tgammafNx, TS 18661-3:2015, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- @code{tgamma} applies the gamma function to @var{x}. The gamma
- function is defined as
- @tex
- $$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} \hbox{d}t$$
- @end tex
- @ifnottex
- @smallexample
- gamma (x) = integral from 0 to @infinity{} of t^(x-1) e^-t dt
- @end smallexample
- @end ifnottex
- This function was introduced in @w{ISO C99}. The @code{_Float@var{N}}
- and @code{_Float@var{N}x} variants were introduced in @w{ISO/IEC TS
- 18661-3}.
- @end deftypefun
- @deftypefun double j0 (double @var{x})
- @deftypefunx float j0f (float @var{x})
- @deftypefunx {long double} j0l (long double @var{x})
- @deftypefunx _FloatN j0fN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx j0fNx (_Float@var{N}x @var{x})
- @standards{SVID, math.h}
- @standardsx{j0fN, GNU, math.h}
- @standardsx{j0fNx, GNU, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- @code{j0} returns the Bessel function of the first kind of order 0 of
- @var{x}. It may signal underflow if @var{x} is too large.
- The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
- extensions.
- @end deftypefun
- @deftypefun double j1 (double @var{x})
- @deftypefunx float j1f (float @var{x})
- @deftypefunx {long double} j1l (long double @var{x})
- @deftypefunx _FloatN j1fN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx j1fNx (_Float@var{N}x @var{x})
- @standards{SVID, math.h}
- @standardsx{j1fN, GNU, math.h}
- @standardsx{j1fNx, GNU, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- @code{j1} returns the Bessel function of the first kind of order 1 of
- @var{x}. It may signal underflow if @var{x} is too large.
- The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
- extensions.
- @end deftypefun
- @deftypefun double jn (int @var{n}, double @var{x})
- @deftypefunx float jnf (int @var{n}, float @var{x})
- @deftypefunx {long double} jnl (int @var{n}, long double @var{x})
- @deftypefunx _FloatN jnfN (int @var{n}, _Float@var{N} @var{x})
- @deftypefunx _FloatNx jnfNx (int @var{n}, _Float@var{N}x @var{x})
- @standards{SVID, math.h}
- @standardsx{jnfN, GNU, math.h}
- @standardsx{jnfNx, GNU, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- @code{jn} returns the Bessel function of the first kind of order
- @var{n} of @var{x}. It may signal underflow if @var{x} is too large.
- The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
- extensions.
- @end deftypefun
- @deftypefun double y0 (double @var{x})
- @deftypefunx float y0f (float @var{x})
- @deftypefunx {long double} y0l (long double @var{x})
- @deftypefunx _FloatN y0fN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx y0fNx (_Float@var{N}x @var{x})
- @standards{SVID, math.h}
- @standardsx{y0fN, GNU, math.h}
- @standardsx{y0fNx, GNU, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- @code{y0} returns the Bessel function of the second kind of order 0 of
- @var{x}. It may signal underflow if @var{x} is too large. If @var{x}
- is negative, @code{y0} signals a domain error; if it is zero,
- @code{y0} signals overflow and returns @math{-@infinity}.
- The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
- extensions.
- @end deftypefun
- @deftypefun double y1 (double @var{x})
- @deftypefunx float y1f (float @var{x})
- @deftypefunx {long double} y1l (long double @var{x})
- @deftypefunx _FloatN y1fN (_Float@var{N} @var{x})
- @deftypefunx _FloatNx y1fNx (_Float@var{N}x @var{x})
- @standards{SVID, math.h}
- @standardsx{y1fN, GNU, math.h}
- @standardsx{y1fNx, GNU, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- @code{y1} returns the Bessel function of the second kind of order 1 of
- @var{x}. It may signal underflow if @var{x} is too large. If @var{x}
- is negative, @code{y1} signals a domain error; if it is zero,
- @code{y1} signals overflow and returns @math{-@infinity}.
- The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
- extensions.
