e_aes.c 71 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024
  1. /* ====================================================================
  2. * Copyright (c) 2001-2011 The OpenSSL Project. All rights reserved.
  3. *
  4. * Redistribution and use in source and binary forms, with or without
  5. * modification, are permitted provided that the following conditions
  6. * are met:
  7. *
  8. * 1. Redistributions of source code must retain the above copyright
  9. * notice, this list of conditions and the following disclaimer.
  10. *
  11. * 2. Redistributions in binary form must reproduce the above copyright
  12. * notice, this list of conditions and the following disclaimer in
  13. * the documentation and/or other materials provided with the
  14. * distribution.
  15. *
  16. * 3. All advertising materials mentioning features or use of this
  17. * software must display the following acknowledgment:
  18. * "This product includes software developed by the OpenSSL Project
  19. * for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
  20. *
  21. * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  22. * endorse or promote products derived from this software without
  23. * prior written permission. For written permission, please contact
  24. * openssl-core@openssl.org.
  25. *
  26. * 5. Products derived from this software may not be called "OpenSSL"
  27. * nor may "OpenSSL" appear in their names without prior written
  28. * permission of the OpenSSL Project.
  29. *
  30. * 6. Redistributions of any form whatsoever must retain the following
  31. * acknowledgment:
  32. * "This product includes software developed by the OpenSSL Project
  33. * for use in the OpenSSL Toolkit (http://www.openssl.org/)"
  34. *
  35. * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  36. * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  37. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  38. * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
  39. * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  40. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  41. * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  42. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  43. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  44. * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  45. * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  46. * OF THE POSSIBILITY OF SUCH DAMAGE.
  47. * ====================================================================
  48. *
  49. */
  50. #include <openssl/opensslconf.h>
  51. #ifndef OPENSSL_NO_AES
  52. #include <openssl/crypto.h>
  53. # include <openssl/evp.h>
  54. # include <openssl/err.h>
  55. # include <string.h>
  56. # include <assert.h>
  57. # include <openssl/aes.h>
  58. # include "evp_locl.h"
  59. # include "modes_lcl.h"
  60. # include <openssl/rand.h>
  61. # undef EVP_CIPH_FLAG_FIPS
  62. # define EVP_CIPH_FLAG_FIPS 0
  63. typedef struct {
  64. union {
  65. double align;
  66. AES_KEY ks;
  67. } ks;
  68. block128_f block;
  69. union {
  70. cbc128_f cbc;
  71. ctr128_f ctr;
  72. } stream;
  73. } EVP_AES_KEY;
  74. typedef struct {
  75. union {
  76. double align;
  77. AES_KEY ks;
  78. } ks; /* AES key schedule to use */
  79. int key_set; /* Set if key initialised */
  80. int iv_set; /* Set if an iv is set */
  81. GCM128_CONTEXT gcm;
  82. unsigned char *iv; /* Temporary IV store */
  83. int ivlen; /* IV length */
  84. int taglen;
  85. int iv_gen; /* It is OK to generate IVs */
  86. int tls_aad_len; /* TLS AAD length */
  87. ctr128_f ctr;
  88. } EVP_AES_GCM_CTX;
  89. typedef struct {
  90. union {
  91. double align;
  92. AES_KEY ks;
  93. } ks1, ks2; /* AES key schedules to use */
  94. XTS128_CONTEXT xts;
  95. void (*stream) (const unsigned char *in,
  96. unsigned char *out, size_t length,
  97. const AES_KEY *key1, const AES_KEY *key2,
  98. const unsigned char iv[16]);
  99. } EVP_AES_XTS_CTX;
  100. typedef struct {
  101. union {
  102. double align;
  103. AES_KEY ks;
  104. } ks; /* AES key schedule to use */
  105. int key_set; /* Set if key initialised */
  106. int iv_set; /* Set if an iv is set */
  107. int tag_set; /* Set if tag is valid */
  108. int len_set; /* Set if message length set */
  109. int L, M; /* L and M parameters from RFC3610 */
  110. CCM128_CONTEXT ccm;
  111. ccm128_f str;
  112. } EVP_AES_CCM_CTX;
  113. # define MAXBITCHUNK ((size_t)1<<(sizeof(size_t)*8-4))
  114. # ifdef VPAES_ASM
  115. int vpaes_set_encrypt_key(const unsigned char *userKey, int bits,
  116. AES_KEY *key);
  117. int vpaes_set_decrypt_key(const unsigned char *userKey, int bits,
  118. AES_KEY *key);
  119. void vpaes_encrypt(const unsigned char *in, unsigned char *out,
  120. const AES_KEY *key);
  121. void vpaes_decrypt(const unsigned char *in, unsigned char *out,
  122. const AES_KEY *key);
  123. void vpaes_cbc_encrypt(const unsigned char *in,
  124. unsigned char *out,
  125. size_t length,
  126. const AES_KEY *key, unsigned char *ivec, int enc);
  127. # endif
  128. # ifdef BSAES_ASM
  129. void bsaes_cbc_encrypt(const unsigned char *in, unsigned char *out,
  130. size_t length, const AES_KEY *key,
  131. unsigned char ivec[16], int enc);
  132. void bsaes_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
  133. size_t len, const AES_KEY *key,
  134. const unsigned char ivec[16]);
  135. void bsaes_xts_encrypt(const unsigned char *inp, unsigned char *out,
  136. size_t len, const AES_KEY *key1,
  137. const AES_KEY *key2, const unsigned char iv[16]);
  138. void bsaes_xts_decrypt(const unsigned char *inp, unsigned char *out,
  139. size_t len, const AES_KEY *key1,
  140. const AES_KEY *key2, const unsigned char iv[16]);
  141. # endif
  142. # ifdef AES_CTR_ASM
  143. void AES_ctr32_encrypt(const unsigned char *in, unsigned char *out,
  144. size_t blocks, const AES_KEY *key,
  145. const unsigned char ivec[AES_BLOCK_SIZE]);
  146. # endif
  147. # ifdef AES_XTS_ASM
  148. void AES_xts_encrypt(const char *inp, char *out, size_t len,
  149. const AES_KEY *key1, const AES_KEY *key2,
  150. const unsigned char iv[16]);
  151. void AES_xts_decrypt(const char *inp, char *out, size_t len,
  152. const AES_KEY *key1, const AES_KEY *key2,
  153. const unsigned char iv[16]);
  154. # endif
  155. # if defined(OPENSSL_CPUID_OBJ) && (defined(__powerpc__) || defined(__ppc__) || defined(_ARCH_PPC))
  156. # include "ppc_arch.h"
  157. # ifdef VPAES_ASM
  158. # define VPAES_CAPABLE (OPENSSL_ppccap_P & PPC_ALTIVEC)
  159. # endif
  160. # define HWAES_CAPABLE (OPENSSL_ppccap_P & PPC_CRYPTO207)
  161. # define HWAES_set_encrypt_key aes_p8_set_encrypt_key
  162. # define HWAES_set_decrypt_key aes_p8_set_decrypt_key
  163. # define HWAES_encrypt aes_p8_encrypt
  164. # define HWAES_decrypt aes_p8_decrypt
  165. # define HWAES_cbc_encrypt aes_p8_cbc_encrypt
  166. # define HWAES_ctr32_encrypt_blocks aes_p8_ctr32_encrypt_blocks
  167. # endif
  168. # if defined(AES_ASM) && !defined(I386_ONLY) && ( \
  169. ((defined(__i386) || defined(__i386__) || \
  170. defined(_M_IX86)) && defined(OPENSSL_IA32_SSE2))|| \
  171. defined(__x86_64) || defined(__x86_64__) || \
  172. defined(_M_AMD64) || defined(_M_X64) || \
  173. defined(__INTEL__) )
  174. extern unsigned int OPENSSL_ia32cap_P[];
  175. # ifdef VPAES_ASM
  176. # define VPAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32)))
  177. # endif
  178. # ifdef BSAES_ASM
  179. # define BSAES_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(41-32)))
  180. # endif
  181. /*
  182. * AES-NI section
  183. */
  184. # define AESNI_CAPABLE (OPENSSL_ia32cap_P[1]&(1<<(57-32)))
  185. int aesni_set_encrypt_key(const unsigned char *userKey, int bits,
  186. AES_KEY *key);
  187. int aesni_set_decrypt_key(const unsigned char *userKey, int bits,
  188. AES_KEY *key);
  189. void aesni_encrypt(const unsigned char *in, unsigned char *out,
  190. const AES_KEY *key);
  191. void aesni_decrypt(const unsigned char *in, unsigned char *out,
  192. const AES_KEY *key);
  193. void aesni_ecb_encrypt(const unsigned char *in,
  194. unsigned char *out,
  195. size_t length, const AES_KEY *key, int enc);
  196. void aesni_cbc_encrypt(const unsigned char *in,
  197. unsigned char *out,
  198. size_t length,
  199. const AES_KEY *key, unsigned char *ivec, int enc);
  200. void aesni_ctr32_encrypt_blocks(const unsigned char *in,
  201. unsigned char *out,
  202. size_t blocks,
  203. const void *key, const unsigned char *ivec);
  204. void aesni_xts_encrypt(const unsigned char *in,
  205. unsigned char *out,
  206. size_t length,
  207. const AES_KEY *key1, const AES_KEY *key2,
  208. const unsigned char iv[16]);
  209. void aesni_xts_decrypt(const unsigned char *in,
  210. unsigned char *out,
  211. size_t length,
  212. const AES_KEY *key1, const AES_KEY *key2,
  213. const unsigned char iv[16]);
  214. void aesni_ccm64_encrypt_blocks(const unsigned char *in,
  215. unsigned char *out,
  216. size_t blocks,
  217. const void *key,
  218. const unsigned char ivec[16],
  219. unsigned char cmac[16]);
  220. void aesni_ccm64_decrypt_blocks(const unsigned char *in,
  221. unsigned char *out,
  222. size_t blocks,
  223. const void *key,
  224. const unsigned char ivec[16],
  225. unsigned char cmac[16]);
  226. # if defined(__x86_64) || defined(__x86_64__) || defined(_M_AMD64) || defined(_M_X64)
  227. size_t aesni_gcm_encrypt(const unsigned char *in,
  228. unsigned char *out,
