123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368 |
- .\" Automatically generated by Pod::Man 4.09 (Pod::Simple 3.35)
- .\"
- .\" Standard preamble:
- .\" ========================================================================
- .de Sp \" Vertical space (when we can't use .PP)
- .if t .sp .5v
- .if n .sp
- ..
- .de Vb \" Begin verbatim text
- .ft CW
- .nf
- .ne \\$1
- ..
- .de Ve \" End verbatim text
- .ft R
- .fi
- ..
- .\" Set up some character translations and predefined strings. \*(-- will
- .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
- .\" double quote, and \*(R" will give a right double quote. \*(C+ will
- .\" give a nicer C++. Capital omega is used to do unbreakable dashes and
- .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
- .\" nothing in troff, for use with C<>.
- .tr \(*W-
- .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
- .ie n \{\
- . ds -- \(*W-
- . ds PI pi
- . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
- . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
- . ds L" ""
- . ds R" ""
- . ds C` ""
- . ds C' ""
- 'br\}
- .el\{\
- . ds -- \|\(em\|
- . ds PI \(*p
- . ds L" ``
- . ds R" ''
- . ds C`
- . ds C'
- 'br\}
- .\"
- .\" Escape single quotes in literal strings from groff's Unicode transform.
- .ie \n(.g .ds Aq \(aq
- .el .ds Aq '
- .\"
- .\" If the F register is >0, we'll generate index entries on stderr for
- .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
- .\" entries marked with X<> in POD. Of course, you'll have to process the
- .\" output yourself in some meaningful fashion.
- .\"
- .\" Avoid warning from groff about undefined register 'F'.
- .de IX
- ..
- .if !\nF .nr F 0
- .if \nF>0 \{\
- . de IX
- . tm Index:\\$1\t\\n%\t"\\$2"
- ..
- . if !\nF==2 \{\
- . nr % 0
- . nr F 2
- . \}
- .\}
- .\"
- .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
- .\" Fear. Run. Save yourself. No user-serviceable parts.
- . \" fudge factors for nroff and troff
- .if n \{\
- . ds #H 0
- . ds #V .8m
- . ds #F .3m
- . ds #[ \f1
- . ds #] \fP
- .\}
- .if t \{\
- . ds #H ((1u-(\\\\n(.fu%2u))*.13m)
- . ds #V .6m
- . ds #F 0
- . ds #[ \&
- . ds #] \&
- .\}
- . \" simple accents for nroff and troff
- .if n \{\
- . ds ' \&
- . ds ` \&
- . ds ^ \&
- . ds , \&
- . ds ~ ~
- . ds /
- .\}
- .if t \{\
- . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
- . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
- . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
- . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
- . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
- . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
- .\}
- . \" troff and (daisy-wheel) nroff accents
- .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
- .ds 8 \h'\*(#H'\(*b\h'-\*(#H'
- .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
- .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
- .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
- .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
- .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
- .ds ae a\h'-(\w'a'u*4/10)'e
- .ds Ae A\h'-(\w'A'u*4/10)'E
- . \" corrections for vroff
- .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
- .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
- . \" for low resolution devices (crt and lpr)
- .if \n(.H>23 .if \n(.V>19 \
- \{\
- . ds : e
- . ds 8 ss
- . ds o a
- . ds d- d\h'-1'\(ga
- . ds D- D\h'-1'\(hy
- . ds th \o'bp'
- . ds Th \o'LP'
- . ds ae ae
- . ds Ae AE
- .\}
- .rm #[ #] #H #V #F C
- .\" ========================================================================
- .\"
- .IX Title "PKCS8 1"
- .TH PKCS8 1 "2019-09-12" "1.0.2g" "OpenSSL"
- .\" For nroff, turn off justification. Always turn off hyphenation; it makes
- .\" way too many mistakes in technical documents.
