wp_block.c 34 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780
  1. /**
  2. * The Whirlpool hashing function.
  3. *
  4. * <P>
  5. * <b>References</b>
  6. *
  7. * <P>
  8. * The Whirlpool algorithm was developed by
  9. * <a href="mailto:pbarreto@scopus.com.br">Paulo S. L. M. Barreto</a> and
  10. * <a href="mailto:vincent.rijmen@cryptomathic.com">Vincent Rijmen</a>.
  11. *
  12. * See
  13. * P.S.L.M. Barreto, V. Rijmen,
  14. * ``The Whirlpool hashing function,''
  15. * NESSIE submission, 2000 (tweaked version, 2001),
  16. * <https://www.cosic.esat.kuleuven.ac.be/nessie/workshop/submissions/whirlpool.zip>
  17. *
  18. * Based on "@version 3.0 (2003.03.12)" by Paulo S.L.M. Barreto and
  19. * Vincent Rijmen. Lookup "reference implementations" on
  20. * <http://planeta.terra.com.br/informatica/paulobarreto/>
  21. *
  22. * =============================================================================
  23. *
  24. * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS
  25. * OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
  26. * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  27. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE
  28. * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
  29. * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
  30. * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
  31. * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
  32. * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
  33. * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
  34. * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  35. *
  36. */
  37. #include "wp_locl.h"
  38. #include <string.h>
  39. typedef unsigned char u8;
  40. #if (defined(_WIN32) || defined(_WIN64)) && !defined(__MINGW32)
  41. typedef unsigned __int64 u64;
  42. #elif defined(__arch64__)
  43. typedef unsigned long u64;
  44. #else
  45. typedef unsigned long long u64;
  46. #endif
  47. #define ROUNDS 10
  48. #define STRICT_ALIGNMENT
  49. #if defined(__i386) || defined(__i386__) || \
  50. defined(__x86_64) || defined(__x86_64__) || \
  51. defined(_M_IX86) || defined(_M_AMD64) || defined(_M_X64)
  52. /*
  53. * Well, formally there're couple of other architectures, which permit
  54. * unaligned loads, specifically those not crossing cache lines, IA-64 and
  55. * PowerPC...
  56. */
  57. # undef STRICT_ALIGNMENT
  58. #endif
  59. #undef SMALL_REGISTER_BANK
  60. #if defined(__i386) || defined(__i386__) || defined(_M_IX86)
  61. # define SMALL_REGISTER_BANK
  62. # if defined(WHIRLPOOL_ASM)
  63. # ifndef OPENSSL_SMALL_FOOTPRINT
  64. /*
  65. * it appears that for elder non-MMX
  66. * CPUs this is actually faster!
  67. */
  68. # define OPENSSL_SMALL_FOOTPRINT
  69. # endif
  70. # define GO_FOR_MMX(ctx,inp,num) do { \
  71. extern unsigned int OPENSSL_ia32cap_P[]; \
  72. void whirlpool_block_mmx(void *,const void *,size_t); \
  73. if (!(OPENSSL_ia32cap_P[0] & (1<<23))) break; \
  74. whirlpool_block_mmx(ctx->H.c,inp,num); return; \
  75. } while (0)
  76. # endif
  77. #endif
  78. #undef ROTATE
  79. #if defined(_MSC_VER)
  80. # if defined(_WIN64) /* applies to both IA-64 and AMD64 */
  81. # pragma intrinsic(_rotl64)
  82. # define ROTATE(a,n) _rotl64((a),n)
  83. # endif
  84. #elif defined(__GNUC__) && __GNUC__>=2
  85. # if defined(__x86_64) || defined(__x86_64__)
  86. # if defined(L_ENDIAN)
  87. # define ROTATE(a,n) ({ u64 ret; asm ("rolq %1,%0" \
  88. : "=r"(ret) : "J"(n),"0"(a) : "cc"); ret; })
  89. # elif defined(B_ENDIAN)
  90. /*
  91. * Most will argue that x86_64 is always little-endian. Well, yes, but
  92. * then we have stratus.com who has modified gcc to "emulate"
  93. * big-endian on x86. Is there evidence that they [or somebody else]
  94. * won't do same for x86_64? Naturally no. And this line is waiting
  95. * ready for that brave soul:-)
  96. */
  97. # define ROTATE(a,n) ({ u64 ret; asm ("rorq %1,%0" \
  98. : "=r"(ret) : "J"(n),"0"(a) : "cc"); ret; })
  99. # endif
  100. # elif defined(__ia64) || defined(__ia64__)
  101. # if defined(L_ENDIAN)
  102. # define ROTATE(a,n) ({ u64 ret; asm ("shrp %0=%1,%1,%2" \
  103. : "=r"(ret) : "r"(a),"M"(64-(n))); ret; })
  104. # elif defined(B_ENDIAN)
  105. # define ROTATE(a,n) ({ u64 ret; asm ("shrp %0=%1,%1,%2" \
  106. : "=r"(ret) : "r"(a),"M"(n)); ret; })
  107. # endif
  108. # endif
  109. #endif
  110. #if defined(OPENSSL_SMALL_FOOTPRINT)
  111. # if !defined(ROTATE)
  112. # if defined(L_ENDIAN) /* little-endians have to rotate left */
  113. # define ROTATE(i,n) ((i)<<(n) ^ (i)>>(64-n))
  114. # elif defined(B_ENDIAN) /* big-endians have to rotate right */
  115. # define ROTATE(i,n) ((i)>>(n) ^ (i)<<(64-n))
  116. # endif
  117. # endif
  118. # if defined(ROTATE) && !defined(STRICT_ALIGNMENT)
  119. # define STRICT_ALIGNMENT /* ensure smallest table size */
  120. # endif
  121. #endif
  122. /*
  123. * Table size depends on STRICT_ALIGNMENT and whether or not endian-
  124. * specific ROTATE macro is defined. If STRICT_ALIGNMENT is not
  125. * defined, which is normally the case on x86[_64] CPUs, the table is
  126. * 4KB large unconditionally. Otherwise if ROTATE is defined, the
  127. * table is 2KB large, and otherwise - 16KB. 2KB table requires a
  128. * whole bunch of additional rotations, but I'm willing to "trade,"
  129. * because 16KB table certainly trashes L1 cache. I wish all CPUs
  130. * could handle unaligned load as 4KB table doesn't trash the cache,
  131. * nor does it require additional rotations.
  132. */
  133. /*
  134. * Note that every Cn macro expands as two loads: one byte load and
  135. * one quadword load. One can argue that that many single-byte loads
  136. * is too excessive, as one could load a quadword and "milk" it for
  137. * eight 8-bit values instead. Well, yes, but in order to do so *and*
  138. * avoid excessive loads you have to accomodate a handful of 64-bit
  139. * values in the register bank and issue a bunch of shifts and mask.
  140. * It's a tradeoff: loads vs. shift and mask in big register bank[!].
  141. * On most CPUs eight single-byte loads are faster and I let other
  142. * ones to depend on smart compiler to fold byte loads if beneficial.