- @end deftypefun
- @deftypefun double yn (int @var{n}, double @var{x})
- @deftypefunx float ynf (int @var{n}, float @var{x})
- @deftypefunx {long double} ynl (int @var{n}, long double @var{x})
- @deftypefunx _FloatN ynfN (int @var{n}, _Float@var{N} @var{x})
- @deftypefunx _FloatNx ynfNx (int @var{n}, _Float@var{N}x @var{x})
- @standards{SVID, math.h}
- @standardsx{ynfN, GNU, math.h}
- @standardsx{ynfNx, GNU, math.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- @code{yn} returns the Bessel function of the second kind of order @var{n} of
- @var{x}. It may signal underflow if @var{x} is too large. If @var{x}
- is negative, @code{yn} signals a domain error; if it is zero,
- @code{yn} signals overflow and returns @math{-@infinity}.
- The @code{_Float@var{N}} and @code{_Float@var{N}x} variants are GNU
- extensions.
- @end deftypefun
- @node Errors in Math Functions
- @section Known Maximum Errors in Math Functions
- @cindex math errors
- @cindex ulps
- This section lists the known errors of the functions in the math
- library. Errors are measured in ``units of the last place''. This is a
- measure for the relative error. For a number @math{z} with the
- representation @math{d.d@dots{}d@mul{}2^e} (we assume IEEE
- floating-point numbers with base 2) the ULP is represented by
- @tex
- $${|d.d\dots d - (z/2^e)|}\over {2^{p-1}}$$
- @end tex
- @ifnottex
- @smallexample
- |d.d...d - (z / 2^e)| / 2^(p - 1)
- @end smallexample
- @end ifnottex
- @noindent
- where @math{p} is the number of bits in the mantissa of the
- floating-point number representation. Ideally the error for all
- functions is always less than 0.5ulps in round-to-nearest mode. Using
- rounding bits this is also
- possible and normally implemented for the basic operations. Except
- for certain functions such as @code{sqrt}, @code{fma} and @code{rint}
- whose results are fully specified by reference to corresponding IEEE
- 754 floating-point operations, and conversions between strings and
- floating point, @theglibc{} does not aim for correctly rounded results
- for functions in the math library, and does not aim for correctness in
- whether ``inexact'' exceptions are raised. Instead, the goals for
- accuracy of functions without fully specified results are as follows;
- some functions have bugs meaning they do not meet these goals in all
- cases. In the future, @theglibc{} may provide some other correctly
- rounding functions under the names such as @code{crsin} proposed for
- an extension to ISO C.
- @itemize @bullet
- @item
- Each function with a floating-point result behaves as if it computes
- an infinite-precision result that is within a few ulp (in both real
- and complex parts, for functions with complex results) of the
- mathematically correct value of the function (interpreted together
- with ISO C or POSIX semantics for the function in question) at the
- exact value passed as the input. Exceptions are raised appropriately
- for this value and in accordance with IEEE 754 / ISO C / POSIX
- semantics, and it is then rounded according to the current rounding
- direction to the result that is returned to the user. @code{errno}
- may also be set (@pxref{Math Error Reporting}). (The ``inexact''
- exception may be raised, or not raised, even if this is inconsistent
- with the infinite-precision value.)
- @item
- For the IBM @code{long double} format, as used on PowerPC GNU/Linux,
- the accuracy goal is weaker for input values not exactly representable
- in 106 bits of precision; it is as if the input value is some value
- within 0.5ulp of the value actually passed, where ``ulp'' is
- interpreted in terms of a fixed-precision 106-bit mantissa, but not
- necessarily the exact value actually passed with discontiguous
- mantissa bits.
- @item
- For the IBM @code{long double} format, functions whose results are
- fully specified by reference to corresponding IEEE 754 floating-point
- operations have the same accuracy goals as other functions, but with
- the error bound being the same as that for division (3ulp).
- Furthermore, ``inexact'' and ``underflow'' exceptions may be raised
- for all functions for any inputs, even where such exceptions are
- inconsistent with the returned value, since the underlying
- floating-point arithmetic has that property.
- @item
- Functions behave as if the infinite-precision result computed is zero,
- infinity or NaN if and only if that is the mathematically correct
- infinite-precision result. They behave as if the infinite-precision
- result computed always has the same sign as the mathematically correct
- result.
- @item
- If the mathematical result is more than a few ulp above the overflow
- threshold for the current rounding direction, the value returned is
- the appropriate overflow value for the current rounding direction,
- with the overflow exception raised.