  229. size_t len,
  230. const void *key, unsigned char ivec[16], u64 *Xi);
  231. # define AES_gcm_encrypt aesni_gcm_encrypt
  232. size_t aesni_gcm_decrypt(const unsigned char *in,
  233. unsigned char *out,
  234. size_t len,
  235. const void *key, unsigned char ivec[16], u64 *Xi);
  236. # define AES_gcm_decrypt aesni_gcm_decrypt
  237. void gcm_ghash_avx(u64 Xi[2], const u128 Htable[16], const u8 *in,
  238. size_t len);
  239. # define AES_GCM_ASM(gctx) (gctx->ctr==aesni_ctr32_encrypt_blocks && \
  240. gctx->gcm.ghash==gcm_ghash_avx)
  241. # define AES_GCM_ASM2(gctx) (gctx->gcm.block==(block128_f)aesni_encrypt && \
  242. gctx->gcm.ghash==gcm_ghash_avx)
  243. # undef AES_GCM_ASM2 /* minor size optimization */
  244. # endif
  245. static int aesni_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  246. const unsigned char *iv, int enc)
  247. {
  248. int ret, mode;
  249. EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data;
  250. mode = ctx->cipher->flags & EVP_CIPH_MODE;
  251. if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
  252. && !enc) {
  253. ret = aesni_set_decrypt_key(key, ctx->key_len * 8, ctx->cipher_data);
  254. dat->block = (block128_f) aesni_decrypt;
  255. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  256. (cbc128_f) aesni_cbc_encrypt : NULL;
  257. } else {
  258. ret = aesni_set_encrypt_key(key, ctx->key_len * 8, ctx->cipher_data);
  259. dat->block = (block128_f) aesni_encrypt;
  260. if (mode == EVP_CIPH_CBC_MODE)
  261. dat->stream.cbc = (cbc128_f) aesni_cbc_encrypt;
  262. else if (mode == EVP_CIPH_CTR_MODE)
  263. dat->stream.ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
  264. else
  265. dat->stream.cbc = NULL;
  266. }
  267. if (ret < 0) {
  268. EVPerr(EVP_F_AESNI_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
  269. return 0;
  270. }
  271. return 1;
  272. }
  273. static int aesni_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  274. const unsigned char *in, size_t len)
  275. {
  276. aesni_cbc_encrypt(in, out, len, ctx->cipher_data, ctx->iv, ctx->encrypt);
  277. return 1;
  278. }
  279. static int aesni_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  280. const unsigned char *in, size_t len)
  281. {
  282. size_t bl = ctx->cipher->block_size;
  283. if (len < bl)
  284. return 1;
  285. aesni_ecb_encrypt(in, out, len, ctx->cipher_data, ctx->encrypt);
  286. return 1;
  287. }
  288. # define aesni_ofb_cipher aes_ofb_cipher
  289. static int aesni_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  290. const unsigned char *in, size_t len);
  291. # define aesni_cfb_cipher aes_cfb_cipher
  292. static int aesni_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  293. const unsigned char *in, size_t len);
  294. # define aesni_cfb8_cipher aes_cfb8_cipher
  295. static int aesni_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  296. const unsigned char *in, size_t len);
  297. # define aesni_cfb1_cipher aes_cfb1_cipher
  298. static int aesni_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  299. const unsigned char *in, size_t len);
  300. # define aesni_ctr_cipher aes_ctr_cipher
  301. static int aesni_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  302. const unsigned char *in, size_t len);
  303. static int aesni_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  304. const unsigned char *iv, int enc)
  305. {
  306. EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
  307. if (!iv && !key)
  308. return 1;
  309. if (key) {
  310. aesni_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
  311. CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks, (block128_f) aesni_encrypt);
  312. gctx->ctr = (ctr128_f) aesni_ctr32_encrypt_blocks;
  313. /*
  314. * If we have an iv can set it directly, otherwise use saved IV.
  315. */
  316. if (iv == NULL && gctx->iv_set)
  317. iv = gctx->iv;
  318. if (iv) {
  319. CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
  320. gctx->iv_set = 1;
  321. }
  322. gctx->key_set = 1;
  323. } else {
  324. /* If key set use IV, otherwise copy */
  325. if (gctx->key_set)
  326. CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
  327. else
  328. memcpy(gctx->iv, iv, gctx->ivlen);
  329. gctx->iv_set = 1;
  330. gctx->iv_gen = 0;
  331. }
  332. return 1;
  333. }
  334. # define aesni_gcm_cipher aes_gcm_cipher
  335. static int aesni_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  336. const unsigned char *in, size_t len);
  337. static int aesni_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  338. const unsigned char *iv, int enc)
  339. {
  340. EVP_AES_XTS_CTX *xctx = ctx->cipher_data;
  341. if (!iv && !key)
  342. return 1;
  343. if (key) {
  344. /* key_len is two AES keys */
  345. if (enc) {
  346. aesni_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks);
  347. xctx->xts.block1 = (block128_f) aesni_encrypt;
  348. xctx->stream = aesni_xts_encrypt;
  349. } else {
  350. aesni_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks);
  351. xctx->xts.block1 = (block128_f) aesni_decrypt;
  352. xctx->stream = aesni_xts_decrypt;
  353. }
  354. aesni_set_encrypt_key(key + ctx->key_len / 2,
  355. ctx->key_len * 4, &xctx->ks2.ks);
  356. xctx->xts.block2 = (block128_f) aesni_encrypt;
  357. xctx->xts.key1 = &xctx->ks1;
  358. }
  359. if (iv) {
  360. xctx->xts.key2 = &xctx->ks2;
  361. memcpy(ctx->iv, iv, 16);
  362. }
  363. return 1;
  364. }
  365. # define aesni_xts_cipher aes_xts_cipher
  366. static int aesni_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  367. const unsigned char *in, size_t len);
  368. static int aesni_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  369. const unsigned char *iv, int enc)
  370. {
  371. EVP_AES_CCM_CTX *cctx = ctx->cipher_data;
  372. if (!iv && !key)
  373. return 1;
  374. if (key) {
  375. aesni_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks.ks);
  376. CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
  377. &cctx->ks, (block128_f) aesni_encrypt);
  378. cctx->str = enc ? (ccm128_f) aesni_ccm64_encrypt_blocks :
  379. (ccm128_f) aesni_ccm64_decrypt_blocks;
  380. cctx->key_set = 1;
  381. }
  382. if (iv) {
  383. memcpy(ctx->iv, iv, 15 - cctx->L);
  384. cctx->iv_set = 1;
  385. }
  386. return 1;
  387. }
  388. # define aesni_ccm_cipher aes_ccm_cipher
  389. static int aesni_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  390. const unsigned char *in, size_t len);
  391. # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
  392. static const EVP_CIPHER aesni_##keylen##_##mode = { \
  393. nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
  394. flags|EVP_CIPH_##MODE##_MODE, \
  395. aesni_init_key, \
  396. aesni_##mode##_cipher, \
  397. NULL, \
  398. sizeof(EVP_AES_KEY), \
  399. NULL,NULL,NULL,NULL }; \
  400. static const EVP_CIPHER aes_##keylen##_##mode = { \
  401. nid##_##keylen##_##nmode,blocksize, \
  402. keylen/8,ivlen, \
  403. flags|EVP_CIPH_##MODE##_MODE, \
  404. aes_init_key, \
  405. aes_##mode##_cipher, \
  406. NULL, \
  407. sizeof(EVP_AES_KEY), \
  408. NULL,NULL,NULL,NULL }; \
  409. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  410. { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }
  411. # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
  412. static const EVP_CIPHER aesni_##keylen##_##mode = { \
  413. nid##_##keylen##_##mode,blocksize, \
  414. (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
  415. flags|EVP_CIPH_##MODE##_MODE, \
  416. aesni_##mode##_init_key, \
  417. aesni_##mode##_cipher, \
  418. aes_##mode##_cleanup, \
  419. sizeof(EVP_AES_##MODE##_CTX), \
  420. NULL,NULL,aes_##mode##_ctrl,NULL }; \
  421. static const EVP_CIPHER aes_##keylen##_##mode = { \
  422. nid##_##keylen##_##mode,blocksize, \
  423. (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
  424. flags|EVP_CIPH_##MODE##_MODE, \
  425. aes_##mode##_init_key, \
  426. aes_##mode##_cipher, \
  427. aes_##mode##_cleanup, \
  428. sizeof(EVP_AES_##MODE##_CTX), \
  429. NULL,NULL,aes_##mode##_ctrl,NULL }; \
  430. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  431. { return AESNI_CAPABLE?&aesni_##keylen##_##mode:&aes_##keylen##_##mode; }
  432. # elif defined(AES_ASM) && (defined(__sparc) || defined(__sparc__))
  433. # include "sparc_arch.h"
  434. extern unsigned int OPENSSL_sparcv9cap_P[];
  435. # define SPARC_AES_CAPABLE (OPENSSL_sparcv9cap_P[1] & CFR_AES)
  436. void aes_t4_set_encrypt_key(const unsigned char *key, int bits, AES_KEY *ks);
  437. void aes_t4_set_decrypt_key(const unsigned char *key, int bits, AES_KEY *ks);
  438. void aes_t4_encrypt(const unsigned char *in, unsigned char *out,
  439. const AES_KEY *key);
  440. void aes_t4_decrypt(const unsigned char *in, unsigned char *out,
  441. const AES_KEY *key);
  442. /*
  443. * Key-length specific subroutines were chosen for following reason.
  444. * Each SPARC T4 core can execute up to 8 threads which share core's
  445. * resources. Loading as much key material to registers allows to
  446. * minimize references to shared memory interface, as well as amount
  447. * of instructions in inner loops [much needed on T4]. But then having
  448. * non-key-length specific routines would require conditional branches
  449. * either in inner loops or on subroutines' entries. Former is hardly
  450. * acceptable, while latter means code size increase to size occupied
  451. * by multiple key-length specfic subroutines, so why fight?