- .if n .ad l
- .nh
- .SH "NAME"
- pkcs8 \- PKCS#8 format private key conversion tool
- .SH "SYNOPSIS"
- .IX Header "SYNOPSIS"
- \&\fBopenssl\fR \fBpkcs8\fR
- [\fB\-topk8\fR]
- [\fB\-inform PEM|DER\fR]
- [\fB\-outform PEM|DER\fR]
- [\fB\-in filename\fR]
- [\fB\-passin arg\fR]
- [\fB\-out filename\fR]
- [\fB\-passout arg\fR]
- [\fB\-noiter\fR]
- [\fB\-nocrypt\fR]
- [\fB\-nooct\fR]
- [\fB\-embed\fR]
- [\fB\-nsdb\fR]
- [\fB\-v2 alg\fR]
- [\fB\-v2prf alg\fR]
- [\fB\-v1 alg\fR]
- [\fB\-engine id\fR]
- .SH "DESCRIPTION"
- .IX Header "DESCRIPTION"
- The \fBpkcs8\fR command processes private keys in PKCS#8 format. It can handle
- both unencrypted PKCS#8 PrivateKeyInfo format and EncryptedPrivateKeyInfo
- format with a variety of PKCS#5 (v1.5 and v2.0) and PKCS#12 algorithms.
- .SH "COMMAND OPTIONS"
- .IX Header "COMMAND OPTIONS"
- .IP "\fB\-topk8\fR" 4
- .IX Item "-topk8"
- Normally a PKCS#8 private key is expected on input and a traditional format
- private key will be written. With the \fB\-topk8\fR option the situation is
- reversed: it reads a traditional format private key and writes a PKCS#8
- format key.
- .IP "\fB\-inform DER|PEM\fR" 4
- .IX Item "-inform DER|PEM"
- This specifies the input format. If a PKCS#8 format key is expected on input
- then either a \fB\s-1DER\s0\fR or \fB\s-1PEM\s0\fR encoded version of a PKCS#8 key will be
- expected. Otherwise the \fB\s-1DER\s0\fR or \fB\s-1PEM\s0\fR format of the traditional format
- private key is used.
- .IP "\fB\-outform DER|PEM\fR" 4
- .IX Item "-outform DER|PEM"
- This specifies the output format, the options have the same meaning as the
- \&\fB\-inform\fR option.
- .IP "\fB\-in filename\fR" 4
- .IX Item "-in filename"
- This specifies the input filename to read a key from or standard input if this
- option is not specified. If the key is encrypted a pass phrase will be
- prompted for.
- .IP "\fB\-passin arg\fR" 4
- .IX Item "-passin arg"
- the input file password source. For more information about the format of \fBarg\fR
- see the \fB\s-1PASS PHRASE ARGUMENTS\s0\fR section in \fIopenssl\fR\|(1).
- .IP "\fB\-out filename\fR" 4
- .IX Item "-out filename"
- This specifies the output filename to write a key to or standard output by
- default. If any encryption options are set then a pass phrase will be
- prompted for. The output filename should \fBnot\fR be the same as the input
- filename.
- .IP "\fB\-passout arg\fR" 4
- .IX Item "-passout arg"
- the output file password source. For more information about the format of \fBarg\fR
- see the \fB\s-1PASS PHRASE ARGUMENTS\s0\fR section in \fIopenssl\fR\|(1).
- .IP "\fB\-nocrypt\fR" 4
- .IX Item "-nocrypt"
- PKCS#8 keys generated or input are normally PKCS#8 EncryptedPrivateKeyInfo
- structures using an appropriate password based encryption algorithm. With
- this option an unencrypted PrivateKeyInfo structure is expected or output.
- This option does not encrypt private keys at all and should only be used
- when absolutely necessary. Certain software such as some versions of Java
- code signing software used unencrypted private keys.
- .IP "\fB\-nooct\fR" 4
- .IX Item "-nooct"
- This option generates \s-1RSA\s0 private keys in a broken format that some software
- uses. Specifically the private key should be enclosed in a \s-1OCTET STRING\s0
- but some software just includes the structure itself without the
- surrounding \s-1OCTET STRING.\s0
- .IP "\fB\-embed\fR" 4
- .IX Item "-embed"
- This option generates \s-1DSA\s0 keys in a broken format. The \s-1DSA\s0 parameters are
- embedded inside the PrivateKey structure. In this form the \s-1OCTET STRING\s0
- contains an \s-1ASN1 SEQUENCE\s0 consisting of two structures: a \s-1SEQUENCE\s0 containing
- the parameters and an \s-1ASN1 INTEGER\s0 containing the private key.