- @item
- If the mathematical result has magnitude well below half the least
- subnormal magnitude, the returned value is either zero or the least
- subnormal (in each case, with the correct sign), according to the
- current rounding direction and with the underflow exception raised.
- @item
- Where the mathematical result underflows (before rounding) and is not
- exactly representable as a floating-point value, the function does not
- behave as if the computed infinite-precision result is an exact value
- in the subnormal range. This means that the underflow exception is
- raised other than possibly for cases where the mathematical result is
- very close to the underflow threshold and the function behaves as if
- it computes an infinite-precision result that does not underflow. (So
- there may be spurious underflow exceptions in cases where the
- underflowing result is exact, but not missing underflow exceptions in
- cases where it is inexact.)
- @item
- @Theglibc{} does not aim for functions to satisfy other properties of
- the underlying mathematical function, such as monotonicity, where not
- implied by the above goals.
- @item
- All the above applies to both real and complex parts, for complex
- functions.
- @end itemize
- Therefore many of the functions in the math library have errors. The
- table lists the maximum error for each function which is exposed by one
- of the existing tests in the test suite. The table tries to cover as much
- as possible and list the actual maximum error (or at least a ballpark
- figure) but this is often not achieved due to the large search space.
- The table lists the ULP values for different architectures. Different
- architectures have different results since their hardware support for
- floating-point operations varies and also the existing hardware support
- is different. Only the round-to-nearest rounding mode is covered by
- this table, and vector versions of functions are not covered.
- Functions not listed do not have known errors.
- @page
- @c This multitable does not fit on a single page
- @include libm-err.texi
- @node Pseudo-Random Numbers
- @section Pseudo-Random Numbers
- @cindex random numbers
- @cindex pseudo-random numbers
- @cindex seed (for random numbers)
- This section describes the GNU facilities for generating a series of
- pseudo-random numbers. The numbers generated are not truly random;
- typically, they form a sequence that repeats periodically, with a period
- so large that you can ignore it for ordinary purposes. The random
- number generator works by remembering a @dfn{seed} value which it uses
- to compute the next random number and also to compute a new seed.
- Although the generated numbers look unpredictable within one run of a
- program, the sequence of numbers is @emph{exactly the same} from one run
- to the next. This is because the initial seed is always the same. This
- is convenient when you are debugging a program, but it is unhelpful if
- you want the program to behave unpredictably. If you want a different
- pseudo-random series each time your program runs, you must specify a
- different seed each time. For ordinary purposes, basing the seed on the
- current time works well. For random numbers in cryptography,
- @pxref{Unpredictable Bytes}.
- You can obtain repeatable sequences of numbers on a particular machine type
- by specifying the same initial seed value for the random number
- generator. There is no standard meaning for a particular seed value;
- the same seed, used in different C libraries or on different CPU types,
- will give you different random numbers.
- @Theglibc{} supports the standard @w{ISO C} random number functions
- plus two other sets derived from BSD and SVID. The BSD and @w{ISO C}
- functions provide identical, somewhat limited functionality. If only a
- small number of random bits are required, we recommend you use the
- @w{ISO C} interface, @code{rand} and @code{srand}. The SVID functions
- provide a more flexible interface, which allows better random number
- generator algorithms, provides more random bits (up to 48) per call, and
- can provide random floating-point numbers. These functions are required
- by the XPG standard and therefore will be present in all modern Unix
- systems.
- @menu
- * ISO Random:: @code{rand} and friends.
- * BSD Random:: @code{random} and friends.
- * SVID Random:: @code{drand48} and friends.
- @end menu
- @node ISO Random
- @subsection ISO C Random Number Functions
- This section describes the random number functions that are part of
- the @w{ISO C} standard.
- To use these facilities, you should include the header file
- @file{stdlib.h} in your program.
- @pindex stdlib.h
- @deftypevr Macro int RAND_MAX
- @standards{ISO, stdlib.h}
- The value of this macro is an integer constant representing the largest
- value the @code{rand} function can return. In @theglibc{}, it is
- @code{2147483647}, which is the largest signed integer representable in
- 32 bits. In other libraries, it may be as low as @code{32767}.
- @end deftypevr
- @deftypefun int rand (void)
- @standards{ISO, stdlib.h}
- @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
- @c Just calls random.
- The @code{rand} function returns the next pseudo-random number in the
- series. The value ranges from @code{0} to @code{RAND_MAX}.