  143. * Hand-coded assembler would be another alternative:-)
  144. */
  145. #ifdef STRICT_ALIGNMENT
  146. # if defined(ROTATE)
  147. # define N 1
  148. # define LL(c0,c1,c2,c3,c4,c5,c6,c7) c0,c1,c2,c3,c4,c5,c6,c7
  149. # define C0(K,i) (Cx.q[K.c[(i)*8+0]])
  150. # define C1(K,i) ROTATE(Cx.q[K.c[(i)*8+1]],8)
  151. # define C2(K,i) ROTATE(Cx.q[K.c[(i)*8+2]],16)
  152. # define C3(K,i) ROTATE(Cx.q[K.c[(i)*8+3]],24)
  153. # define C4(K,i) ROTATE(Cx.q[K.c[(i)*8+4]],32)
  154. # define C5(K,i) ROTATE(Cx.q[K.c[(i)*8+5]],40)
  155. # define C6(K,i) ROTATE(Cx.q[K.c[(i)*8+6]],48)
  156. # define C7(K,i) ROTATE(Cx.q[K.c[(i)*8+7]],56)
  157. # else
  158. # define N 8
  159. # define LL(c0,c1,c2,c3,c4,c5,c6,c7) c0,c1,c2,c3,c4,c5,c6,c7, \
  160. c7,c0,c1,c2,c3,c4,c5,c6, \
  161. c6,c7,c0,c1,c2,c3,c4,c5, \
  162. c5,c6,c7,c0,c1,c2,c3,c4, \
  163. c4,c5,c6,c7,c0,c1,c2,c3, \
  164. c3,c4,c5,c6,c7,c0,c1,c2, \
  165. c2,c3,c4,c5,c6,c7,c0,c1, \
  166. c1,c2,c3,c4,c5,c6,c7,c0
  167. # define C0(K,i) (Cx.q[0+8*K.c[(i)*8+0]])
  168. # define C1(K,i) (Cx.q[1+8*K.c[(i)*8+1]])
  169. # define C2(K,i) (Cx.q[2+8*K.c[(i)*8+2]])
  170. # define C3(K,i) (Cx.q[3+8*K.c[(i)*8+3]])
  171. # define C4(K,i) (Cx.q[4+8*K.c[(i)*8+4]])
  172. # define C5(K,i) (Cx.q[5+8*K.c[(i)*8+5]])
  173. # define C6(K,i) (Cx.q[6+8*K.c[(i)*8+6]])
  174. # define C7(K,i) (Cx.q[7+8*K.c[(i)*8+7]])
  175. # endif
  176. #else
  177. # define N 2
  178. # define LL(c0,c1,c2,c3,c4,c5,c6,c7) c0,c1,c2,c3,c4,c5,c6,c7, \
  179. c0,c1,c2,c3,c4,c5,c6,c7
  180. # define C0(K,i) (((u64*)(Cx.c+0))[2*K.c[(i)*8+0]])
  181. # define C1(K,i) (((u64*)(Cx.c+7))[2*K.c[(i)*8+1]])
  182. # define C2(K,i) (((u64*)(Cx.c+6))[2*K.c[(i)*8+2]])
  183. # define C3(K,i) (((u64*)(Cx.c+5))[2*K.c[(i)*8+3]])
  184. # define C4(K,i) (((u64*)(Cx.c+4))[2*K.c[(i)*8+4]])
  185. # define C5(K,i) (((u64*)(Cx.c+3))[2*K.c[(i)*8+5]])
  186. # define C6(K,i) (((u64*)(Cx.c+2))[2*K.c[(i)*8+6]])
  187. # define C7(K,i) (((u64*)(Cx.c+1))[2*K.c[(i)*8+7]])
  188. #endif
  189. static const
  190. union {
  191. u8 c[(256 * N + ROUNDS) * sizeof(u64)];
  192. u64 q[(256 * N + ROUNDS)];
  193. } Cx = {
  194. {
  195. /* Note endian-neutral representation:-) */
  196. LL(0x18, 0x18, 0x60, 0x18, 0xc0, 0x78, 0x30, 0xd8),
  197. LL(0x23, 0x23, 0x8c, 0x23, 0x05, 0xaf, 0x46, 0x26),
  198. LL(0xc6, 0xc6, 0x3f, 0xc6, 0x7e, 0xf9, 0x91, 0xb8),
  199. LL(0xe8, 0xe8, 0x87, 0xe8, 0x13, 0x6f, 0xcd, 0xfb),
  200. LL(0x87, 0x87, 0x26, 0x87, 0x4c, 0xa1, 0x13, 0xcb),
  201. LL(0xb8, 0xb8, 0xda, 0xb8, 0xa9, 0x62, 0x6d, 0x11),
  202. LL(0x01, 0x01, 0x04, 0x01, 0x08, 0x05, 0x02, 0x09),
  203. LL(0x4f, 0x4f, 0x21, 0x4f, 0x42, 0x6e, 0x9e, 0x0d),
  204. LL(0x36, 0x36, 0xd8, 0x36, 0xad, 0xee, 0x6c, 0x9b),
  205. LL(0xa6, 0xa6, 0xa2, 0xa6, 0x59, 0x04, 0x51, 0xff),
  206. LL(0xd2, 0xd2, 0x6f, 0xd2, 0xde, 0xbd, 0xb9, 0x0c),
  207. LL(0xf5, 0xf5, 0xf3, 0xf5, 0xfb, 0x06, 0xf7, 0x0e),
  208. LL(0x79, 0x79, 0xf9, 0x79, 0xef, 0x80, 0xf2, 0x96),
  209. LL(0x6f, 0x6f, 0xa1, 0x6f, 0x5f, 0xce, 0xde, 0x30),
  210. LL(0x91, 0x91, 0x7e, 0x91, 0xfc, 0xef, 0x3f, 0x6d),
  211. LL(0x52, 0x52, 0x55, 0x52, 0xaa, 0x07, 0xa4, 0xf8),
  212. LL(0x60, 0x60, 0x9d, 0x60, 0x27, 0xfd, 0xc0, 0x47),
  213. LL(0xbc, 0xbc, 0xca, 0xbc, 0x89, 0x76, 0x65, 0x35),
  214. LL(0x9b, 0x9b, 0x56, 0x9b, 0xac, 0xcd, 0x2b, 0x37),
  215. LL(0x8e, 0x8e, 0x02, 0x8e, 0x04, 0x8c, 0x01, 0x8a),
  216. LL(0xa3, 0xa3, 0xb6, 0xa3, 0x71, 0x15, 0x5b, 0xd2),
  217. LL(0x0c, 0x0c, 0x30, 0x0c, 0x60, 0x3c, 0x18, 0x6c),
  218. LL(0x7b, 0x7b, 0xf1, 0x7b, 0xff, 0x8a, 0xf6, 0x84),
  219. LL(0x35, 0x35, 0xd4, 0x35, 0xb5, 0xe1, 0x6a, 0x80),
  220. LL(0x1d, 0x1d, 0x74, 0x1d, 0xe8, 0x69, 0x3a, 0xf5),