- .IP "\fB\-nsdb\fR" 4
- .IX Item "-nsdb"
- This option generates \s-1DSA\s0 keys in a broken format compatible with Netscape
- private key databases. The PrivateKey contains a \s-1SEQUENCE\s0 consisting of
- the public and private keys respectively.
- .IP "\fB\-v2 alg\fR" 4
- .IX Item "-v2 alg"
- This option enables the use of PKCS#5 v2.0 algorithms. Normally PKCS#8
- private keys are encrypted with the password based encryption algorithm
- called \fBpbeWithMD5AndDES\-CBC\fR this uses 56 bit \s-1DES\s0 encryption but it
- was the strongest encryption algorithm supported in PKCS#5 v1.5. Using
- the \fB\-v2\fR option PKCS#5 v2.0 algorithms are used which can use any
- encryption algorithm such as 168 bit triple \s-1DES\s0 or 128 bit \s-1RC2\s0 however
- not many implementations support PKCS#5 v2.0 yet. If you are just using
- private keys with OpenSSL then this doesn't matter.
- .Sp
- The \fBalg\fR argument is the encryption algorithm to use, valid values include
- \&\fBdes\fR, \fBdes3\fR and \fBrc2\fR. It is recommended that \fBdes3\fR is used.
- .IP "\fB\-v2prf alg\fR" 4
- .IX Item "-v2prf alg"
- This option sets the \s-1PRF\s0 algorithm to use with PKCS#5 v2.0. A typical value
- values would be \fBhmacWithSHA256\fR. If this option isn't set then the default
- for the cipher is used or \fBhmacWithSHA1\fR if there is no default.
- .IP "\fB\-v1 alg\fR" 4
- .IX Item "-v1 alg"
- This option specifies a PKCS#5 v1.5 or PKCS#12 algorithm to use. A complete
- list of possible algorithms is included below.
- .IP "\fB\-engine id\fR" 4
- .IX Item "-engine id"
- specifying an engine (by its unique \fBid\fR string) will cause \fBpkcs8\fR
- to attempt to obtain a functional reference to the specified engine,
- thus initialising it if needed. The engine will then be set as the default
- for all available algorithms.
- .SH "NOTES"
- .IX Header "NOTES"
- The encrypted form of a \s-1PEM\s0 encode PKCS#8 files uses the following
- headers and footers:
- .PP
- .Vb 2
- \& \-\-\-\-\-BEGIN ENCRYPTED PRIVATE KEY\-\-\-\-\-
- \& \-\-\-\-\-END ENCRYPTED PRIVATE KEY\-\-\-\-\-
- .Ve
- .PP
- The unencrypted form uses:
- .PP
- .Vb 2
- \& \-\-\-\-\-BEGIN PRIVATE KEY\-\-\-\-\-
- \& \-\-\-\-\-END PRIVATE KEY\-\-\-\-\-
- .Ve
- .PP
- Private keys encrypted using PKCS#5 v2.0 algorithms and high iteration
- counts are more secure that those encrypted using the traditional
- SSLeay compatible formats. So if additional security is considered
- important the keys should be converted.
- .PP
- The default encryption is only 56 bits because this is the encryption
- that most current implementations of PKCS#8 will support.
- .PP
- Some software may use PKCS#12 password based encryption algorithms
- with PKCS#8 format private keys: these are handled automatically
- but there is no option to produce them.
- .PP
- It is possible to write out \s-1DER\s0 encoded encrypted private keys in
- PKCS#8 format because the encryption details are included at an \s-1ASN1\s0
- level whereas the traditional format includes them at a \s-1PEM\s0 level.
- .SH "PKCS#5 v1.5 and PKCS#12 algorithms."
- .IX Header "PKCS#5 v1.5 and PKCS#12 algorithms."
- Various algorithms can be used with the \fB\-v1\fR command line option,
- including PKCS#5 v1.5 and PKCS#12. These are described in more detail
- below.
- .IP "\fB\s-1PBE\-MD2\-DES PBE\-MD5\-DES\s0\fR" 4
- .IX Item "PBE-MD2-DES PBE-MD5-DES"
- These algorithms were included in the original PKCS#5 v1.5 specification.