- @end deftypefun
- @deftypefun void srand (unsigned int @var{seed})
- @standards{ISO, stdlib.h}
- @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
- @c Alias to srandom.
- This function establishes @var{seed} as the seed for a new series of
- pseudo-random numbers. If you call @code{rand} before a seed has been
- established with @code{srand}, it uses the value @code{1} as a default
- seed.
- To produce a different pseudo-random series each time your program is
- run, do @code{srand (time (0))}.
- @end deftypefun
- POSIX.1 extended the C standard functions to support reproducible random
- numbers in multi-threaded programs. However, the extension is badly
- designed and unsuitable for serious work.
- @deftypefun int rand_r (unsigned int *@var{seed})
- @standards{POSIX.1, stdlib.h}
- @safety{@prelim{}@mtsafe{}@assafe{}@acsafe{}}
- This function returns a random number in the range 0 to @code{RAND_MAX}
- just as @code{rand} does. However, all its state is stored in the
- @var{seed} argument. This means the RNG's state can only have as many
- bits as the type @code{unsigned int} has. This is far too few to
- provide a good RNG.
- If your program requires a reentrant RNG, we recommend you use the
- reentrant GNU extensions to the SVID random number generator. The
- POSIX.1 interface should only be used when the GNU extensions are not
- available.
- @end deftypefun
- @node BSD Random
- @subsection BSD Random Number Functions
- This section describes a set of random number generation functions that
- are derived from BSD. There is no advantage to using these functions
- with @theglibc{}; we support them for BSD compatibility only.
- The prototypes for these functions are in @file{stdlib.h}.
- @pindex stdlib.h
- @deftypefun {long int} random (void)
- @standards{BSD, stdlib.h}
- @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
- @c Takes a lock and calls random_r with an automatic variable and the
- @c global state, while holding a lock.
- This function returns the next pseudo-random number in the sequence.
- The value returned ranges from @code{0} to @code{2147483647}.
- @strong{NB:} Temporarily this function was defined to return a
- @code{int32_t} value to indicate that the return value always contains
- 32 bits even if @code{long int} is wider. The standard demands it
- differently. Users must always be aware of the 32-bit limitation,
- though.
- @end deftypefun
- @deftypefun void srandom (unsigned int @var{seed})
- @standards{BSD, stdlib.h}
- @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
- @c Takes a lock and calls srandom_r with an automatic variable and a
- @c static buffer. There's no MT-safety issue because the static buffer
- @c is internally protected by a lock, although other threads may modify
- @c the set state before it is used.
- The @code{srandom} function sets the state of the random number
- generator based on the integer @var{seed}. If you supply a @var{seed} value
- of @code{1}, this will cause @code{random} to reproduce the default set
- of random numbers.
- To produce a different set of pseudo-random numbers each time your
- program runs, do @code{srandom (time (0))}.
- @end deftypefun
- @deftypefun {char *} initstate (unsigned int @var{seed}, char *@var{state}, size_t @var{size})
- @standards{BSD, stdlib.h}
- @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
- The @code{initstate} function is used to initialize the random number
- generator state. The argument @var{state} is an array of @var{size}
- bytes, used to hold the state information. It is initialized based on
- @var{seed}. The size must be between 8 and 256 bytes, and should be a
- power of two. The bigger the @var{state} array, the better.
- The return value is the previous value of the state information array.
- You can use this value later as an argument to @code{setstate} to
- restore that state.
- @end deftypefun
- @deftypefun {char *} setstate (char *@var{state})
- @standards{BSD, stdlib.h}
- @safety{@prelim{}@mtsafe{}@asunsafe{@asulock{}}@acunsafe{@aculock{}}}
- The @code{setstate} function restores the random number state
- information @var{state}. The argument must have been the result of
- a previous call to @var{initstate} or @var{setstate}.
- The return value is the previous value of the state information array.
- You can use this value later as an argument to @code{setstate} to
- restore that state.
- If the function fails the return value is @code{NULL}.
- @end deftypefun
- The four functions described so far in this section all work on a state
- which is shared by all threads. The state is not directly accessible to
- the user and can only be modified by these functions. This makes it
- hard to deal with situations where each thread should have its own
- pseudo-random number generator.