  221. LL(0xe0, 0xe0, 0xa7, 0xe0, 0x53, 0x47, 0xdd, 0xb3),
  222. LL(0xd7, 0xd7, 0x7b, 0xd7, 0xf6, 0xac, 0xb3, 0x21),
  223. LL(0xc2, 0xc2, 0x2f, 0xc2, 0x5e, 0xed, 0x99, 0x9c),
  224. LL(0x2e, 0x2e, 0xb8, 0x2e, 0x6d, 0x96, 0x5c, 0x43),
  225. LL(0x4b, 0x4b, 0x31, 0x4b, 0x62, 0x7a, 0x96, 0x29),
  226. LL(0xfe, 0xfe, 0xdf, 0xfe, 0xa3, 0x21, 0xe1, 0x5d),
  227. LL(0x57, 0x57, 0x41, 0x57, 0x82, 0x16, 0xae, 0xd5),
  228. LL(0x15, 0x15, 0x54, 0x15, 0xa8, 0x41, 0x2a, 0xbd),
  229. LL(0x77, 0x77, 0xc1, 0x77, 0x9f, 0xb6, 0xee, 0xe8),
  230. LL(0x37, 0x37, 0xdc, 0x37, 0xa5, 0xeb, 0x6e, 0x92),
  231. LL(0xe5, 0xe5, 0xb3, 0xe5, 0x7b, 0x56, 0xd7, 0x9e),
  232. LL(0x9f, 0x9f, 0x46, 0x9f, 0x8c, 0xd9, 0x23, 0x13),
  233. LL(0xf0, 0xf0, 0xe7, 0xf0, 0xd3, 0x17, 0xfd, 0x23),
  234. LL(0x4a, 0x4a, 0x35, 0x4a, 0x6a, 0x7f, 0x94, 0x20),
  235. LL(0xda, 0xda, 0x4f, 0xda, 0x9e, 0x95, 0xa9, 0x44),
  236. LL(0x58, 0x58, 0x7d, 0x58, 0xfa, 0x25, 0xb0, 0xa2),
  237. LL(0xc9, 0xc9, 0x03, 0xc9, 0x06, 0xca, 0x8f, 0xcf),
  238. LL(0x29, 0x29, 0xa4, 0x29, 0x55, 0x8d, 0x52, 0x7c),
  239. LL(0x0a, 0x0a, 0x28, 0x0a, 0x50, 0x22, 0x14, 0x5a),
  240. LL(0xb1, 0xb1, 0xfe, 0xb1, 0xe1, 0x4f, 0x7f, 0x50),
  241. LL(0xa0, 0xa0, 0xba, 0xa0, 0x69, 0x1a, 0x5d, 0xc9),
  242. LL(0x6b, 0x6b, 0xb1, 0x6b, 0x7f, 0xda, 0xd6, 0x14),
  243. LL(0x85, 0x85, 0x2e, 0x85, 0x5c, 0xab, 0x17, 0xd9),
  244. LL(0xbd, 0xbd, 0xce, 0xbd, 0x81, 0x73, 0x67, 0x3c),
  245. LL(0x5d, 0x5d, 0x69, 0x5d, 0xd2, 0x34, 0xba, 0x8f),
  246. LL(0x10, 0x10, 0x40, 0x10, 0x80, 0x50, 0x20, 0x90),
  247. LL(0xf4, 0xf4, 0xf7, 0xf4, 0xf3, 0x03, 0xf5, 0x07),
  248. LL(0xcb, 0xcb, 0x0b, 0xcb, 0x16, 0xc0, 0x8b, 0xdd),
  249. LL(0x3e, 0x3e, 0xf8, 0x3e, 0xed, 0xc6, 0x7c, 0xd3),
  250. LL(0x05, 0x05, 0x14, 0x05, 0x28, 0x11, 0x0a, 0x2d),
  251. LL(0x67, 0x67, 0x81, 0x67, 0x1f, 0xe6, 0xce, 0x78),
  252. LL(0xe4, 0xe4, 0xb7, 0xe4, 0x73, 0x53, 0xd5, 0x97),
  253. LL(0x27, 0x27, 0x9c, 0x27, 0x25, 0xbb, 0x4e, 0x02),
  254. LL(0x41, 0x41, 0x19, 0x41, 0x32, 0x58, 0x82, 0x73),
  255. LL(0x8b, 0x8b, 0x16, 0x8b, 0x2c, 0x9d, 0x0b, 0xa7),
  256. LL(0xa7, 0xa7, 0xa6, 0xa7, 0x51, 0x01, 0x53, 0xf6),
  257. LL(0x7d, 0x7d, 0xe9, 0x7d, 0xcf, 0x94, 0xfa, 0xb2),
  258. LL(0x95, 0x95, 0x6e, 0x95, 0xdc, 0xfb, 0x37, 0x49),
  259. LL(0xd8, 0xd8, 0x47, 0xd8, 0x8e, 0x9f, 0xad, 0x56),
  260. LL(0xfb, 0xfb, 0xcb, 0xfb, 0x8b, 0x30, 0xeb, 0x70),
  261. LL(0xee, 0xee, 0x9f, 0xee, 0x23, 0x71, 0xc1, 0xcd),
  262. LL(0x7c, 0x7c, 0xed, 0x7c, 0xc7, 0x91, 0xf8, 0xbb),
  263. LL(0x66, 0x66, 0x85, 0x66, 0x17, 0xe3, 0xcc, 0x71),
  264. LL(0xdd, 0xdd, 0x53, 0xdd, 0xa6, 0x8e, 0xa7, 0x7b),
  265. LL(0x17, 0x17, 0x5c, 0x17, 0xb8, 0x4b, 0x2e, 0xaf),
  266. LL(0x47, 0x47, 0x01, 0x47, 0x02, 0x46, 0x8e, 0x45),
  267. LL(0x9e, 0x9e, 0x42, 0x9e, 0x84, 0xdc, 0x21, 0x1a),
  268. LL(0xca, 0xca, 0x0f, 0xca, 0x1e, 0xc5, 0x89, 0xd4),
  269. LL(0x2d, 0x2d, 0xb4, 0x2d, 0x75, 0x99, 0x5a, 0x58),
  270. LL(0xbf, 0xbf, 0xc6, 0xbf, 0x91, 0x79, 0x63, 0x2e),
  271. LL(0x07, 0x07, 0x1c, 0x07, 0x38, 0x1b, 0x0e, 0x3f),
  272. LL(0xad, 0xad, 0x8e, 0xad, 0x01, 0x23, 0x47, 0xac),
  273. LL(0x5a, 0x5a, 0x75, 0x5a, 0xea, 0x2f, 0xb4, 0xb0),
  274. LL(0x83, 0x83, 0x36, 0x83, 0x6c, 0xb5, 0x1b, 0xef),
  275. LL(0x33, 0x33, 0xcc, 0x33, 0x85, 0xff, 0x66, 0xb6),
  276. LL(0x63, 0x63, 0x91, 0x63, 0x3f, 0xf2, 0xc6, 0x5c),
  277. LL(0x02, 0x02, 0x08, 0x02, 0x10, 0x0a, 0x04, 0x12),
  278. LL(0xaa, 0xaa, 0x92, 0xaa, 0x39, 0x38, 0x49, 0x93),
  279. LL(0x71, 0x71, 0xd9, 0x71, 0xaf, 0xa8, 0xe2, 0xde),
  280. LL(0xc8, 0xc8, 0x07, 0xc8, 0x0e, 0xcf, 0x8d, 0xc6),
  281. LL(0x19, 0x19, 0x64, 0x19, 0xc8, 0x7d, 0x32, 0xd1),
  282. LL(0x49, 0x49, 0x39, 0x49, 0x72, 0x70, 0x92, 0x3b),
  283. LL(0xd9, 0xd9, 0x43, 0xd9, 0x86, 0x9a, 0xaf, 0x5f),