  452. */
  453. void aes128_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
  454. size_t len, const AES_KEY *key,
  455. unsigned char *ivec);
  456. void aes128_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
  457. size_t len, const AES_KEY *key,
  458. unsigned char *ivec);
  459. void aes192_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
  460. size_t len, const AES_KEY *key,
  461. unsigned char *ivec);
  462. void aes192_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
  463. size_t len, const AES_KEY *key,
  464. unsigned char *ivec);
  465. void aes256_t4_cbc_encrypt(const unsigned char *in, unsigned char *out,
  466. size_t len, const AES_KEY *key,
  467. unsigned char *ivec);
  468. void aes256_t4_cbc_decrypt(const unsigned char *in, unsigned char *out,
  469. size_t len, const AES_KEY *key,
  470. unsigned char *ivec);
  471. void aes128_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
  472. size_t blocks, const AES_KEY *key,
  473. unsigned char *ivec);
  474. void aes192_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
  475. size_t blocks, const AES_KEY *key,
  476. unsigned char *ivec);
  477. void aes256_t4_ctr32_encrypt(const unsigned char *in, unsigned char *out,
  478. size_t blocks, const AES_KEY *key,
  479. unsigned char *ivec);
  480. void aes128_t4_xts_encrypt(const unsigned char *in, unsigned char *out,
  481. size_t blocks, const AES_KEY *key1,
  482. const AES_KEY *key2, const unsigned char *ivec);
  483. void aes128_t4_xts_decrypt(const unsigned char *in, unsigned char *out,
  484. size_t blocks, const AES_KEY *key1,
  485. const AES_KEY *key2, const unsigned char *ivec);
  486. void aes256_t4_xts_encrypt(const unsigned char *in, unsigned char *out,
  487. size_t blocks, const AES_KEY *key1,
  488. const AES_KEY *key2, const unsigned char *ivec);
  489. void aes256_t4_xts_decrypt(const unsigned char *in, unsigned char *out,
  490. size_t blocks, const AES_KEY *key1,
  491. const AES_KEY *key2, const unsigned char *ivec);
  492. static int aes_t4_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  493. const unsigned char *iv, int enc)
  494. {
  495. int ret, mode, bits;
  496. EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data;
  497. mode = ctx->cipher->flags & EVP_CIPH_MODE;
  498. bits = ctx->key_len * 8;
  499. if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
  500. && !enc) {
  501. ret = 0;
  502. aes_t4_set_decrypt_key(key, bits, ctx->cipher_data);
  503. dat->block = (block128_f) aes_t4_decrypt;
  504. switch (bits) {
  505. case 128:
  506. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  507. (cbc128_f) aes128_t4_cbc_decrypt : NULL;
  508. break;
  509. case 192:
  510. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  511. (cbc128_f) aes192_t4_cbc_decrypt : NULL;
  512. break;
  513. case 256:
  514. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  515. (cbc128_f) aes256_t4_cbc_decrypt : NULL;
  516. break;
  517. default:
  518. ret = -1;
  519. }
  520. } else {
  521. ret = 0;
  522. aes_t4_set_encrypt_key(key, bits, ctx->cipher_data);
  523. dat->block = (block128_f) aes_t4_encrypt;
  524. switch (bits) {
  525. case 128:
  526. if (mode == EVP_CIPH_CBC_MODE)
  527. dat->stream.cbc = (cbc128_f) aes128_t4_cbc_encrypt;
  528. else if (mode == EVP_CIPH_CTR_MODE)
  529. dat->stream.ctr = (ctr128_f) aes128_t4_ctr32_encrypt;
  530. else
  531. dat->stream.cbc = NULL;
  532. break;
  533. case 192:
  534. if (mode == EVP_CIPH_CBC_MODE)
  535. dat->stream.cbc = (cbc128_f) aes192_t4_cbc_encrypt;
  536. else if (mode == EVP_CIPH_CTR_MODE)
  537. dat->stream.ctr = (ctr128_f) aes192_t4_ctr32_encrypt;
  538. else
  539. dat->stream.cbc = NULL;
  540. break;
  541. case 256:
  542. if (mode == EVP_CIPH_CBC_MODE)
  543. dat->stream.cbc = (cbc128_f) aes256_t4_cbc_encrypt;
  544. else if (mode == EVP_CIPH_CTR_MODE)
  545. dat->stream.ctr = (ctr128_f) aes256_t4_ctr32_encrypt;
  546. else
  547. dat->stream.cbc = NULL;
  548. break;
  549. default:
  550. ret = -1;
  551. }
  552. }
  553. if (ret < 0) {
  554. EVPerr(EVP_F_AES_T4_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
  555. return 0;
  556. }
  557. return 1;
  558. }
  559. # define aes_t4_cbc_cipher aes_cbc_cipher
  560. static int aes_t4_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  561. const unsigned char *in, size_t len);
  562. # define aes_t4_ecb_cipher aes_ecb_cipher
  563. static int aes_t4_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  564. const unsigned char *in, size_t len);
  565. # define aes_t4_ofb_cipher aes_ofb_cipher
  566. static int aes_t4_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  567. const unsigned char *in, size_t len);
  568. # define aes_t4_cfb_cipher aes_cfb_cipher
  569. static int aes_t4_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  570. const unsigned char *in, size_t len);
  571. # define aes_t4_cfb8_cipher aes_cfb8_cipher
  572. static int aes_t4_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  573. const unsigned char *in, size_t len);
  574. # define aes_t4_cfb1_cipher aes_cfb1_cipher
  575. static int aes_t4_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  576. const unsigned char *in, size_t len);
  577. # define aes_t4_ctr_cipher aes_ctr_cipher
  578. static int aes_t4_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  579. const unsigned char *in, size_t len);
  580. static int aes_t4_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  581. const unsigned char *iv, int enc)
  582. {
  583. EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
  584. if (!iv && !key)
  585. return 1;
  586. if (key) {
  587. int bits = ctx->key_len * 8;
  588. aes_t4_set_encrypt_key(key, bits, &gctx->ks.ks);
  589. CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
  590. (block128_f) aes_t4_encrypt);
  591. switch (bits) {
  592. case 128:
  593. gctx->ctr = (ctr128_f) aes128_t4_ctr32_encrypt;
  594. break;
  595. case 192:
  596. gctx->ctr = (ctr128_f) aes192_t4_ctr32_encrypt;
  597. break;
  598. case 256:
  599. gctx->ctr = (ctr128_f) aes256_t4_ctr32_encrypt;
  600. break;
  601. default:
  602. return 0;
  603. }
  604. /*
  605. * If we have an iv can set it directly, otherwise use saved IV.
  606. */
  607. if (iv == NULL && gctx->iv_set)
  608. iv = gctx->iv;
  609. if (iv) {
  610. CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
  611. gctx->iv_set = 1;
  612. }
  613. gctx->key_set = 1;
  614. } else {
  615. /* If key set use IV, otherwise copy */
  616. if (gctx->key_set)
  617. CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
  618. else
  619. memcpy(gctx->iv, iv, gctx->ivlen);
  620. gctx->iv_set = 1;
  621. gctx->iv_gen = 0;
  622. }
  623. return 1;
  624. }
  625. # define aes_t4_gcm_cipher aes_gcm_cipher
  626. static int aes_t4_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  627. const unsigned char *in, size_t len);
  628. static int aes_t4_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  629. const unsigned char *iv, int enc)
  630. {
  631. EVP_AES_XTS_CTX *xctx = ctx->cipher_data;
  632. if (!iv && !key)
  633. return 1;
  634. if (key) {
  635. int bits = ctx->key_len * 4;
  636. xctx->stream = NULL;
  637. /* key_len is two AES keys */
  638. if (enc) {
  639. aes_t4_set_encrypt_key(key, bits, &xctx->ks1.ks);
  640. xctx->xts.block1 = (block128_f) aes_t4_encrypt;
  641. switch (bits) {
  642. case 128:
  643. xctx->stream = aes128_t4_xts_encrypt;
  644. break;
  645. # if 0 /* not yet */
  646. case 192:
  647. xctx->stream = aes192_t4_xts_encrypt;
  648. break;
  649. # endif
  650. case 256:
  651. xctx->stream = aes256_t4_xts_encrypt;
  652. break;
  653. default:
  654. return 0;
  655. }
  656. } else {
  657. aes_t4_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks);
  658. xctx->xts.block1 = (block128_f) aes_t4_decrypt;
  659. switch (bits) {
  660. case 128:
  661. xctx->stream = aes128_t4_xts_decrypt;
  662. break;
  663. # if 0 /* not yet */
  664. case 192:
  665. xctx->stream = aes192_t4_xts_decrypt;
  666. break;
  667. # endif
  668. case 256:
  669. xctx->stream = aes256_t4_xts_decrypt;
  670. break;
  671. default:
  672. return 0;
  673. }
  674. }
  675. aes_t4_set_encrypt_key(key + ctx->key_len / 2,
  676. ctx->key_len * 4, &xctx->ks2.ks);
  677. xctx->xts.block2 = (block128_f) aes_t4_encrypt;
  678. xctx->xts.key1 = &xctx->ks1;
  679. }
  680. if (iv) {
  681. xctx->xts.key2 = &xctx->ks2;
  682. memcpy(ctx->iv, iv, 16);
  683. }
  684. return 1;
  685. }
  686. # define aes_t4_xts_cipher aes_xts_cipher
  687. static int aes_t4_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  688. const unsigned char *in, size_t len);
  689. static int aes_t4_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  690. const unsigned char *iv, int enc)
  691. {
  692. EVP_AES_CCM_CTX *cctx = ctx->cipher_data;
  693. if (!iv && !key)
  694. return 1;
  695. if (key) {
  696. int bits = ctx->key_len * 8;