- @Theglibc{} contains four additional functions which contain the
- state as an explicit parameter and therefore make it possible to handle
- thread-local PRNGs. Besides this there is no difference. In fact, the
- four functions already discussed are implemented internally using the
- following interfaces.
- The @file{stdlib.h} header contains a definition of the following type:
- @deftp {Data Type} {struct random_data}
- @standards{GNU, stdlib.h}
- Objects of type @code{struct random_data} contain the information
- necessary to represent the state of the PRNG. Although a complete
- definition of the type is present the type should be treated as opaque.
- @end deftp
- The functions modifying the state follow exactly the already described
- functions.
- @deftypefun int random_r (struct random_data *restrict @var{buf}, int32_t *restrict @var{result})
- @standards{GNU, stdlib.h}
- @safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
- The @code{random_r} function behaves exactly like the @code{random}
- function except that it uses and modifies the state in the object
- pointed to by the first parameter instead of the global state.
- @end deftypefun
- @deftypefun int srandom_r (unsigned int @var{seed}, struct random_data *@var{buf})
- @standards{GNU, stdlib.h}
- @safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
- The @code{srandom_r} function behaves exactly like the @code{srandom}
- function except that it uses and modifies the state in the object
- pointed to by the second parameter instead of the global state.
- @end deftypefun
- @deftypefun int initstate_r (unsigned int @var{seed}, char *restrict @var{statebuf}, size_t @var{statelen}, struct random_data *restrict @var{buf})
- @standards{GNU, stdlib.h}
- @safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
- The @code{initstate_r} function behaves exactly like the @code{initstate}
- function except that it uses and modifies the state in the object
- pointed to by the fourth parameter instead of the global state.
- @end deftypefun
- @deftypefun int setstate_r (char *restrict @var{statebuf}, struct random_data *restrict @var{buf})
- @standards{GNU, stdlib.h}
- @safety{@prelim{}@mtsafe{@mtsrace{:buf}}@assafe{}@acunsafe{@acucorrupt{}}}
- The @code{setstate_r} function behaves exactly like the @code{setstate}
- function except that it uses and modifies the state in the object
- pointed to by the first parameter instead of the global state.
- @end deftypefun
- @node SVID Random
- @subsection SVID Random Number Function
- The C library on SVID systems contains yet another kind of random number
- generator functions. They use a state of 48 bits of data. The user can
- choose among a collection of functions which return the random bits
- in different forms.
- Generally there are two kinds of function. The first uses a state of
- the random number generator which is shared among several functions and
- by all threads of the process. The second requires the user to handle
- the state.
- All functions have in common that they use the same congruential
- formula with the same constants. The formula is
- @smallexample
- Y = (a * X + c) mod m
- @end smallexample
- @noindent
- where @var{X} is the state of the generator at the beginning and
- @var{Y} the state at the end. @code{a} and @code{c} are constants
- determining the way the generator works. By default they are
- @smallexample
- a = 0x5DEECE66D = 25214903917
- c = 0xb = 11
- @end smallexample
- @noindent
- but they can also be changed by the user. @code{m} is of course 2^48
- since the state consists of a 48-bit array.
- The prototypes for these functions are in @file{stdlib.h}.
- @pindex stdlib.h
- @deftypefun double drand48 (void)
- @standards{SVID, stdlib.h}
- @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
- @c Uses of the static state buffer are not guarded by a lock (thus
- @c @mtasurace:drand48), so they may be found or left at a
- @c partially-updated state in case of calls from within signal handlers
- @c or cancellation. None of this will break safety rules or invoke
- @c undefined behavior, but it may affect randomness.
- This function returns a @code{double} value in the range of @code{0.0}
- to @code{1.0} (exclusive). The random bits are determined by the global
- state of the random number generator in the C library.
- Since the @code{double} type according to @w{IEEE 754} has a 52-bit
- mantissa this means 4 bits are not initialized by the random number
- generator. These are (of course) chosen to be the least significant
- bits and they are initialized to @code{0}.
- @end deftypefun
- @deftypefun double erand48 (unsigned short int @var{xsubi}[3])
- @standards{SVID, stdlib.h}
- @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
- @c The static buffer is just initialized with default parameters, which
- @c are later read to advance the state held in xsubi.