  284. LL(0xf2, 0xf2, 0xef, 0xf2, 0xc3, 0x1d, 0xf9, 0x31),
  285. LL(0xe3, 0xe3, 0xab, 0xe3, 0x4b, 0x48, 0xdb, 0xa8),
  286. LL(0x5b, 0x5b, 0x71, 0x5b, 0xe2, 0x2a, 0xb6, 0xb9),
  287. LL(0x88, 0x88, 0x1a, 0x88, 0x34, 0x92, 0x0d, 0xbc),
  288. LL(0x9a, 0x9a, 0x52, 0x9a, 0xa4, 0xc8, 0x29, 0x3e),
  289. LL(0x26, 0x26, 0x98, 0x26, 0x2d, 0xbe, 0x4c, 0x0b),
  290. LL(0x32, 0x32, 0xc8, 0x32, 0x8d, 0xfa, 0x64, 0xbf),
  291. LL(0xb0, 0xb0, 0xfa, 0xb0, 0xe9, 0x4a, 0x7d, 0x59),
  292. LL(0xe9, 0xe9, 0x83, 0xe9, 0x1b, 0x6a, 0xcf, 0xf2),
  293. LL(0x0f, 0x0f, 0x3c, 0x0f, 0x78, 0x33, 0x1e, 0x77),
  294. LL(0xd5, 0xd5, 0x73, 0xd5, 0xe6, 0xa6, 0xb7, 0x33),
  295. LL(0x80, 0x80, 0x3a, 0x80, 0x74, 0xba, 0x1d, 0xf4),
  296. LL(0xbe, 0xbe, 0xc2, 0xbe, 0x99, 0x7c, 0x61, 0x27),
  297. LL(0xcd, 0xcd, 0x13, 0xcd, 0x26, 0xde, 0x87, 0xeb),
  298. LL(0x34, 0x34, 0xd0, 0x34, 0xbd, 0xe4, 0x68, 0x89),
  299. LL(0x48, 0x48, 0x3d, 0x48, 0x7a, 0x75, 0x90, 0x32),
  300. LL(0xff, 0xff, 0xdb, 0xff, 0xab, 0x24, 0xe3, 0x54),
  301. LL(0x7a, 0x7a, 0xf5, 0x7a, 0xf7, 0x8f, 0xf4, 0x8d),
  302. LL(0x90, 0x90, 0x7a, 0x90, 0xf4, 0xea, 0x3d, 0x64),
  303. LL(0x5f, 0x5f, 0x61, 0x5f, 0xc2, 0x3e, 0xbe, 0x9d),
  304. LL(0x20, 0x20, 0x80, 0x20, 0x1d, 0xa0, 0x40, 0x3d),
  305. LL(0x68, 0x68, 0xbd, 0x68, 0x67, 0xd5, 0xd0, 0x0f),
  306. LL(0x1a, 0x1a, 0x68, 0x1a, 0xd0, 0x72, 0x34, 0xca),
  307. LL(0xae, 0xae, 0x82, 0xae, 0x19, 0x2c, 0x41, 0xb7),
  308. LL(0xb4, 0xb4, 0xea, 0xb4, 0xc9, 0x5e, 0x75, 0x7d),
  309. LL(0x54, 0x54, 0x4d, 0x54, 0x9a, 0x19, 0xa8, 0xce),
  310. LL(0x93, 0x93, 0x76, 0x93, 0xec, 0xe5, 0x3b, 0x7f),
  311. LL(0x22, 0x22, 0x88, 0x22, 0x0d, 0xaa, 0x44, 0x2f),
  312. LL(0x64, 0x64, 0x8d, 0x64, 0x07, 0xe9, 0xc8, 0x63),
  313. LL(0xf1, 0xf1, 0xe3, 0xf1, 0xdb, 0x12, 0xff, 0x2a),
  314. LL(0x73, 0x73, 0xd1, 0x73, 0xbf, 0xa2, 0xe6, 0xcc),
  315. LL(0x12, 0x12, 0x48, 0x12, 0x90, 0x5a, 0x24, 0x82),
  316. LL(0x40, 0x40, 0x1d, 0x40, 0x3a, 0x5d, 0x80, 0x7a),
  317. LL(0x08, 0x08, 0x20, 0x08, 0x40, 0x28, 0x10, 0x48),
  318. LL(0xc3, 0xc3, 0x2b, 0xc3, 0x56, 0xe8, 0x9b, 0x95),
  319. LL(0xec, 0xec, 0x97, 0xec, 0x33, 0x7b, 0xc5, 0xdf),
  320. LL(0xdb, 0xdb, 0x4b, 0xdb, 0x96, 0x90, 0xab, 0x4d),
  321. LL(0xa1, 0xa1, 0xbe, 0xa1, 0x61, 0x1f, 0x5f, 0xc0),
  322. LL(0x8d, 0x8d, 0x0e, 0x8d, 0x1c, 0x83, 0x07, 0x91),
  323. LL(0x3d, 0x3d, 0xf4, 0x3d, 0xf5, 0xc9, 0x7a, 0xc8),
  324. LL(0x97, 0x97, 0x66, 0x97, 0xcc, 0xf1, 0x33, 0x5b),
  325. LL(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
  326. LL(0xcf, 0xcf, 0x1b, 0xcf, 0x36, 0xd4, 0x83, 0xf9),
  327. LL(0x2b, 0x2b, 0xac, 0x2b, 0x45, 0x87, 0x56, 0x6e),
  328. LL(0x76, 0x76, 0xc5, 0x76, 0x97, 0xb3, 0xec, 0xe1),
  329. LL(0x82, 0x82, 0x32, 0x82, 0x64, 0xb0, 0x19, 0xe6),
  330. LL(0xd6, 0xd6, 0x7f, 0xd6, 0xfe, 0xa9, 0xb1, 0x28),
  331. LL(0x1b, 0x1b, 0x6c, 0x1b, 0xd8, 0x77, 0x36, 0xc3),
  332. LL(0xb5, 0xb5, 0xee, 0xb5, 0xc1, 0x5b, 0x77, 0x74),
  333. LL(0xaf, 0xaf, 0x86, 0xaf, 0x11, 0x29, 0x43, 0xbe),
  334. LL(0x6a, 0x6a, 0xb5, 0x6a, 0x77, 0xdf, 0xd4, 0x1d),
  335. LL(0x50, 0x50, 0x5d, 0x50, 0xba, 0x0d, 0xa0, 0xea),
  336. LL(0x45, 0x45, 0x09, 0x45, 0x12, 0x4c, 0x8a, 0x57),
  337. LL(0xf3, 0xf3, 0xeb, 0xf3, 0xcb, 0x18, 0xfb, 0x38),
  338. LL(0x30, 0x30, 0xc0, 0x30, 0x9d, 0xf0, 0x60, 0xad),
  339. LL(0xef, 0xef, 0x9b, 0xef, 0x2b, 0x74, 0xc3, 0xc4),
  340. LL(0x3f, 0x3f, 0xfc, 0x3f, 0xe5, 0xc3, 0x7e, 0xda),
  341. LL(0x55, 0x55, 0x49, 0x55, 0x92, 0x1c, 0xaa, 0xc7),
  342. LL(0xa2, 0xa2, 0xb2, 0xa2, 0x79, 0x10, 0x59, 0xdb),
  343. LL(0xea, 0xea, 0x8f, 0xea, 0x03, 0x65, 0xc9, 0xe9),
  344. LL(0x65, 0x65, 0x89, 0x65, 0x0f, 0xec, 0xca, 0x6a),
  345. LL(0xba, 0xba, 0xd2, 0xba, 0xb9, 0x68, 0x69, 0x03),
  346. LL(0x2f, 0x2f, 0xbc, 0x2f, 0x65, 0x93, 0x5e, 0x4a),