- They only offer 56 bits of protection since they both use \s-1DES.\s0
- .IP "\fB\s-1PBE\-SHA1\-RC2\-64 PBE\-MD2\-RC2\-64 PBE\-MD5\-RC2\-64 PBE\-SHA1\-DES\s0\fR" 4
- .IX Item "PBE-SHA1-RC2-64 PBE-MD2-RC2-64 PBE-MD5-RC2-64 PBE-SHA1-DES"
- These algorithms are not mentioned in the original PKCS#5 v1.5 specification
- but they use the same key derivation algorithm and are supported by some
- software. They are mentioned in PKCS#5 v2.0. They use either 64 bit \s-1RC2\s0 or
- 56 bit \s-1DES.\s0
- .IP "\fB\s-1PBE\-SHA1\-RC4\-128 PBE\-SHA1\-RC4\-40 PBE\-SHA1\-3DES PBE\-SHA1\-2DES PBE\-SHA1\-RC2\-128 PBE\-SHA1\-RC2\-40\s0\fR" 4
- .IX Item "PBE-SHA1-RC4-128 PBE-SHA1-RC4-40 PBE-SHA1-3DES PBE-SHA1-2DES PBE-SHA1-RC2-128 PBE-SHA1-RC2-40"
- These algorithms use the PKCS#12 password based encryption algorithm and
- allow strong encryption algorithms like triple \s-1DES\s0 or 128 bit \s-1RC2\s0 to be used.
- .SH "EXAMPLES"
- .IX Header "EXAMPLES"
- Convert a private from traditional to PKCS#5 v2.0 format using triple
- \&\s-1DES:\s0
- .PP
- .Vb 1
- \& openssl pkcs8 \-in key.pem \-topk8 \-v2 des3 \-out enckey.pem
- .Ve
- .PP
- Convert a private from traditional to PKCS#5 v2.0 format using \s-1AES\s0 with
- 256 bits in \s-1CBC\s0 mode and \fBhmacWithSHA256\fR \s-1PRF:\s0
- .PP
- .Vb 1
- \& openssl pkcs8 \-in key.pem \-topk8 \-v2 aes\-256\-cbc \-v2prf hmacWithSHA256 \-out enckey.pem
- .Ve
- .PP
- Convert a private key to PKCS#8 using a PKCS#5 1.5 compatible algorithm
- (\s-1DES\s0):
- .PP
- .Vb 1
- \& openssl pkcs8 \-in key.pem \-topk8 \-out enckey.pem
- .Ve
- .PP
- Convert a private key to PKCS#8 using a PKCS#12 compatible algorithm
- (3DES):
- .PP
- .Vb 1
- \& openssl pkcs8 \-in key.pem \-topk8 \-out enckey.pem \-v1 PBE\-SHA1\-3DES
- .Ve
- .PP
- Read a \s-1DER\s0 unencrypted PKCS#8 format private key:
- .PP
- .Vb 1
- \& openssl pkcs8 \-inform DER \-nocrypt \-in key.der \-out key.pem
- .Ve
- .PP
- Convert a private key from any PKCS#8 format to traditional format:
- .PP
- .Vb 1
- \& openssl pkcs8 \-in pk8.pem \-out key.pem
- .Ve
- .SH "STANDARDS"
- .IX Header "STANDARDS"
- Test vectors from this PKCS#5 v2.0 implementation were posted to the
- pkcs-tng mailing list using triple \s-1DES, DES\s0 and \s-1RC2\s0 with high iteration
- counts, several people confirmed that they could decrypt the private
- keys produced and Therefore it can be assumed that the PKCS#5 v2.0
- implementation is reasonably accurate at least as far as these
- algorithms are concerned.
- .PP
- The format of PKCS#8 \s-1DSA\s0 (and other) private keys is not well documented:
- it is hidden away in PKCS#11 v2.01, section 11.9. OpenSSL's default \s-1DSA\s0
- PKCS#8 private key format complies with this standard.
- .SH "BUGS"
- .IX Header "BUGS"
- There should be an option that prints out the encryption algorithm
- in use and other details such as the iteration count.
- .PP
- PKCS#8 using triple \s-1DES\s0 and PKCS#5 v2.0 should be the default private
- key format for OpenSSL: for compatibility several of the utilities use
- the old format at present.
- .SH "SEE ALSO"
- .IX Header "SEE ALSO"
- \&\fIdsa\fR\|(1), \fIrsa\fR\|(1), \fIgenrsa\fR\|(1),
- \&\fIgendsa\fR\|(1)
|