- This function returns a @code{double} value in the range of @code{0.0}
- to @code{1.0} (exclusive), similarly to @code{drand48}. The argument is
- an array describing the state of the random number generator.
- This function can be called subsequently since it updates the array to
- guarantee random numbers. The array should have been initialized before
- initial use to obtain reproducible results.
- @end deftypefun
- @deftypefun {long int} lrand48 (void)
- @standards{SVID, stdlib.h}
- @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
- The @code{lrand48} function returns an integer value in the range of
- @code{0} to @code{2^31} (exclusive). Even if the size of the @code{long
- int} type can take more than 32 bits, no higher numbers are returned.
- The random bits are determined by the global state of the random number
- generator in the C library.
- @end deftypefun
- @deftypefun {long int} nrand48 (unsigned short int @var{xsubi}[3])
- @standards{SVID, stdlib.h}
- @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
- This function is similar to the @code{lrand48} function in that it
- returns a number in the range of @code{0} to @code{2^31} (exclusive) but
- the state of the random number generator used to produce the random bits
- is determined by the array provided as the parameter to the function.
- The numbers in the array are updated afterwards so that subsequent calls
- to this function yield different results (as is expected of a random
- number generator). The array should have been initialized before the
- first call to obtain reproducible results.
- @end deftypefun
- @deftypefun {long int} mrand48 (void)
- @standards{SVID, stdlib.h}
- @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
- The @code{mrand48} function is similar to @code{lrand48}. The only
- difference is that the numbers returned are in the range @code{-2^31} to
- @code{2^31} (exclusive).
- @end deftypefun
- @deftypefun {long int} jrand48 (unsigned short int @var{xsubi}[3])
- @standards{SVID, stdlib.h}
- @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
- The @code{jrand48} function is similar to @code{nrand48}. The only
- difference is that the numbers returned are in the range @code{-2^31} to
- @code{2^31} (exclusive). For the @code{xsubi} parameter the same
- requirements are necessary.
- @end deftypefun
- The internal state of the random number generator can be initialized in
- several ways. The methods differ in the completeness of the
- information provided.
- @deftypefun void srand48 (long int @var{seedval})
- @standards{SVID, stdlib.h}
- @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
- The @code{srand48} function sets the most significant 32 bits of the
- internal state of the random number generator to the least
- significant 32 bits of the @var{seedval} parameter. The lower 16 bits
- are initialized to the value @code{0x330E}. Even if the @code{long
- int} type contains more than 32 bits only the lower 32 bits are used.
- Owing to this limitation, initialization of the state of this
- function is not very useful. But it makes it easy to use a construct
- like @code{srand48 (time (0))}.
- A side-effect of this function is that the values @code{a} and @code{c}
- from the internal state, which are used in the congruential formula,
- are reset to the default values given above. This is of importance once
- the user has called the @code{lcong48} function (see below).
- @end deftypefun
- @deftypefun {unsigned short int *} seed48 (unsigned short int @var{seed16v}[3])
- @standards{SVID, stdlib.h}
- @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
- The @code{seed48} function initializes all 48 bits of the state of the
- internal random number generator from the contents of the parameter
- @var{seed16v}. Here the lower 16 bits of the first element of
- @var{seed16v} initialize the least significant 16 bits of the internal
- state, the lower 16 bits of @code{@var{seed16v}[1]} initialize the mid-order
- 16 bits of the state and the 16 lower bits of @code{@var{seed16v}[2]}
- initialize the most significant 16 bits of the state.
- Unlike @code{srand48} this function lets the user initialize all 48 bits
- of the state.
- The value returned by @code{seed48} is a pointer to an array containing
- the values of the internal state before the change. This might be
- useful to restart the random number generator at a certain state.
- Otherwise the value can simply be ignored.
- As for @code{srand48}, the values @code{a} and @code{c} from the
- congruential formula are reset to the default values.
- @end deftypefun
- There is one more function to initialize the random number generator
- which enables you to specify even more information by allowing you to
- change the parameters in the congruential formula.
- @deftypefun void lcong48 (unsigned short int @var{param}[7])
- @standards{SVID, stdlib.h}
- @safety{@prelim{}@mtunsafe{@mtasurace{:drand48}}@asunsafe{}@acunsafe{@acucorrupt{}}}
- The @code{lcong48} function allows the user to change the complete state
- of the random number generator. Unlike @code{srand48} and
- @code{seed48}, this function also changes the constants in the
- congruential formula.