  347. LL(0xc0, 0xc0, 0x27, 0xc0, 0x4e, 0xe7, 0x9d, 0x8e),
  348. LL(0xde, 0xde, 0x5f, 0xde, 0xbe, 0x81, 0xa1, 0x60),
  349. LL(0x1c, 0x1c, 0x70, 0x1c, 0xe0, 0x6c, 0x38, 0xfc),
  350. LL(0xfd, 0xfd, 0xd3, 0xfd, 0xbb, 0x2e, 0xe7, 0x46),
  351. LL(0x4d, 0x4d, 0x29, 0x4d, 0x52, 0x64, 0x9a, 0x1f),
  352. LL(0x92, 0x92, 0x72, 0x92, 0xe4, 0xe0, 0x39, 0x76),
  353. LL(0x75, 0x75, 0xc9, 0x75, 0x8f, 0xbc, 0xea, 0xfa),
  354. LL(0x06, 0x06, 0x18, 0x06, 0x30, 0x1e, 0x0c, 0x36),
  355. LL(0x8a, 0x8a, 0x12, 0x8a, 0x24, 0x98, 0x09, 0xae),
  356. LL(0xb2, 0xb2, 0xf2, 0xb2, 0xf9, 0x40, 0x79, 0x4b),
  357. LL(0xe6, 0xe6, 0xbf, 0xe6, 0x63, 0x59, 0xd1, 0x85),
  358. LL(0x0e, 0x0e, 0x38, 0x0e, 0x70, 0x36, 0x1c, 0x7e),
  359. LL(0x1f, 0x1f, 0x7c, 0x1f, 0xf8, 0x63, 0x3e, 0xe7),
  360. LL(0x62, 0x62, 0x95, 0x62, 0x37, 0xf7, 0xc4, 0x55),
  361. LL(0xd4, 0xd4, 0x77, 0xd4, 0xee, 0xa3, 0xb5, 0x3a),
  362. LL(0xa8, 0xa8, 0x9a, 0xa8, 0x29, 0x32, 0x4d, 0x81),
  363. LL(0x96, 0x96, 0x62, 0x96, 0xc4, 0xf4, 0x31, 0x52),
  364. LL(0xf9, 0xf9, 0xc3, 0xf9, 0x9b, 0x3a, 0xef, 0x62),
  365. LL(0xc5, 0xc5, 0x33, 0xc5, 0x66, 0xf6, 0x97, 0xa3),
  366. LL(0x25, 0x25, 0x94, 0x25, 0x35, 0xb1, 0x4a, 0x10),
  367. LL(0x59, 0x59, 0x79, 0x59, 0xf2, 0x20, 0xb2, 0xab),
  368. LL(0x84, 0x84, 0x2a, 0x84, 0x54, 0xae, 0x15, 0xd0),
  369. LL(0x72, 0x72, 0xd5, 0x72, 0xb7, 0xa7, 0xe4, 0xc5),
  370. LL(0x39, 0x39, 0xe4, 0x39, 0xd5, 0xdd, 0x72, 0xec),
  371. LL(0x4c, 0x4c, 0x2d, 0x4c, 0x5a, 0x61, 0x98, 0x16),
  372. LL(0x5e, 0x5e, 0x65, 0x5e, 0xca, 0x3b, 0xbc, 0x94),
  373. LL(0x78, 0x78, 0xfd, 0x78, 0xe7, 0x85, 0xf0, 0x9f),
  374. LL(0x38, 0x38, 0xe0, 0x38, 0xdd, 0xd8, 0x70, 0xe5),
  375. LL(0x8c, 0x8c, 0x0a, 0x8c, 0x14, 0x86, 0x05, 0x98),
  376. LL(0xd1, 0xd1, 0x63, 0xd1, 0xc6, 0xb2, 0xbf, 0x17),
  377. LL(0xa5, 0xa5, 0xae, 0xa5, 0x41, 0x0b, 0x57, 0xe4),
  378. LL(0xe2, 0xe2, 0xaf, 0xe2, 0x43, 0x4d, 0xd9, 0xa1),
  379. LL(0x61, 0x61, 0x99, 0x61, 0x2f, 0xf8, 0xc2, 0x4e),
  380. LL(0xb3, 0xb3, 0xf6, 0xb3, 0xf1, 0x45, 0x7b, 0x42),
  381. LL(0x21, 0x21, 0x84, 0x21, 0x15, 0xa5, 0x42, 0x34),
  382. LL(0x9c, 0x9c, 0x4a, 0x9c, 0x94, 0xd6, 0x25, 0x08),
  383. LL(0x1e, 0x1e, 0x78, 0x1e, 0xf0, 0x66, 0x3c, 0xee),
  384. LL(0x43, 0x43, 0x11, 0x43, 0x22, 0x52, 0x86, 0x61),
  385. LL(0xc7, 0xc7, 0x3b, 0xc7, 0x76, 0xfc, 0x93, 0xb1),
  386. LL(0xfc, 0xfc, 0xd7, 0xfc, 0xb3, 0x2b, 0xe5, 0x4f),
  387. LL(0x04, 0x04, 0x10, 0x04, 0x20, 0x14, 0x08, 0x24),
  388. LL(0x51, 0x51, 0x59, 0x51, 0xb2, 0x08, 0xa2, 0xe3),
  389. LL(0x99, 0x99, 0x5e, 0x99, 0xbc, 0xc7, 0x2f, 0x25),
  390. LL(0x6d, 0x6d, 0xa9, 0x6d, 0x4f, 0xc4, 0xda, 0x22),
  391. LL(0x0d, 0x0d, 0x34, 0x0d, 0x68, 0x39, 0x1a, 0x65),
  392. LL(0xfa, 0xfa, 0xcf, 0xfa, 0x83, 0x35, 0xe9, 0x79),
  393. LL(0xdf, 0xdf, 0x5b, 0xdf, 0xb6, 0x84, 0xa3, 0x69),
  394. LL(0x7e, 0x7e, 0xe5, 0x7e, 0xd7, 0x9b, 0xfc, 0xa9),
  395. LL(0x24, 0x24, 0x90, 0x24, 0x3d, 0xb4, 0x48, 0x19),
  396. LL(0x3b, 0x3b, 0xec, 0x3b, 0xc5, 0xd7, 0x76, 0xfe),
  397. LL(0xab, 0xab, 0x96, 0xab, 0x31, 0x3d, 0x4b, 0x9a),
  398. LL(0xce, 0xce, 0x1f, 0xce, 0x3e, 0xd1, 0x81, 0xf0),
  399. LL(0x11, 0x11, 0x44, 0x11, 0x88, 0x55, 0x22, 0x99),
  400. LL(0x8f, 0x8f, 0x06, 0x8f, 0x0c, 0x89, 0x03, 0x83),
  401. LL(0x4e, 0x4e, 0x25, 0x4e, 0x4a, 0x6b, 0x9c, 0x04),
  402. LL(0xb7, 0xb7, 0xe6, 0xb7, 0xd1, 0x51, 0x73, 0x66),
  403. LL(0xeb, 0xeb, 0x8b, 0xeb, 0x0b, 0x60, 0xcb, 0xe0),
  404. LL(0x3c, 0x3c, 0xf0, 0x3c, 0xfd, 0xcc, 0x78, 0xc1),
  405. LL(0x81, 0x81, 0x3e, 0x81, 0x7c, 0xbf, 0x1f, 0xfd),
  406. LL(0x94, 0x94, 0x6a, 0x94, 0xd4, 0xfe, 0x35, 0x40),
  407. LL(0xf7, 0xf7, 0xfb, 0xf7, 0xeb, 0x0c, 0xf3, 0x1c),
  408. LL(0xb9, 0xb9, 0xde, 0xb9, 0xa1, 0x67, 0x6f, 0x18),