  697. aes_t4_set_encrypt_key(key, bits, &cctx->ks.ks);
  698. CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
  699. &cctx->ks, (block128_f) aes_t4_encrypt);
  700. # if 0 /* not yet */
  701. switch (bits) {
  702. case 128:
  703. cctx->str = enc ? (ccm128_f) aes128_t4_ccm64_encrypt :
  704. (ccm128_f) ae128_t4_ccm64_decrypt;
  705. break;
  706. case 192:
  707. cctx->str = enc ? (ccm128_f) aes192_t4_ccm64_encrypt :
  708. (ccm128_f) ae192_t4_ccm64_decrypt;
  709. break;
  710. case 256:
  711. cctx->str = enc ? (ccm128_f) aes256_t4_ccm64_encrypt :
  712. (ccm128_f) ae256_t4_ccm64_decrypt;
  713. break;
  714. default:
  715. return 0;
  716. }
  717. # else
  718. cctx->str = NULL;
  719. # endif
  720. cctx->key_set = 1;
  721. }
  722. if (iv) {
  723. memcpy(ctx->iv, iv, 15 - cctx->L);
  724. cctx->iv_set = 1;
  725. }
  726. return 1;
  727. }
  728. # define aes_t4_ccm_cipher aes_ccm_cipher
  729. static int aes_t4_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  730. const unsigned char *in, size_t len);
  731. # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
  732. static const EVP_CIPHER aes_t4_##keylen##_##mode = { \
  733. nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
  734. flags|EVP_CIPH_##MODE##_MODE, \
  735. aes_t4_init_key, \
  736. aes_t4_##mode##_cipher, \
  737. NULL, \
  738. sizeof(EVP_AES_KEY), \
  739. NULL,NULL,NULL,NULL }; \
  740. static const EVP_CIPHER aes_##keylen##_##mode = { \
  741. nid##_##keylen##_##nmode,blocksize, \
  742. keylen/8,ivlen, \
  743. flags|EVP_CIPH_##MODE##_MODE, \
  744. aes_init_key, \
  745. aes_##mode##_cipher, \
  746. NULL, \
  747. sizeof(EVP_AES_KEY), \
  748. NULL,NULL,NULL,NULL }; \
  749. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  750. { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; }
  751. # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
  752. static const EVP_CIPHER aes_t4_##keylen##_##mode = { \
  753. nid##_##keylen##_##mode,blocksize, \
  754. (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
  755. flags|EVP_CIPH_##MODE##_MODE, \
  756. aes_t4_##mode##_init_key, \
  757. aes_t4_##mode##_cipher, \
  758. aes_##mode##_cleanup, \
  759. sizeof(EVP_AES_##MODE##_CTX), \
  760. NULL,NULL,aes_##mode##_ctrl,NULL }; \
  761. static const EVP_CIPHER aes_##keylen##_##mode = { \
  762. nid##_##keylen##_##mode,blocksize, \
  763. (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
  764. flags|EVP_CIPH_##MODE##_MODE, \
  765. aes_##mode##_init_key, \
  766. aes_##mode##_cipher, \
  767. aes_##mode##_cleanup, \
  768. sizeof(EVP_AES_##MODE##_CTX), \
  769. NULL,NULL,aes_##mode##_ctrl,NULL }; \
  770. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  771. { return SPARC_AES_CAPABLE?&aes_t4_##keylen##_##mode:&aes_##keylen##_##mode; }
  772. # else
  773. # define BLOCK_CIPHER_generic(nid,keylen,blocksize,ivlen,nmode,mode,MODE,flags) \
  774. static const EVP_CIPHER aes_##keylen##_##mode = { \
  775. nid##_##keylen##_##nmode,blocksize,keylen/8,ivlen, \
  776. flags|EVP_CIPH_##MODE##_MODE, \
  777. aes_init_key, \
  778. aes_##mode##_cipher, \
  779. NULL, \
  780. sizeof(EVP_AES_KEY), \
  781. NULL,NULL,NULL,NULL }; \
  782. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  783. { return &aes_##keylen##_##mode; }
  784. # define BLOCK_CIPHER_custom(nid,keylen,blocksize,ivlen,mode,MODE,flags) \
  785. static const EVP_CIPHER aes_##keylen##_##mode = { \
  786. nid##_##keylen##_##mode,blocksize, \
  787. (EVP_CIPH_##MODE##_MODE==EVP_CIPH_XTS_MODE?2:1)*keylen/8, ivlen, \
  788. flags|EVP_CIPH_##MODE##_MODE, \
  789. aes_##mode##_init_key, \
  790. aes_##mode##_cipher, \
  791. aes_##mode##_cleanup, \
  792. sizeof(EVP_AES_##MODE##_CTX), \
  793. NULL,NULL,aes_##mode##_ctrl,NULL }; \
  794. const EVP_CIPHER *EVP_aes_##keylen##_##mode(void) \
  795. { return &aes_##keylen##_##mode; }
  796. # endif
  797. # if defined(OPENSSL_CPUID_OBJ) && (defined(__arm__) || defined(__arm) || defined(__aarch64__))
  798. # include "arm_arch.h"
  799. # if __ARM_MAX_ARCH__>=7
  800. # if defined(BSAES_ASM)
  801. # define BSAES_CAPABLE (OPENSSL_armcap_P & ARMV7_NEON)
  802. # endif
  803. # define HWAES_CAPABLE (OPENSSL_armcap_P & ARMV8_AES)
  804. # define HWAES_set_encrypt_key aes_v8_set_encrypt_key
  805. # define HWAES_set_decrypt_key aes_v8_set_decrypt_key
  806. # define HWAES_encrypt aes_v8_encrypt
  807. # define HWAES_decrypt aes_v8_decrypt
  808. # define HWAES_cbc_encrypt aes_v8_cbc_encrypt
  809. # define HWAES_ctr32_encrypt_blocks aes_v8_ctr32_encrypt_blocks
  810. # endif
  811. # endif
  812. # if defined(HWAES_CAPABLE)
  813. int HWAES_set_encrypt_key(const unsigned char *userKey, const int bits,
  814. AES_KEY *key);
  815. int HWAES_set_decrypt_key(const unsigned char *userKey, const int bits,
  816. AES_KEY *key);
  817. void HWAES_encrypt(const unsigned char *in, unsigned char *out,
  818. const AES_KEY *key);
  819. void HWAES_decrypt(const unsigned char *in, unsigned char *out,
  820. const AES_KEY *key);
  821. void HWAES_cbc_encrypt(const unsigned char *in, unsigned char *out,
  822. size_t length, const AES_KEY *key,
  823. unsigned char *ivec, const int enc);
  824. void HWAES_ctr32_encrypt_blocks(const unsigned char *in, unsigned char *out,
  825. size_t len, const AES_KEY *key,
  826. const unsigned char ivec[16]);
  827. # endif
  828. # define BLOCK_CIPHER_generic_pack(nid,keylen,flags) \
  829. BLOCK_CIPHER_generic(nid,keylen,16,16,cbc,cbc,CBC,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
  830. BLOCK_CIPHER_generic(nid,keylen,16,0,ecb,ecb,ECB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
  831. BLOCK_CIPHER_generic(nid,keylen,1,16,ofb128,ofb,OFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
  832. BLOCK_CIPHER_generic(nid,keylen,1,16,cfb128,cfb,CFB,flags|EVP_CIPH_FLAG_DEFAULT_ASN1) \
  833. BLOCK_CIPHER_generic(nid,keylen,1,16,cfb1,cfb1,CFB,flags) \
  834. BLOCK_CIPHER_generic(nid,keylen,1,16,cfb8,cfb8,CFB,flags) \
  835. BLOCK_CIPHER_generic(nid,keylen,1,16,ctr,ctr,CTR,flags)
  836. static int aes_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  837. const unsigned char *iv, int enc)
  838. {
  839. int ret, mode;
  840. EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data;
  841. mode = ctx->cipher->flags & EVP_CIPH_MODE;
  842. if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE)
  843. && !enc)
  844. # ifdef HWAES_CAPABLE
  845. if (HWAES_CAPABLE) {
  846. ret = HWAES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
  847. dat->block = (block128_f) HWAES_decrypt;
  848. dat->stream.cbc = NULL;
  849. # ifdef HWAES_cbc_encrypt
  850. if (mode == EVP_CIPH_CBC_MODE)
  851. dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt;
  852. # endif
  853. } else
  854. # endif
  855. # ifdef BSAES_CAPABLE
  856. if (BSAES_CAPABLE && mode == EVP_CIPH_CBC_MODE) {
  857. ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
  858. dat->block = (block128_f) AES_decrypt;
  859. dat->stream.cbc = (cbc128_f) bsaes_cbc_encrypt;
  860. } else
  861. # endif
  862. # ifdef VPAES_CAPABLE
  863. if (VPAES_CAPABLE) {
  864. ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
  865. dat->block = (block128_f) vpaes_decrypt;
  866. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  867. (cbc128_f) vpaes_cbc_encrypt : NULL;
  868. } else
  869. # endif
  870. {
  871. ret = AES_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
  872. dat->block = (block128_f) AES_decrypt;
  873. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  874. (cbc128_f) AES_cbc_encrypt : NULL;
  875. } else
  876. # ifdef HWAES_CAPABLE
  877. if (HWAES_CAPABLE) {
  878. ret = HWAES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
  879. dat->block = (block128_f) HWAES_encrypt;
  880. dat->stream.cbc = NULL;
  881. # ifdef HWAES_cbc_encrypt
  882. if (mode == EVP_CIPH_CBC_MODE)
  883. dat->stream.cbc = (cbc128_f) HWAES_cbc_encrypt;
  884. else
  885. # endif
  886. # ifdef HWAES_ctr32_encrypt_blocks
  887. if (mode == EVP_CIPH_CTR_MODE)
  888. dat->stream.ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks;
  889. else
  890. # endif
  891. (void)0; /* terminate potentially open 'else' */
  892. } else
  893. # endif
  894. # ifdef BSAES_CAPABLE
  895. if (BSAES_CAPABLE && mode == EVP_CIPH_CTR_MODE) {
  896. ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
  897. dat->block = (block128_f) AES_encrypt;
  898. dat->stream.ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks;
  899. } else
  900. # endif
  901. # ifdef VPAES_CAPABLE
  902. if (VPAES_CAPABLE) {
  903. ret = vpaes_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
  904. dat->block = (block128_f) vpaes_encrypt;
  905. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  906. (cbc128_f) vpaes_cbc_encrypt : NULL;
  907. } else
  908. # endif
  909. {
  910. ret = AES_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
  911. dat->block = (block128_f) AES_encrypt;
  912. dat->stream.cbc = mode == EVP_CIPH_CBC_MODE ?