- From the seven elements in the array @var{param} the least significant
- 16 bits of the entries @code{@var{param}[0]} to @code{@var{param}[2]}
- determine the initial state, the least significant 16 bits of
- @code{@var{param}[3]} to @code{@var{param}[5]} determine the 48 bit
- constant @code{a} and @code{@var{param}[6]} determines the 16-bit value
- @code{c}.
- @end deftypefun
- All the above functions have in common that they use the global
- parameters for the congruential formula. In multi-threaded programs it
- might sometimes be useful to have different parameters in different
- threads. For this reason all the above functions have a counterpart
- which works on a description of the random number generator in the
- user-supplied buffer instead of the global state.
- Please note that it is no problem if several threads use the global
- state if all threads use the functions which take a pointer to an array
- containing the state. The random numbers are computed following the
- same loop but if the state in the array is different all threads will
- obtain an individual random number generator.
- The user-supplied buffer must be of type @code{struct drand48_data}.
- This type should be regarded as opaque and not manipulated directly.
- @deftypefun int drand48_r (struct drand48_data *@var{buffer}, double *@var{result})
- @standards{GNU, stdlib.h}
- @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
- This function is equivalent to the @code{drand48} function with the
- difference that it does not modify the global random number generator
- parameters but instead the parameters in the buffer supplied through the
- pointer @var{buffer}. The random number is returned in the variable
- pointed to by @var{result}.
- The return value of the function indicates whether the call succeeded.
- If the value is less than @code{0} an error occurred and @code{errno} is
- set to indicate the problem.
- This function is a GNU extension and should not be used in portable
- programs.
- @end deftypefun
- @deftypefun int erand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, double *@var{result})
- @standards{GNU, stdlib.h}
- @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
- The @code{erand48_r} function works like @code{erand48}, but in addition
- it takes an argument @var{buffer} which describes the random number
- generator. The state of the random number generator is taken from the
- @code{xsubi} array, the parameters for the congruential formula from the
- global random number generator data. The random number is returned in
- the variable pointed to by @var{result}.
- The return value is non-negative if the call succeeded.
- This function is a GNU extension and should not be used in portable
- programs.
- @end deftypefun
- @deftypefun int lrand48_r (struct drand48_data *@var{buffer}, long int *@var{result})
- @standards{GNU, stdlib.h}
- @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
- This function is similar to @code{lrand48}, but in addition it takes a
- pointer to a buffer describing the state of the random number generator
- just like @code{drand48}.
- If the return value of the function is non-negative the variable pointed
- to by @var{result} contains the result. Otherwise an error occurred.
- This function is a GNU extension and should not be used in portable
- programs.
- @end deftypefun
- @deftypefun int nrand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, long int *@var{result})
- @standards{GNU, stdlib.h}
- @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
- The @code{nrand48_r} function works like @code{nrand48} in that it
- produces a random number in the range @code{0} to @code{2^31}. But instead
- of using the global parameters for the congruential formula it uses the
- information from the buffer pointed to by @var{buffer}. The state is
- described by the values in @var{xsubi}.
- If the return value is non-negative the variable pointed to by
- @var{result} contains the result.
- This function is a GNU extension and should not be used in portable
- programs.
- @end deftypefun
- @deftypefun int mrand48_r (struct drand48_data *@var{buffer}, long int *@var{result})
- @standards{GNU, stdlib.h}
- @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
- This function is similar to @code{mrand48} but like the other reentrant
- functions it uses the random number generator described by the value in
- the buffer pointed to by @var{buffer}.
- If the return value is non-negative the variable pointed to by
- @var{result} contains the result.
- This function is a GNU extension and should not be used in portable
- programs.
- @end deftypefun
- @deftypefun int jrand48_r (unsigned short int @var{xsubi}[3], struct drand48_data *@var{buffer}, long int *@var{result})
- @standards{GNU, stdlib.h}
- @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
- The @code{jrand48_r} function is similar to @code{jrand48}. Like the
- other reentrant functions of this function family it uses the
- congruential formula parameters from the buffer pointed to by
- @var{buffer}.