  409. LL(0x13, 0x13, 0x4c, 0x13, 0x98, 0x5f, 0x26, 0x8b),
  410. LL(0x2c, 0x2c, 0xb0, 0x2c, 0x7d, 0x9c, 0x58, 0x51),
  411. LL(0xd3, 0xd3, 0x6b, 0xd3, 0xd6, 0xb8, 0xbb, 0x05),
  412. LL(0xe7, 0xe7, 0xbb, 0xe7, 0x6b, 0x5c, 0xd3, 0x8c),
  413. LL(0x6e, 0x6e, 0xa5, 0x6e, 0x57, 0xcb, 0xdc, 0x39),
  414. LL(0xc4, 0xc4, 0x37, 0xc4, 0x6e, 0xf3, 0x95, 0xaa),
  415. LL(0x03, 0x03, 0x0c, 0x03, 0x18, 0x0f, 0x06, 0x1b),
  416. LL(0x56, 0x56, 0x45, 0x56, 0x8a, 0x13, 0xac, 0xdc),
  417. LL(0x44, 0x44, 0x0d, 0x44, 0x1a, 0x49, 0x88, 0x5e),
  418. LL(0x7f, 0x7f, 0xe1, 0x7f, 0xdf, 0x9e, 0xfe, 0xa0),
  419. LL(0xa9, 0xa9, 0x9e, 0xa9, 0x21, 0x37, 0x4f, 0x88),
  420. LL(0x2a, 0x2a, 0xa8, 0x2a, 0x4d, 0x82, 0x54, 0x67),
  421. LL(0xbb, 0xbb, 0xd6, 0xbb, 0xb1, 0x6d, 0x6b, 0x0a),
  422. LL(0xc1, 0xc1, 0x23, 0xc1, 0x46, 0xe2, 0x9f, 0x87),
  423. LL(0x53, 0x53, 0x51, 0x53, 0xa2, 0x02, 0xa6, 0xf1),
  424. LL(0xdc, 0xdc, 0x57, 0xdc, 0xae, 0x8b, 0xa5, 0x72),
  425. LL(0x0b, 0x0b, 0x2c, 0x0b, 0x58, 0x27, 0x16, 0x53),
  426. LL(0x9d, 0x9d, 0x4e, 0x9d, 0x9c, 0xd3, 0x27, 0x01),
  427. LL(0x6c, 0x6c, 0xad, 0x6c, 0x47, 0xc1, 0xd8, 0x2b),
  428. LL(0x31, 0x31, 0xc4, 0x31, 0x95, 0xf5, 0x62, 0xa4),
  429. LL(0x74, 0x74, 0xcd, 0x74, 0x87, 0xb9, 0xe8, 0xf3),
  430. LL(0xf6, 0xf6, 0xff, 0xf6, 0xe3, 0x09, 0xf1, 0x15),
  431. LL(0x46, 0x46, 0x05, 0x46, 0x0a, 0x43, 0x8c, 0x4c),
  432. LL(0xac, 0xac, 0x8a, 0xac, 0x09, 0x26, 0x45, 0xa5),
  433. LL(0x89, 0x89, 0x1e, 0x89, 0x3c, 0x97, 0x0f, 0xb5),
  434. LL(0x14, 0x14, 0x50, 0x14, 0xa0, 0x44, 0x28, 0xb4),
  435. LL(0xe1, 0xe1, 0xa3, 0xe1, 0x5b, 0x42, 0xdf, 0xba),
  436. LL(0x16, 0x16, 0x58, 0x16, 0xb0, 0x4e, 0x2c, 0xa6),
  437. LL(0x3a, 0x3a, 0xe8, 0x3a, 0xcd, 0xd2, 0x74, 0xf7),
  438. LL(0x69, 0x69, 0xb9, 0x69, 0x6f, 0xd0, 0xd2, 0x06),
  439. LL(0x09, 0x09, 0x24, 0x09, 0x48, 0x2d, 0x12, 0x41),
  440. LL(0x70, 0x70, 0xdd, 0x70, 0xa7, 0xad, 0xe0, 0xd7),
  441. LL(0xb6, 0xb6, 0xe2, 0xb6, 0xd9, 0x54, 0x71, 0x6f),
  442. LL(0xd0, 0xd0, 0x67, 0xd0, 0xce, 0xb7, 0xbd, 0x1e),
  443. LL(0xed, 0xed, 0x93, 0xed, 0x3b, 0x7e, 0xc7, 0xd6),
  444. LL(0xcc, 0xcc, 0x17, 0xcc, 0x2e, 0xdb, 0x85, 0xe2),
  445. LL(0x42, 0x42, 0x15, 0x42, 0x2a, 0x57, 0x84, 0x68),
  446. LL(0x98, 0x98, 0x5a, 0x98, 0xb4, 0xc2, 0x2d, 0x2c),
  447. LL(0xa4, 0xa4, 0xaa, 0xa4, 0x49, 0x0e, 0x55, 0xed),
  448. LL(0x28, 0x28, 0xa0, 0x28, 0x5d, 0x88, 0x50, 0x75),
  449. LL(0x5c, 0x5c, 0x6d, 0x5c, 0xda, 0x31, 0xb8, 0x86),
  450. LL(0xf8, 0xf8, 0xc7, 0xf8, 0x93, 0x3f, 0xed, 0x6b),
  451. LL(0x86, 0x86, 0x22, 0x86, 0x44, 0xa4, 0x11, 0xc2),
  452. #define RC (&(Cx.q[256*N]))
  453. 0x18, 0x23, 0xc6, 0xe8, 0x87, 0xb8, 0x01, 0x4f,
  454. /* rc[ROUNDS] */
  455. 0x36, 0xa6, 0xd2, 0xf5, 0x79, 0x6f, 0x91, 0x52, 0x60, 0xbc, 0x9b,
  456. 0x8e, 0xa3, 0x0c, 0x7b, 0x35, 0x1d, 0xe0, 0xd7, 0xc2, 0x2e, 0x4b,
  457. 0xfe, 0x57, 0x15, 0x77, 0x37, 0xe5, 0x9f, 0xf0, 0x4a, 0xda, 0x58,
  458. 0xc9, 0x29, 0x0a, 0xb1, 0xa0, 0x6b, 0x85, 0xbd, 0x5d, 0x10, 0xf4,
  459. 0xcb, 0x3e, 0x05, 0x67, 0xe4, 0x27, 0x41, 0x8b, 0xa7, 0x7d, 0x95,
  460. 0xd8, 0xfb, 0xee, 0x7c, 0x66, 0xdd, 0x17, 0x47, 0x9e, 0xca, 0x2d,
  461. 0xbf, 0x07, 0xad, 0x5a, 0x83, 0x33
  462. }
  463. };
  464. void whirlpool_block(WHIRLPOOL_CTX *ctx, const void *inp, size_t n)
  465. {
  466. int r;
  467. const u8 *p = inp;
  468. union {
  469. u64 q[8];
  470. u8 c[64];
  471. } S, K, *H = (void *)ctx->H.q;
  472. #ifdef GO_FOR_MMX
  473. GO_FOR_MMX(ctx, inp, n);
  474. #endif
  475. do {
  476. #ifdef OPENSSL_SMALL_FOOTPRINT
  477. u64 L[8];
  478. int i;
  479. for (i = 0; i < 64; i++)
  480. S.c[i] = (K.c[i] = H->c[i]) ^ p[i];
  481. for (r = 0; r < ROUNDS; r++) {
  482. for (i = 0; i < 8; i++) {
  483. L[i] = i ? 0 : RC[r];
  484. L[i] ^= C0(K, i) ^ C1(K, (i - 1) & 7) ^