  913. (cbc128_f) AES_cbc_encrypt : NULL;
  914. # ifdef AES_CTR_ASM
  915. if (mode == EVP_CIPH_CTR_MODE)
  916. dat->stream.ctr = (ctr128_f) AES_ctr32_encrypt;
  917. # endif
  918. }
  919. if (ret < 0) {
  920. EVPerr(EVP_F_AES_INIT_KEY, EVP_R_AES_KEY_SETUP_FAILED);
  921. return 0;
  922. }
  923. return 1;
  924. }
  925. static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  926. const unsigned char *in, size_t len)
  927. {
  928. EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data;
  929. if (dat->stream.cbc)
  930. (*dat->stream.cbc) (in, out, len, &dat->ks, ctx->iv, ctx->encrypt);
  931. else if (ctx->encrypt)
  932. CRYPTO_cbc128_encrypt(in, out, len, &dat->ks, ctx->iv, dat->block);
  933. else
  934. CRYPTO_cbc128_decrypt(in, out, len, &dat->ks, ctx->iv, dat->block);
  935. return 1;
  936. }
  937. static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  938. const unsigned char *in, size_t len)
  939. {
  940. size_t bl = ctx->cipher->block_size;
  941. size_t i;
  942. EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data;
  943. if (len < bl)
  944. return 1;
  945. for (i = 0, len -= bl; i <= len; i += bl)
  946. (*dat->block) (in + i, out + i, &dat->ks);
  947. return 1;
  948. }
  949. static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  950. const unsigned char *in, size_t len)
  951. {
  952. EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data;
  953. CRYPTO_ofb128_encrypt(in, out, len, &dat->ks,
  954. ctx->iv, &ctx->num, dat->block);
  955. return 1;
  956. }
  957. static int aes_cfb_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  958. const unsigned char *in, size_t len)
  959. {
  960. EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data;
  961. CRYPTO_cfb128_encrypt(in, out, len, &dat->ks,
  962. ctx->iv, &ctx->num, ctx->encrypt, dat->block);
  963. return 1;
  964. }
  965. static int aes_cfb8_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  966. const unsigned char *in, size_t len)
  967. {
  968. EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data;
  969. CRYPTO_cfb128_8_encrypt(in, out, len, &dat->ks,
  970. ctx->iv, &ctx->num, ctx->encrypt, dat->block);
  971. return 1;
  972. }
  973. static int aes_cfb1_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  974. const unsigned char *in, size_t len)
  975. {
  976. EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data;
  977. if (ctx->flags & EVP_CIPH_FLAG_LENGTH_BITS) {
  978. CRYPTO_cfb128_1_encrypt(in, out, len, &dat->ks,
  979. ctx->iv, &ctx->num, ctx->encrypt, dat->block);
  980. return 1;
  981. }
  982. while (len >= MAXBITCHUNK) {
  983. CRYPTO_cfb128_1_encrypt(in, out, MAXBITCHUNK * 8, &dat->ks,
  984. ctx->iv, &ctx->num, ctx->encrypt, dat->block);
  985. len -= MAXBITCHUNK;
  986. }
  987. if (len)
  988. CRYPTO_cfb128_1_encrypt(in, out, len * 8, &dat->ks,
  989. ctx->iv, &ctx->num, ctx->encrypt, dat->block);
  990. return 1;
  991. }
  992. static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  993. const unsigned char *in, size_t len)
  994. {
  995. unsigned int num = ctx->num;
  996. EVP_AES_KEY *dat = (EVP_AES_KEY *) ctx->cipher_data;
  997. if (dat->stream.ctr)
  998. CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks,
  999. ctx->iv, ctx->buf, &num, dat->stream.ctr);
  1000. else
  1001. CRYPTO_ctr128_encrypt(in, out, len, &dat->ks,
  1002. ctx->iv, ctx->buf, &num, dat->block);
  1003. ctx->num = (size_t)num;
  1004. return 1;
  1005. }
  1006. BLOCK_CIPHER_generic_pack(NID_aes, 128, EVP_CIPH_FLAG_FIPS)
  1007. BLOCK_CIPHER_generic_pack(NID_aes, 192, EVP_CIPH_FLAG_FIPS)
  1008. BLOCK_CIPHER_generic_pack(NID_aes, 256, EVP_CIPH_FLAG_FIPS)
  1009. static int aes_gcm_cleanup(EVP_CIPHER_CTX *c)
  1010. {
  1011. EVP_AES_GCM_CTX *gctx = c->cipher_data;
  1012. OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm));
  1013. if (gctx->iv != c->iv)
  1014. OPENSSL_free(gctx->iv);
  1015. return 1;
  1016. }
  1017. /* increment counter (64-bit int) by 1 */
  1018. static void ctr64_inc(unsigned char *counter)
  1019. {
  1020. int n = 8;
  1021. unsigned char c;
  1022. do {
  1023. --n;
  1024. c = counter[n];
  1025. ++c;
  1026. counter[n] = c;
  1027. if (c)
  1028. return;
  1029. } while (n);
  1030. }
  1031. static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
  1032. {
  1033. EVP_AES_GCM_CTX *gctx = c->cipher_data;
  1034. switch (type) {
  1035. case EVP_CTRL_INIT:
  1036. gctx->key_set = 0;
  1037. gctx->iv_set = 0;
  1038. gctx->ivlen = c->cipher->iv_len;
  1039. gctx->iv = c->iv;
  1040. gctx->taglen = -1;
  1041. gctx->iv_gen = 0;
  1042. gctx->tls_aad_len = -1;
  1043. return 1;
  1044. case EVP_CTRL_GCM_SET_IVLEN:
  1045. if (arg <= 0)
  1046. return 0;
  1047. /* Allocate memory for IV if needed */
  1048. if ((arg > EVP_MAX_IV_LENGTH) && (arg > gctx->ivlen)) {
  1049. if (gctx->iv != c->iv)
  1050. OPENSSL_free(gctx->iv);
  1051. gctx->iv = OPENSSL_malloc(arg);
  1052. if (!gctx->iv)
  1053. return 0;
  1054. }
  1055. gctx->ivlen = arg;
  1056. return 1;
  1057. case EVP_CTRL_GCM_SET_TAG:
  1058. if (arg <= 0 || arg > 16 || c->encrypt)
  1059. return 0;
  1060. memcpy(c->buf, ptr, arg);
  1061. gctx->taglen = arg;
  1062. return 1;
  1063. case EVP_CTRL_GCM_GET_TAG:
  1064. if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0)
  1065. return 0;
  1066. memcpy(ptr, c->buf, arg);
  1067. return 1;
  1068. case EVP_CTRL_GCM_SET_IV_FIXED:
  1069. /* Special case: -1 length restores whole IV */
  1070. if (arg == -1) {
  1071. memcpy(gctx->iv, ptr, gctx->ivlen);
  1072. gctx->iv_gen = 1;
  1073. return 1;
  1074. }
  1075. /*
  1076. * Fixed field must be at least 4 bytes and invocation field at least
  1077. * 8.
  1078. */
  1079. if ((arg < 4) || (gctx->ivlen - arg) < 8)
  1080. return 0;
  1081. if (arg)
  1082. memcpy(gctx->iv, ptr, arg);
  1083. if (c->encrypt && RAND_bytes(gctx->iv + arg, gctx->ivlen - arg) <= 0)
  1084. return 0;
  1085. gctx->iv_gen = 1;
  1086. return 1;
  1087. case EVP_CTRL_GCM_IV_GEN:
  1088. if (gctx->iv_gen == 0 || gctx->key_set == 0)
  1089. return 0;
  1090. CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
  1091. if (arg <= 0 || arg > gctx->ivlen)
  1092. arg = gctx->ivlen;
  1093. memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
  1094. /*
  1095. * Invocation field will be at least 8 bytes in size and so no need
  1096. * to check wrap around or increment more than last 8 bytes.
  1097. */
  1098. ctr64_inc(gctx->iv + gctx->ivlen - 8);
  1099. gctx->iv_set = 1;
  1100. return 1;
  1101. case EVP_CTRL_GCM_SET_IV_INV:
  1102. if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt)
  1103. return 0;
  1104. memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
  1105. CRYPTO_gcm128_setiv(&gctx->gcm, gctx->iv, gctx->ivlen);
  1106. gctx->iv_set = 1;
  1107. return 1;
  1108. case EVP_CTRL_AEAD_TLS1_AAD:
  1109. /* Save the AAD for later use */
  1110. if (arg != EVP_AEAD_TLS1_AAD_LEN)
  1111. return 0;
  1112. memcpy(c->buf, ptr, arg);
  1113. gctx->tls_aad_len = arg;
  1114. {
  1115. unsigned int len = c->buf[arg - 2] << 8 | c->buf[arg - 1];
  1116. /* Correct length for explicit IV */
  1117. len -= EVP_GCM_TLS_EXPLICIT_IV_LEN;
  1118. /* If decrypting correct for tag too */
  1119. if (!c->encrypt)
  1120. len -= EVP_GCM_TLS_TAG_LEN;
  1121. c->buf[arg - 2] = len >> 8;
  1122. c->buf[arg - 1] = len & 0xff;
  1123. }
  1124. /* Extra padding: tag appended to record */
  1125. return EVP_GCM_TLS_TAG_LEN;
  1126. case EVP_CTRL_COPY:
  1127. {
  1128. EVP_CIPHER_CTX *out = ptr;
  1129. EVP_AES_GCM_CTX *gctx_out = out->cipher_data;
  1130. if (gctx->gcm.key) {
  1131. if (gctx->gcm.key != &gctx->ks)
  1132. return 0;
  1133. gctx_out->gcm.key = &gctx_out->ks;
  1134. }
  1135. if (gctx->iv == c->iv)
  1136. gctx_out->iv = out->iv;
  1137. else {
  1138. gctx_out->iv = OPENSSL_malloc(gctx->ivlen);
  1139. if (!gctx_out->iv)
  1140. return 0;
  1141. memcpy(gctx_out->iv, gctx->iv, gctx->ivlen);
  1142. }
  1143. return 1;
  1144. }
  1145. default:
  1146. return -1;
  1147. }
  1148. }
  1149. static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  1150. const unsigned char *iv, int enc)
  1151. {
  1152. EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
  1153. if (!iv && !key)
  1154. return 1;
  1155. if (key) {
  1156. do {
  1157. # ifdef HWAES_CAPABLE
  1158. if (HWAES_CAPABLE) {
  1159. HWAES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
  1160. CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
  1161. (block128_f) HWAES_encrypt);
  1162. # ifdef HWAES_ctr32_encrypt_blocks
  1163. gctx->ctr = (ctr128_f) HWAES_ctr32_encrypt_blocks;
  1164. # else
  1165. gctx->ctr = NULL;
  1166. # endif
  1167. break;
  1168. } else
  1169. # endif
  1170. # ifdef BSAES_CAPABLE
  1171. if (BSAES_CAPABLE) {
  1172. AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
  1173. CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
  1174. (block128_f) AES_encrypt);
  1175. gctx->ctr = (ctr128_f) bsaes_ctr32_encrypt_blocks;
  1176. break;
  1177. } else
  1178. # endif
  1179. # ifdef VPAES_CAPABLE
  1180. if (VPAES_CAPABLE) {
  1181. vpaes_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
  1182. CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
  1183. (block128_f) vpaes_encrypt);
  1184. gctx->ctr = NULL;
  1185. break;
  1186. } else
  1187. # endif
  1188. (void)0; /* terminate potentially open 'else' */
  1189. AES_set_encrypt_key(key, ctx->key_len * 8, &gctx->ks.ks);
  1190. CRYPTO_gcm128_init(&gctx->gcm, &gctx->ks,
  1191. (block128_f) AES_encrypt);
  1192. # ifdef AES_CTR_ASM
  1193. gctx->ctr = (ctr128_f) AES_ctr32_encrypt;
  1194. # else
  1195. gctx->ctr = NULL;
  1196. # endif
  1197. } while (0);
  1198. /*
  1199. * If we have an iv can set it directly, otherwise use saved IV.