- If the return value is non-negative the variable pointed to by
- @var{result} contains the result.
- This function is a GNU extension and should not be used in portable
- programs.
- @end deftypefun
- Before any of the above functions are used the buffer of type
- @code{struct drand48_data} should be initialized. The easiest way to do
- this is to fill the whole buffer with null bytes, e.g. by
- @smallexample
- memset (buffer, '\0', sizeof (struct drand48_data));
- @end smallexample
- @noindent
- Using any of the reentrant functions of this family now will
- automatically initialize the random number generator to the default
- values for the state and the parameters of the congruential formula.
- The other possibility is to use any of the functions which explicitly
- initialize the buffer. Though it might be obvious how to initialize the
- buffer from looking at the parameter to the function, it is highly
- recommended to use these functions since the result might not always be
- what you expect.
- @deftypefun int srand48_r (long int @var{seedval}, struct drand48_data *@var{buffer})
- @standards{GNU, stdlib.h}
- @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
- The description of the random number generator represented by the
- information in @var{buffer} is initialized similarly to what the function
- @code{srand48} does. The state is initialized from the parameter
- @var{seedval} and the parameters for the congruential formula are
- initialized to their default values.
- If the return value is non-negative the function call succeeded.
- This function is a GNU extension and should not be used in portable
- programs.
- @end deftypefun
- @deftypefun int seed48_r (unsigned short int @var{seed16v}[3], struct drand48_data *@var{buffer})
- @standards{GNU, stdlib.h}
- @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
- This function is similar to @code{srand48_r} but like @code{seed48} it
- initializes all 48 bits of the state from the parameter @var{seed16v}.
- If the return value is non-negative the function call succeeded. It
- does not return a pointer to the previous state of the random number
- generator like the @code{seed48} function does. If the user wants to
- preserve the state for a later re-run s/he can copy the whole buffer
- pointed to by @var{buffer}.
- This function is a GNU extension and should not be used in portable
- programs.
- @end deftypefun
- @deftypefun int lcong48_r (unsigned short int @var{param}[7], struct drand48_data *@var{buffer})
- @standards{GNU, stdlib.h}
- @safety{@prelim{}@mtsafe{@mtsrace{:buffer}}@assafe{}@acunsafe{@acucorrupt{}}}
- This function initializes all aspects of the random number generator
- described in @var{buffer} with the data in @var{param}. Here it is
- especially true that the function does more than just copying the
- contents of @var{param} and @var{buffer}. More work is required and
- therefore it is important to use this function rather than initializing
- the random number generator directly.
- If the return value is non-negative the function call succeeded.
- This function is a GNU extension and should not be used in portable
- programs.
- @end deftypefun
- @node FP Function Optimizations
- @section Is Fast Code or Small Code preferred?
- @cindex Optimization
- If an application uses many floating point functions it is often the case
- that the cost of the function calls themselves is not negligible.
- Modern processors can often execute the operations themselves
- very fast, but the function call disrupts the instruction pipeline.
- For this reason @theglibc{} provides optimizations for many of the
- frequently-used math functions. When GNU CC is used and the user
- activates the optimizer, several new inline functions and macros are
- defined. These new functions and macros have the same names as the
- library functions and so are used instead of the latter. In the case of
- inline functions the compiler will decide whether it is reasonable to
- use them, and this decision is usually correct.
- This means that no calls to the library functions may be necessary, and
- can increase the speed of generated code significantly. The drawback is
- that code size will increase, and the increase is not always negligible.
- There are two kinds of inline functions: those that give the same result
- as the library functions and others that might not set @code{errno} and
- might have a reduced precision and/or argument range in comparison with
- the library functions. The latter inline functions are only available
- if the flag @code{-ffast-math} is given to GNU CC.
- In cases where the inline functions and macros are not wanted the symbol
- @code{__NO_MATH_INLINES} should be defined before any system header is
- included. This will ensure that only library functions are used. Of
- course, it can be determined for each file in the project whether
- giving this option is preferable or not.
- Not all hardware implements the entire @w{IEEE 754} standard, and even
- if it does there may be a substantial performance penalty for using some
- of its features. For example, enabling traps on some processors forces
- the FPU to run un-pipelined, which can more than double calculation time.
- @c ***Add explanation of -lieee, -mieee.
|