  485. C2(K, (i - 2) & 7) ^ C3(K, (i - 3) & 7) ^
  486. C4(K, (i - 4) & 7) ^ C5(K, (i - 5) & 7) ^
  487. C6(K, (i - 6) & 7) ^ C7(K, (i - 7) & 7);
  488. }
  489. memcpy(K.q, L, 64);
  490. for (i = 0; i < 8; i++) {
  491. L[i] ^= C0(S, i) ^ C1(S, (i - 1) & 7) ^
  492. C2(S, (i - 2) & 7) ^ C3(S, (i - 3) & 7) ^
  493. C4(S, (i - 4) & 7) ^ C5(S, (i - 5) & 7) ^
  494. C6(S, (i - 6) & 7) ^ C7(S, (i - 7) & 7);
  495. }
  496. memcpy(S.q, L, 64);
  497. }
  498. for (i = 0; i < 64; i++)
  499. H->c[i] ^= S.c[i] ^ p[i];
  500. #else
  501. u64 L0, L1, L2, L3, L4, L5, L6, L7;
  502. # ifdef STRICT_ALIGNMENT
  503. if ((size_t)p & 7) {
  504. memcpy(S.c, p, 64);
  505. S.q[0] ^= (K.q[0] = H->q[0]);
  506. S.q[1] ^= (K.q[1] = H->q[1]);
  507. S.q[2] ^= (K.q[2] = H->q[2]);
  508. S.q[3] ^= (K.q[3] = H->q[3]);
  509. S.q[4] ^= (K.q[4] = H->q[4]);
  510. S.q[5] ^= (K.q[5] = H->q[5]);
  511. S.q[6] ^= (K.q[6] = H->q[6]);
  512. S.q[7] ^= (K.q[7] = H->q[7]);
  513. } else
  514. # endif
  515. {
  516. const u64 *pa = (const u64 *)p;
  517. S.q[0] = (K.q[0] = H->q[0]) ^ pa[0];
  518. S.q[1] = (K.q[1] = H->q[1]) ^ pa[1];
  519. S.q[2] = (K.q[2] = H->q[2]) ^ pa[2];
  520. S.q[3] = (K.q[3] = H->q[3]) ^ pa[3];
  521. S.q[4] = (K.q[4] = H->q[4]) ^ pa[4];
  522. S.q[5] = (K.q[5] = H->q[5]) ^ pa[5];
  523. S.q[6] = (K.q[6] = H->q[6]) ^ pa[6];
  524. S.q[7] = (K.q[7] = H->q[7]) ^ pa[7];
  525. }
  526. for (r = 0; r < ROUNDS; r++) {
  527. # ifdef SMALL_REGISTER_BANK
  528. L0 = C0(K, 0) ^ C1(K, 7) ^ C2(K, 6) ^ C3(K, 5) ^
  529. C4(K, 4) ^ C5(K, 3) ^ C6(K, 2) ^ C7(K, 1) ^ RC[r];
  530. L1 = C0(K, 1) ^ C1(K, 0) ^ C2(K, 7) ^ C3(K, 6) ^
  531. C4(K, 5) ^ C5(K, 4) ^ C6(K, 3) ^ C7(K, 2);
  532. L2 = C0(K, 2) ^ C1(K, 1) ^ C2(K, 0) ^ C3(K, 7) ^
  533. C4(K, 6) ^ C5(K, 5) ^ C6(K, 4) ^ C7(K, 3);
  534. L3 = C0(K, 3) ^ C1(K, 2) ^ C2(K, 1) ^ C3(K, 0) ^
  535. C4(K, 7) ^ C5(K, 6) ^ C6(K, 5) ^ C7(K, 4);
  536. L4 = C0(K, 4) ^ C1(K, 3) ^ C2(K, 2) ^ C3(K, 1) ^
  537. C4(K, 0) ^ C5(K, 7) ^ C6(K, 6) ^ C7(K, 5);
  538. L5 = C0(K, 5) ^ C1(K, 4) ^ C2(K, 3) ^ C3(K, 2) ^
  539. C4(K, 1) ^ C5(K, 0) ^ C6(K, 7) ^ C7(K, 6);
  540. L6 = C0(K, 6) ^ C1(K, 5) ^ C2(K, 4) ^ C3(K, 3) ^
  541. C4(K, 2) ^ C5(K, 1) ^ C6(K, 0) ^ C7(K, 7);
  542. L7 = C0(K, 7) ^ C1(K, 6) ^ C2(K, 5) ^ C3(K, 4) ^
  543. C4(K, 3) ^ C5(K, 2) ^ C6(K, 1) ^ C7(K, 0);
  544. K.q[0] = L0;
  545. K.q[1] = L1;
  546. K.q[2] = L2;
  547. K.q[3] = L3;
  548. K.q[4] = L4;
  549. K.q[5] = L5;
  550. K.q[6] = L6;
  551. K.q[7] = L7;
  552. L0 ^= C0(S, 0) ^ C1(S, 7) ^ C2(S, 6) ^ C3(S, 5) ^
  553. C4(S, 4) ^ C5(S, 3) ^ C6(S, 2) ^ C7(S, 1);
  554. L1 ^= C0(S, 1) ^ C1(S, 0) ^ C2(S, 7) ^ C3(S, 6) ^
  555. C4(S, 5) ^ C5(S, 4) ^ C6(S, 3) ^ C7(S, 2);
  556. L2 ^= C0(S, 2) ^ C1(S, 1) ^ C2(S, 0) ^ C3(S, 7) ^
  557. C4(S, 6) ^ C5(S, 5) ^ C6(S, 4) ^ C7(S, 3);
  558. L3 ^= C0(S, 3) ^ C1(S, 2) ^ C2(S, 1) ^ C3(S, 0) ^
  559. C4(S, 7) ^ C5(S, 6) ^ C6(S, 5) ^ C7(S, 4);
  560. L4 ^= C0(S, 4) ^ C1(S, 3) ^ C2(S, 2) ^ C3(S, 1) ^
  561. C4(S, 0) ^ C5(S, 7) ^ C6(S, 6) ^ C7(S, 5);
  562. L5 ^= C0(S, 5) ^ C1(S, 4) ^ C2(S, 3) ^ C3(S, 2) ^
  563. C4(S, 1) ^ C5(S, 0) ^ C6(S, 7) ^ C7(S, 6);
  564. L6 ^= C0(S, 6) ^ C1(S, 5) ^ C2(S, 4) ^ C3(S, 3) ^
  565. C4(S, 2) ^ C5(S, 1) ^ C6(S, 0) ^ C7(S, 7);
  566. L7 ^= C0(S, 7) ^ C1(S, 6) ^ C2(S, 5) ^ C3(S, 4) ^
  567. C4(S, 3) ^ C5(S, 2) ^ C6(S, 1) ^ C7(S, 0);
  568. S.q[0] = L0;
  569. S.q[1] = L1;
  570. S.q[2] = L2;
  571. S.q[3] = L3;
  572. S.q[4] = L4;
  573. S.q[5] = L5;
  574. S.q[6] = L6;
  575. S.q[7] = L7;
  576. # else
  577. L0 = C0(K, 0);
  578. L1 = C1(K, 0);
  579. L2 = C2(K, 0);
  580. L3 = C3(K, 0);
  581. L4 = C4(K, 0);
  582. L5 = C5(K, 0);
  583. L6 = C6(K, 0);