  1200. */
  1201. if (iv == NULL && gctx->iv_set)
  1202. iv = gctx->iv;
  1203. if (iv) {
  1204. CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
  1205. gctx->iv_set = 1;
  1206. }
  1207. gctx->key_set = 1;
  1208. } else {
  1209. /* If key set use IV, otherwise copy */
  1210. if (gctx->key_set)
  1211. CRYPTO_gcm128_setiv(&gctx->gcm, iv, gctx->ivlen);
  1212. else
  1213. memcpy(gctx->iv, iv, gctx->ivlen);
  1214. gctx->iv_set = 1;
  1215. gctx->iv_gen = 0;
  1216. }
  1217. return 1;
  1218. }
  1219. /*
  1220. * Handle TLS GCM packet format. This consists of the last portion of the IV
  1221. * followed by the payload and finally the tag. On encrypt generate IV,
  1222. * encrypt payload and write the tag. On verify retrieve IV, decrypt payload
  1223. * and verify tag.
  1224. */
  1225. static int aes_gcm_tls_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1226. const unsigned char *in, size_t len)
  1227. {
  1228. EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
  1229. int rv = -1;
  1230. /* Encrypt/decrypt must be performed in place */
  1231. if (out != in
  1232. || len < (EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN))
  1233. return -1;
  1234. /*
  1235. * Set IV from start of buffer or generate IV and write to start of
  1236. * buffer.
  1237. */
  1238. if (EVP_CIPHER_CTX_ctrl(ctx, ctx->encrypt ?
  1239. EVP_CTRL_GCM_IV_GEN : EVP_CTRL_GCM_SET_IV_INV,
  1240. EVP_GCM_TLS_EXPLICIT_IV_LEN, out) <= 0)
  1241. goto err;
  1242. /* Use saved AAD */
  1243. if (CRYPTO_gcm128_aad(&gctx->gcm, ctx->buf, gctx->tls_aad_len))
  1244. goto err;
  1245. /* Fix buffer and length to point to payload */
  1246. in += EVP_GCM_TLS_EXPLICIT_IV_LEN;
  1247. out += EVP_GCM_TLS_EXPLICIT_IV_LEN;
  1248. len -= EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
  1249. if (ctx->encrypt) {
  1250. /* Encrypt payload */
  1251. if (gctx->ctr) {
  1252. size_t bulk = 0;
  1253. # if defined(AES_GCM_ASM)
  1254. if (len >= 32 && AES_GCM_ASM(gctx)) {
  1255. if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0))
  1256. return -1;
  1257. bulk = AES_gcm_encrypt(in, out, len,
  1258. gctx->gcm.key,
  1259. gctx->gcm.Yi.c, gctx->gcm.Xi.u);
  1260. gctx->gcm.len.u[1] += bulk;
  1261. }
  1262. # endif
  1263. if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
  1264. in + bulk,
  1265. out + bulk,
  1266. len - bulk, gctx->ctr))
  1267. goto err;
  1268. } else {
  1269. size_t bulk = 0;
  1270. # if defined(AES_GCM_ASM2)
  1271. if (len >= 32 && AES_GCM_ASM2(gctx)) {
  1272. if (CRYPTO_gcm128_encrypt(&gctx->gcm, NULL, NULL, 0))
  1273. return -1;
  1274. bulk = AES_gcm_encrypt(in, out, len,
  1275. gctx->gcm.key,
  1276. gctx->gcm.Yi.c, gctx->gcm.Xi.u);
  1277. gctx->gcm.len.u[1] += bulk;
  1278. }
  1279. # endif
  1280. if (CRYPTO_gcm128_encrypt(&gctx->gcm,
  1281. in + bulk, out + bulk, len - bulk))
  1282. goto err;
  1283. }
  1284. out += len;
  1285. /* Finally write tag */
  1286. CRYPTO_gcm128_tag(&gctx->gcm, out, EVP_GCM_TLS_TAG_LEN);
  1287. rv = len + EVP_GCM_TLS_EXPLICIT_IV_LEN + EVP_GCM_TLS_TAG_LEN;
  1288. } else {
  1289. /* Decrypt */
  1290. if (gctx->ctr) {
  1291. size_t bulk = 0;
  1292. # if defined(AES_GCM_ASM)
  1293. if (len >= 16 && AES_GCM_ASM(gctx)) {
  1294. if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0))
  1295. return -1;
  1296. bulk = AES_gcm_decrypt(in, out, len,
  1297. gctx->gcm.key,
  1298. gctx->gcm.Yi.c, gctx->gcm.Xi.u);
  1299. gctx->gcm.len.u[1] += bulk;
  1300. }
  1301. # endif
  1302. if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
  1303. in + bulk,
  1304. out + bulk,
  1305. len - bulk, gctx->ctr))
  1306. goto err;
  1307. } else {
  1308. size_t bulk = 0;
  1309. # if defined(AES_GCM_ASM2)
  1310. if (len >= 16 && AES_GCM_ASM2(gctx)) {
  1311. if (CRYPTO_gcm128_decrypt(&gctx->gcm, NULL, NULL, 0))
  1312. return -1;
  1313. bulk = AES_gcm_decrypt(in, out, len,
  1314. gctx->gcm.key,
  1315. gctx->gcm.Yi.c, gctx->gcm.Xi.u);
  1316. gctx->gcm.len.u[1] += bulk;
  1317. }
  1318. # endif
  1319. if (CRYPTO_gcm128_decrypt(&gctx->gcm,
  1320. in + bulk, out + bulk, len - bulk))
  1321. goto err;
  1322. }
  1323. /* Retrieve tag */
  1324. CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, EVP_GCM_TLS_TAG_LEN);
  1325. /* If tag mismatch wipe buffer */
  1326. if (CRYPTO_memcmp(ctx->buf, in + len, EVP_GCM_TLS_TAG_LEN)) {
  1327. OPENSSL_cleanse(out, len);
  1328. goto err;
  1329. }
  1330. rv = len;
  1331. }
  1332. err:
  1333. gctx->iv_set = 0;
  1334. gctx->tls_aad_len = -1;
  1335. return rv;
  1336. }
  1337. static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1338. const unsigned char *in, size_t len)
  1339. {
  1340. EVP_AES_GCM_CTX *gctx = ctx->cipher_data;
  1341. /* If not set up, return error */
  1342. if (!gctx->key_set)
  1343. return -1;
  1344. if (gctx->tls_aad_len >= 0)
  1345. return aes_gcm_tls_cipher(ctx, out, in, len);
  1346. if (!gctx->iv_set)
  1347. return -1;
  1348. if (in) {
  1349. if (out == NULL) {
  1350. if (CRYPTO_gcm128_aad(&gctx->gcm, in, len))
  1351. return -1;
  1352. } else if (ctx->encrypt) {
  1353. if (gctx->ctr) {
  1354. size_t bulk = 0;
  1355. # if defined(AES_GCM_ASM)
  1356. if (len >= 32 && AES_GCM_ASM(gctx)) {
  1357. size_t res = (16 - gctx->gcm.mres) % 16;
  1358. if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res))
  1359. return -1;
  1360. bulk = AES_gcm_encrypt(in + res,
  1361. out + res, len - res,
  1362. gctx->gcm.key, gctx->gcm.Yi.c,
  1363. gctx->gcm.Xi.u);
  1364. gctx->gcm.len.u[1] += bulk;
  1365. bulk += res;
  1366. }
  1367. # endif
  1368. if (CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm,
  1369. in + bulk,
  1370. out + bulk,
  1371. len - bulk, gctx->ctr))
  1372. return -1;
  1373. } else {
  1374. size_t bulk = 0;
  1375. # if defined(AES_GCM_ASM2)
  1376. if (len >= 32 && AES_GCM_ASM2(gctx)) {
  1377. size_t res = (16 - gctx->gcm.mres) % 16;
  1378. if (CRYPTO_gcm128_encrypt(&gctx->gcm, in, out, res))
  1379. return -1;
  1380. bulk = AES_gcm_encrypt(in + res,
  1381. out + res, len - res,
  1382. gctx->gcm.key, gctx->gcm.Yi.c,
  1383. gctx->gcm.Xi.u);
  1384. gctx->gcm.len.u[1] += bulk;
  1385. bulk += res;
  1386. }
  1387. # endif
  1388. if (CRYPTO_gcm128_encrypt(&gctx->gcm,
  1389. in + bulk, out + bulk, len - bulk))
  1390. return -1;
  1391. }
  1392. } else {
  1393. if (gctx->ctr) {
  1394. size_t bulk = 0;
  1395. # if defined(AES_GCM_ASM)
  1396. if (len >= 16 && AES_GCM_ASM(gctx)) {
  1397. size_t res = (16 - gctx->gcm.mres) % 16;
  1398. if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res))
  1399. return -1;
  1400. bulk = AES_gcm_decrypt(in + res,
  1401. out + res, len - res,
  1402. gctx->gcm.key,
  1403. gctx->gcm.Yi.c, gctx->gcm.Xi.u);
  1404. gctx->gcm.len.u[1] += bulk;
  1405. bulk += res;
  1406. }
  1407. # endif
  1408. if (CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm,
  1409. in + bulk,
  1410. out + bulk,
  1411. len - bulk, gctx->ctr))
  1412. return -1;
  1413. } else {
  1414. size_t bulk = 0;
  1415. # if defined(AES_GCM_ASM2)
  1416. if (len >= 16 && AES_GCM_ASM2(gctx)) {
  1417. size_t res = (16 - gctx->gcm.mres) % 16;
  1418. if (CRYPTO_gcm128_decrypt(&gctx->gcm, in, out, res))
  1419. return -1;
  1420. bulk = AES_gcm_decrypt(in + res,
  1421. out + res, len - res,
  1422. gctx->gcm.key,
  1423. gctx->gcm.Yi.c, gctx->gcm.Xi.u);
  1424. gctx->gcm.len.u[1] += bulk;
  1425. bulk += res;
  1426. }
  1427. # endif
  1428. if (CRYPTO_gcm128_decrypt(&gctx->gcm,
  1429. in + bulk, out + bulk, len - bulk))
  1430. return -1;
  1431. }
  1432. }
  1433. return len;
  1434. } else {
  1435. if (!ctx->encrypt) {
  1436. if (gctx->taglen < 0)
  1437. return -1;
  1438. if (CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen) != 0)
  1439. return -1;
  1440. gctx->iv_set = 0;
  1441. return 0;
  1442. }
  1443. CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16);
  1444. gctx->taglen = 16;
  1445. /* Don't reuse the IV */
  1446. gctx->iv_set = 0;
  1447. return 0;
  1448. }
  1449. }
  1450. # define CUSTOM_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 \
  1451. | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \
  1452. | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \
  1453. | EVP_CIPH_CUSTOM_COPY)
  1454. BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, gcm, GCM,
  1455. EVP_CIPH_FLAG_FIPS | EVP_CIPH_FLAG_AEAD_CIPHER |
  1456. CUSTOM_FLAGS)
  1457. BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, gcm, GCM,
  1458. EVP_CIPH_FLAG_FIPS | EVP_CIPH_FLAG_AEAD_CIPHER |
  1459. CUSTOM_FLAGS)
  1460. BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, gcm, GCM,
  1461. EVP_CIPH_FLAG_FIPS | EVP_CIPH_FLAG_AEAD_CIPHER |
  1462. CUSTOM_FLAGS)
  1463. static int aes_xts_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
  1464. {
  1465. EVP_AES_XTS_CTX *xctx = c->cipher_data;
  1466. if (type == EVP_CTRL_COPY) {
  1467. EVP_CIPHER_CTX *out = ptr;
  1468. EVP_AES_XTS_CTX *xctx_out = out->cipher_data;
  1469. if (xctx->xts.key1) {
  1470. if (xctx->xts.key1 != &xctx->ks1)
  1471. return 0;
  1472. xctx_out->xts.key1 = &xctx_out->ks1;
  1473. }
  1474. if (xctx->xts.key2) {
  1475. if (xctx->xts.key2 != &xctx->ks2)
  1476. return 0;
  1477. xctx_out->xts.key2 = &xctx_out->ks2;
  1478. }
  1479. return 1;
  1480. } else if (type != EVP_CTRL_INIT)
  1481. return -1;
  1482. /* key1 and key2 are used as an indicator both key and IV are set */
  1483. xctx->xts.key1 = NULL;
  1484. xctx->xts.key2 = NULL;
  1485. return 1;
  1486. }
  1487. static int aes_xts_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  1488. const unsigned char *iv, int enc)
  1489. {
  1490. EVP_AES_XTS_CTX *xctx = ctx->cipher_data;
  1491. if (!iv && !key)
  1492. return 1;
  1493. if (key)
  1494. do {
  1495. # ifdef AES_XTS_ASM
  1496. xctx->stream = enc ? AES_xts_encrypt : AES_xts_decrypt;
  1497. # else
  1498. xctx->stream = NULL;
  1499. # endif
  1500. /* key_len is two AES keys */
  1501. # ifdef HWAES_CAPABLE
  1502. if (HWAES_CAPABLE) {
  1503. if (enc) {
  1504. HWAES_set_encrypt_key(key, ctx->key_len * 4,
  1505. &xctx->ks1.ks);
  1506. xctx->xts.block1 = (block128_f) HWAES_encrypt;
  1507. } else {
  1508. HWAES_set_decrypt_key(key, ctx->key_len * 4,
  1509. &xctx->ks1.ks);
  1510. xctx->xts.block1 = (block128_f) HWAES_decrypt;
  1511. }
  1512. HWAES_set_encrypt_key(key + ctx->key_len / 2,
  1513. ctx->key_len * 4, &xctx->ks2.ks);
  1514. xctx->xts.block2 = (block128_f) HWAES_encrypt;
  1515. xctx->xts.key1 = &xctx->ks1;
  1516. break;
  1517. } else
  1518. # endif
  1519. # ifdef BSAES_CAPABLE
  1520. if (BSAES_CAPABLE)
  1521. xctx->stream = enc ? bsaes_xts_encrypt : bsaes_xts_decrypt;
  1522. else
  1523. # endif
  1524. # ifdef VPAES_CAPABLE
  1525. if (VPAES_CAPABLE) {
  1526. if (enc) {
  1527. vpaes_set_encrypt_key(key, ctx->key_len * 4,
  1528. &xctx->ks1.ks);
  1529. xctx->xts.block1 = (block128_f) vpaes_encrypt;
  1530. } else {
  1531. vpaes_set_decrypt_key(key, ctx->key_len * 4,
  1532. &xctx->ks1.ks);
  1533. xctx->xts.block1 = (block128_f) vpaes_decrypt;
  1534. }
  1535. vpaes_set_encrypt_key(key + ctx->key_len / 2,
  1536. ctx->key_len * 4, &xctx->ks2.ks);
  1537. xctx->xts.block2 = (block128_f) vpaes_encrypt;
  1538. xctx->xts.key1 = &xctx->ks1;
  1539. break;
  1540. } else
  1541. # endif
  1542. (void)0; /* terminate potentially open 'else' */
  1543. if (enc) {
  1544. AES_set_encrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks);
  1545. xctx->xts.block1 = (block128_f) AES_encrypt;
  1546. } else {
  1547. AES_set_decrypt_key(key, ctx->key_len * 4, &xctx->ks1.ks);
  1548. xctx->xts.block1 = (block128_f) AES_decrypt;
  1549. }
  1550. AES_set_encrypt_key(key + ctx->key_len / 2,
  1551. ctx->key_len * 4, &xctx->ks2.ks);
  1552. xctx->xts.block2 = (block128_f) AES_encrypt;
  1553. xctx->xts.key1 = &xctx->ks1;
  1554. } while (0);
  1555. if (iv) {
  1556. xctx->xts.key2 = &xctx->ks2;
  1557. memcpy(ctx->iv, iv, 16);
  1558. }
  1559. return 1;
  1560. }
  1561. static int aes_xts_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1562. const unsigned char *in, size_t len)
  1563. {
  1564. EVP_AES_XTS_CTX *xctx = ctx->cipher_data;
  1565. if (!xctx->xts.key1 || !xctx->xts.key2)
  1566. return 0;
  1567. if (!out || !in || len < AES_BLOCK_SIZE)
  1568. return 0;
  1569. if (xctx->stream)
  1570. (*xctx->stream) (in, out, len,
  1571. xctx->xts.key1, xctx->xts.key2, ctx->iv);
  1572. else if (CRYPTO_xts128_encrypt(&xctx->xts, ctx->iv, in, out, len,
  1573. ctx->encrypt))
  1574. return 0;
  1575. return 1;
  1576. }
  1577. # define aes_xts_cleanup NULL
  1578. # define XTS_FLAGS (EVP_CIPH_FLAG_DEFAULT_ASN1 | EVP_CIPH_CUSTOM_IV \
  1579. | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_CTRL_INIT \
  1580. | EVP_CIPH_CUSTOM_COPY)
  1581. BLOCK_CIPHER_custom(NID_aes, 128, 1, 16, xts, XTS,
  1582. EVP_CIPH_FLAG_FIPS | XTS_FLAGS)
  1583. BLOCK_CIPHER_custom(NID_aes, 256, 1, 16, xts, XTS,
  1584. EVP_CIPH_FLAG_FIPS | XTS_FLAGS)
  1585. static int aes_ccm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr)
  1586. {
  1587. EVP_AES_CCM_CTX *cctx = c->cipher_data;
  1588. switch (type) {
  1589. case EVP_CTRL_INIT:
  1590. cctx->key_set = 0;
  1591. cctx->iv_set = 0;
  1592. cctx->L = 8;
  1593. cctx->M = 12;
  1594. cctx->tag_set = 0;
  1595. cctx->len_set = 0;
  1596. return 1;
  1597. case EVP_CTRL_CCM_SET_IVLEN:
  1598. arg = 15 - arg;
  1599. case EVP_CTRL_CCM_SET_L:
  1600. if (arg < 2 || arg > 8)
  1601. return 0;
  1602. cctx->L = arg;
  1603. return 1;
  1604. case EVP_CTRL_CCM_SET_TAG:
  1605. if ((arg & 1) || arg < 4 || arg > 16)
  1606. return 0;
  1607. if (c->encrypt && ptr)
  1608. return 0;
  1609. if (ptr) {
  1610. cctx->tag_set = 1;
  1611. memcpy(c->buf, ptr, arg);