  584. L7 = C7(K, 0);
  585. L0 ^= RC[r];
  586. L1 ^= C0(K, 1);
  587. L2 ^= C1(K, 1);
  588. L3 ^= C2(K, 1);
  589. L4 ^= C3(K, 1);
  590. L5 ^= C4(K, 1);
  591. L6 ^= C5(K, 1);
  592. L7 ^= C6(K, 1);
  593. L0 ^= C7(K, 1);
  594. L2 ^= C0(K, 2);
  595. L3 ^= C1(K, 2);
  596. L4 ^= C2(K, 2);
  597. L5 ^= C3(K, 2);
  598. L6 ^= C4(K, 2);
  599. L7 ^= C5(K, 2);
  600. L0 ^= C6(K, 2);
  601. L1 ^= C7(K, 2);
  602. L3 ^= C0(K, 3);
  603. L4 ^= C1(K, 3);
  604. L5 ^= C2(K, 3);
  605. L6 ^= C3(K, 3);
  606. L7 ^= C4(K, 3);
  607. L0 ^= C5(K, 3);
  608. L1 ^= C6(K, 3);
  609. L2 ^= C7(K, 3);
  610. L4 ^= C0(K, 4);
  611. L5 ^= C1(K, 4);
  612. L6 ^= C2(K, 4);
  613. L7 ^= C3(K, 4);
  614. L0 ^= C4(K, 4);
  615. L1 ^= C5(K, 4);
  616. L2 ^= C6(K, 4);
  617. L3 ^= C7(K, 4);
  618. L5 ^= C0(K, 5);
  619. L6 ^= C1(K, 5);
  620. L7 ^= C2(K, 5);
  621. L0 ^= C3(K, 5);
  622. L1 ^= C4(K, 5);
  623. L2 ^= C5(K, 5);
  624. L3 ^= C6(K, 5);
  625. L4 ^= C7(K, 5);
  626. L6 ^= C0(K, 6);
  627. L7 ^= C1(K, 6);
  628. L0 ^= C2(K, 6);
  629. L1 ^= C3(K, 6);
  630. L2 ^= C4(K, 6);
  631. L3 ^= C5(K, 6);
  632. L4 ^= C6(K, 6);
  633. L5 ^= C7(K, 6);
  634. L7 ^= C0(K, 7);
  635. L0 ^= C1(K, 7);
  636. L1 ^= C2(K, 7);
  637. L2 ^= C3(K, 7);
  638. L3 ^= C4(K, 7);
  639. L4 ^= C5(K, 7);
  640. L5 ^= C6(K, 7);
  641. L6 ^= C7(K, 7);
  642. K.q[0] = L0;
  643. K.q[1] = L1;
  644. K.q[2] = L2;
  645. K.q[3] = L3;
  646. K.q[4] = L4;
  647. K.q[5] = L5;
  648. K.q[6] = L6;
  649. K.q[7] = L7;
  650. L0 ^= C0(S, 0);
  651. L1 ^= C1(S, 0);
  652. L2 ^= C2(S, 0);
  653. L3 ^= C3(S, 0);
  654. L4 ^= C4(S, 0);
  655. L5 ^= C5(S, 0);
  656. L6 ^= C6(S, 0);
  657. L7 ^= C7(S, 0);
  658. L1 ^= C0(S, 1);
  659. L2 ^= C1(S, 1);
  660. L3 ^= C2(S, 1);
  661. L4 ^= C3(S, 1);
  662. L5 ^= C4(S, 1);
  663. L6 ^= C5(S, 1);
  664. L7 ^= C6(S, 1);
  665. L0 ^= C7(S, 1);
  666. L2 ^= C0(S, 2);
  667. L3 ^= C1(S, 2);
  668. L4 ^= C2(S, 2);
  669. L5 ^= C3(S, 2);
  670. L6 ^= C4(S, 2);
  671. L7 ^= C5(S, 2);
  672. L0 ^= C6(S, 2);
  673. L1 ^= C7(S, 2);
  674. L3 ^= C0(S, 3);
  675. L4 ^= C1(S, 3);
  676. L5 ^= C2(S, 3);
  677. L6 ^= C3(S, 3);
  678. L7 ^= C4(S, 3);
  679. L0 ^= C5(S, 3);
  680. L1 ^= C6(S, 3);
  681. L2 ^= C7(S, 3);
  682. L4 ^= C0(S, 4);
  683. L5 ^= C1(S, 4);
  684. L6 ^= C2(S, 4);
  685. L7 ^= C3(S, 4);
  686. L0 ^= C4(S, 4);
  687. L1 ^= C5(S, 4);
  688. L2 ^= C6(S, 4);
  689. L3 ^= C7(S, 4);
  690. L5 ^= C0(S, 5);
  691. L6 ^= C1(S, 5);
  692. L7 ^= C2(S, 5);
  693. L0 ^= C3(S, 5);
  694. L1 ^= C4(S, 5);
  695. L2 ^= C5(S, 5);
  696. L3 ^= C6(S, 5);
  697. L4 ^= C7(S, 5);
  698. L6 ^= C0(S, 6);
  699. L7 ^= C1(S, 6);
  700. L0 ^= C2(S, 6);
  701. L1 ^= C3(S, 6);
  702. L2 ^= C4(S, 6);
  703. L3 ^= C5(S, 6);
  704. L4 ^= C6(S, 6);
  705. L5 ^= C7(S, 6);
  706. L7 ^= C0(S, 7);
  707. L0 ^= C1(S, 7);
  708. L1 ^= C2(S, 7);
  709. L2 ^= C3(S, 7);
  710. L3 ^= C4(S, 7);
  711. L4 ^= C5(S, 7);
  712. L5 ^= C6(S, 7);
  713. L6 ^= C7(S, 7);
  714. S.q[0] = L0;
  715. S.q[1] = L1;
  716. S.q[2] = L2;
  717. S.q[3] = L3;
  718. S.q[4] = L4;
  719. S.q[5] = L5;
  720. S.q[6] = L6;
  721. S.q[7] = L7;
  722. # endif
  723. }
  724. # ifdef STRICT_ALIGNMENT
  725. if ((size_t)p & 7) {
  726. int i;
  727. for (i = 0; i < 64; i++)
  728. H->c[i] ^= S.c[i] ^ p[i];
  729. } else
  730. # endif
  731. {
  732. const u64 *pa = (const u64 *)p;
  733. H->q[0] ^= S.q[0] ^ pa[0];
  734. H->q[1] ^= S.q[1] ^ pa[1];
  735. H->q[2] ^= S.q[2] ^ pa[2];
  736. H->q[3] ^= S.q[3] ^ pa[3];
  737. H->q[4] ^= S.q[4] ^ pa[4];
  738. H->q[5] ^= S.q[5] ^ pa[5];
  739. H->q[6] ^= S.q[6] ^ pa[6];
  740. H->q[7] ^= S.q[7] ^ pa[7];
  741. }
  742. #endif
  743. p += 64;
  744. } while (--n);
  745. }