  1612. }
  1613. cctx->M = arg;
  1614. return 1;
  1615. case EVP_CTRL_CCM_GET_TAG:
  1616. if (!c->encrypt || !cctx->tag_set)
  1617. return 0;
  1618. if (!CRYPTO_ccm128_tag(&cctx->ccm, ptr, (size_t)arg))
  1619. return 0;
  1620. cctx->tag_set = 0;
  1621. cctx->iv_set = 0;
  1622. cctx->len_set = 0;
  1623. return 1;
  1624. case EVP_CTRL_COPY:
  1625. {
  1626. EVP_CIPHER_CTX *out = ptr;
  1627. EVP_AES_CCM_CTX *cctx_out = out->cipher_data;
  1628. if (cctx->ccm.key) {
  1629. if (cctx->ccm.key != &cctx->ks)
  1630. return 0;
  1631. cctx_out->ccm.key = &cctx_out->ks;
  1632. }
  1633. return 1;
  1634. }
  1635. default:
  1636. return -1;
  1637. }
  1638. }
  1639. static int aes_ccm_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  1640. const unsigned char *iv, int enc)
  1641. {
  1642. EVP_AES_CCM_CTX *cctx = ctx->cipher_data;
  1643. if (!iv && !key)
  1644. return 1;
  1645. if (key)
  1646. do {
  1647. # ifdef HWAES_CAPABLE
  1648. if (HWAES_CAPABLE) {
  1649. HWAES_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks.ks);
  1650. CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
  1651. &cctx->ks, (block128_f) HWAES_encrypt);
  1652. cctx->str = NULL;
  1653. cctx->key_set = 1;
  1654. break;
  1655. } else
  1656. # endif
  1657. # ifdef VPAES_CAPABLE
  1658. if (VPAES_CAPABLE) {
  1659. vpaes_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks.ks);
  1660. CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
  1661. &cctx->ks, (block128_f) vpaes_encrypt);
  1662. cctx->str = NULL;
  1663. cctx->key_set = 1;
  1664. break;
  1665. }
  1666. # endif
  1667. AES_set_encrypt_key(key, ctx->key_len * 8, &cctx->ks.ks);
  1668. CRYPTO_ccm128_init(&cctx->ccm, cctx->M, cctx->L,
  1669. &cctx->ks, (block128_f) AES_encrypt);
  1670. cctx->str = NULL;
  1671. cctx->key_set = 1;
  1672. } while (0);
  1673. if (iv) {
  1674. memcpy(ctx->iv, iv, 15 - cctx->L);
  1675. cctx->iv_set = 1;
  1676. }
  1677. return 1;
  1678. }
  1679. static int aes_ccm_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1680. const unsigned char *in, size_t len)
  1681. {
  1682. EVP_AES_CCM_CTX *cctx = ctx->cipher_data;
  1683. CCM128_CONTEXT *ccm = &cctx->ccm;
  1684. /* If not set up, return error */
  1685. if (!cctx->iv_set && !cctx->key_set)
  1686. return -1;
  1687. if (!ctx->encrypt && !cctx->tag_set)
  1688. return -1;
  1689. if (!out) {
  1690. if (!in) {
  1691. if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len))
  1692. return -1;
  1693. cctx->len_set = 1;
  1694. return len;
  1695. }
  1696. /* If have AAD need message length */
  1697. if (!cctx->len_set && len)
  1698. return -1;
  1699. CRYPTO_ccm128_aad(ccm, in, len);
  1700. return len;
  1701. }
  1702. /* EVP_*Final() doesn't return any data */
  1703. if (!in)
  1704. return 0;
  1705. /* If not set length yet do it */
  1706. if (!cctx->len_set) {
  1707. if (CRYPTO_ccm128_setiv(ccm, ctx->iv, 15 - cctx->L, len))
  1708. return -1;
  1709. cctx->len_set = 1;
  1710. }
  1711. if (ctx->encrypt) {
  1712. if (cctx->str ? CRYPTO_ccm128_encrypt_ccm64(ccm, in, out, len,
  1713. cctx->str) :
  1714. CRYPTO_ccm128_encrypt(ccm, in, out, len))
  1715. return -1;
  1716. cctx->tag_set = 1;
  1717. return len;
  1718. } else {
  1719. int rv = -1;
  1720. if (cctx->str ? !CRYPTO_ccm128_decrypt_ccm64(ccm, in, out, len,
  1721. cctx->str) :
  1722. !CRYPTO_ccm128_decrypt(ccm, in, out, len)) {
  1723. unsigned char tag[16];
  1724. if (CRYPTO_ccm128_tag(ccm, tag, cctx->M)) {
  1725. if (!CRYPTO_memcmp(tag, ctx->buf, cctx->M))
  1726. rv = len;
  1727. }
  1728. }
  1729. if (rv == -1)
  1730. OPENSSL_cleanse(out, len);
  1731. cctx->iv_set = 0;
  1732. cctx->tag_set = 0;
  1733. cctx->len_set = 0;
  1734. return rv;
  1735. }
  1736. }
  1737. # define aes_ccm_cleanup NULL
  1738. BLOCK_CIPHER_custom(NID_aes, 128, 1, 12, ccm, CCM,
  1739. EVP_CIPH_FLAG_FIPS | CUSTOM_FLAGS)
  1740. BLOCK_CIPHER_custom(NID_aes, 192, 1, 12, ccm, CCM,
  1741. EVP_CIPH_FLAG_FIPS | CUSTOM_FLAGS)
  1742. BLOCK_CIPHER_custom(NID_aes, 256, 1, 12, ccm, CCM,
  1743. EVP_CIPH_FLAG_FIPS | CUSTOM_FLAGS)
  1744. #endif
  1745. typedef struct {
  1746. union {
  1747. double align;
  1748. AES_KEY ks;
  1749. } ks;
  1750. /* Indicates if IV has been set */
  1751. unsigned char *iv;
  1752. } EVP_AES_WRAP_CTX;
  1753. static int aes_wrap_init_key(EVP_CIPHER_CTX *ctx, const unsigned char *key,
  1754. const unsigned char *iv, int enc)
  1755. {
  1756. EVP_AES_WRAP_CTX *wctx = ctx->cipher_data;
  1757. if (!iv && !key)
  1758. return 1;
  1759. if (key) {
  1760. if (ctx->encrypt)
  1761. AES_set_encrypt_key(key, ctx->key_len * 8, &wctx->ks.ks);
  1762. else
  1763. AES_set_decrypt_key(key, ctx->key_len * 8, &wctx->ks.ks);
  1764. if (!iv)
  1765. wctx->iv = NULL;
  1766. }
  1767. if (iv) {
  1768. memcpy(ctx->iv, iv, 8);
  1769. wctx->iv = ctx->iv;
  1770. }
  1771. return 1;
  1772. }
  1773. static int aes_wrap_cipher(EVP_CIPHER_CTX *ctx, unsigned char *out,
  1774. const unsigned char *in, size_t inlen)
  1775. {
  1776. EVP_AES_WRAP_CTX *wctx = ctx->cipher_data;
  1777. size_t rv;
  1778. if (!in)
  1779. return 0;
  1780. if (inlen % 8)
  1781. return -1;
  1782. if (ctx->encrypt && inlen < 8)
  1783. return -1;
  1784. if (!ctx->encrypt && inlen < 16)
  1785. return -1;
  1786. if (!out) {
  1787. if (ctx->encrypt)
  1788. return inlen + 8;
  1789. else
  1790. return inlen - 8;
  1791. }
  1792. if (ctx->encrypt)
  1793. rv = CRYPTO_128_wrap(&wctx->ks.ks, wctx->iv, out, in, inlen,
  1794. (block128_f) AES_encrypt);
  1795. else
  1796. rv = CRYPTO_128_unwrap(&wctx->ks.ks, wctx->iv, out, in, inlen,
  1797. (block128_f) AES_decrypt);
  1798. return rv ? (int)rv : -1;
  1799. }
  1800. #define WRAP_FLAGS (EVP_CIPH_WRAP_MODE \
  1801. | EVP_CIPH_CUSTOM_IV | EVP_CIPH_FLAG_CUSTOM_CIPHER \
  1802. | EVP_CIPH_ALWAYS_CALL_INIT | EVP_CIPH_FLAG_DEFAULT_ASN1)
  1803. static const EVP_CIPHER aes_128_wrap = {
  1804. NID_id_aes128_wrap,
  1805. 8, 16, 8, WRAP_FLAGS,
  1806. aes_wrap_init_key, aes_wrap_cipher,
  1807. NULL,
  1808. sizeof(EVP_AES_WRAP_CTX),
  1809. NULL, NULL, NULL, NULL
  1810. };
  1811. const EVP_CIPHER *EVP_aes_128_wrap(void)
  1812. {
  1813. return &aes_128_wrap;
  1814. }
  1815. static const EVP_CIPHER aes_192_wrap = {
  1816. NID_id_aes192_wrap,
  1817. 8, 24, 8, WRAP_FLAGS,
  1818. aes_wrap_init_key, aes_wrap_cipher,
  1819. NULL,
  1820. sizeof(EVP_AES_WRAP_CTX),
  1821. NULL, NULL, NULL, NULL
  1822. };
  1823. const EVP_CIPHER *EVP_aes_192_wrap(void)
  1824. {
  1825. return &aes_192_wrap;
  1826. }
  1827. static const EVP_CIPHER aes_256_wrap = {
  1828. NID_id_aes256_wrap,
  1829. 8, 32, 8, WRAP_FLAGS,
  1830. aes_wrap_init_key, aes_wrap_cipher,
  1831. NULL,
  1832. sizeof(EVP_AES_WRAP_CTX),
  1833. NULL, NULL, NULL, NULL
  1834. };
  1835. const EVP_CIPHER *EVP_aes_256_wrap(void)
  1836. {
  1837. return &aes_256_wrap;
  1838. }