123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286 |
- .\" Automatically generated by Pod::Man 4.09 (Pod::Simple 3.35)
- .\"
- .\" Standard preamble:
- .\" ========================================================================
- .de Sp \" Vertical space (when we can't use .PP)
- .if t .sp .5v
- .if n .sp
- ..
- .de Vb \" Begin verbatim text
- .ft CW
- .nf
- .ne \\$1
- ..
- .de Ve \" End verbatim text
- .ft R
- .fi
- ..
- .\" Set up some character translations and predefined strings. \*(-- will
- .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
- .\" double quote, and \*(R" will give a right double quote. \*(C+ will
- .\" give a nicer C++. Capital omega is used to do unbreakable dashes and
- .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
- .\" nothing in troff, for use with C<>.
- .tr \(*W-
- .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
- .ie n \{\
- . ds -- \(*W-
- . ds PI pi
- . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
- . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
- . ds L" ""
- . ds R" ""
- . ds C` ""
- . ds C' ""
- 'br\}
- .el\{\
- . ds -- \|\(em\|
- . ds PI \(*p
- . ds L" ``
- . ds R" ''
- . ds C`
- . ds C'
- 'br\}
- .\"
- .\" Escape single quotes in literal strings from groff's Unicode transform.
- .ie \n(.g .ds Aq \(aq
- .el .ds Aq '
- .\"
- .\" If the F register is >0, we'll generate index entries on stderr for
- .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
- .\" entries marked with X<> in POD. Of course, you'll have to process the
- .\" output yourself in some meaningful fashion.
- .\"
- .\" Avoid warning from groff about undefined register 'F'.
- .de IX
- ..
- .if !\nF .nr F 0
- .if \nF>0 \{\
- . de IX
- . tm Index:\\$1\t\\n%\t"\\$2"
- ..
- . if !\nF==2 \{\
- . nr % 0
- . nr F 2
- . \}
- .\}
- .\"
- .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
- .\" Fear. Run. Save yourself. No user-serviceable parts.
- . \" fudge factors for nroff and troff
- .if n \{\
- . ds #H 0
- . ds #V .8m
- . ds #F .3m
- . ds #[ \f1
- . ds #] \fP
- .\}
- .if t \{\
- . ds #H ((1u-(\\\\n(.fu%2u))*.13m)
- . ds #V .6m
- . ds #F 0
- . ds #[ \&
- . ds #] \&
- .\}
- . \" simple accents for nroff and troff
- .if n \{\
- . ds ' \&
- . ds ` \&
- . ds ^ \&
- . ds , \&
- . ds ~ ~
- . ds /
- .\}
- .if t \{\
- . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
- . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
- . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
- . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
- . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
- . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
- .\}
- . \" troff and (daisy-wheel) nroff accents
- .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
- .ds 8 \h'\*(#H'\(*b\h'-\*(#H'
- .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
- .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
- .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
- .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
- .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
- .ds ae a\h'-(\w'a'u*4/10)'e
- .ds Ae A\h'-(\w'A'u*4/10)'E
- . \" corrections for vroff
- .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
- .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
- . \" for low resolution devices (crt and lpr)
- .if \n(.H>23 .if \n(.V>19 \
- \{\
- . ds : e
- . ds 8 ss
- . ds o a
- . ds d- d\h'-1'\(ga
- . ds D- D\h'-1'\(hy
- . ds th \o'bp'
- . ds Th \o'LP'
- . ds ae ae
- . ds Ae AE
- .\}
- .rm #[ #] #H #V #F C
- .\" ========================================================================
- .\"
- .IX Title "rand 3"
- .TH rand 3 "2019-09-12" "1.0.2g" "OpenSSL"
- .\" For nroff, turn off justification. Always turn off hyphenation; it makes
- .\" way too many mistakes in technical documents.
- .if n .ad l
- .nh
- .SH "NAME"
- rand \- pseudo\-random number generator
- .SH "SYNOPSIS"
- .IX Header "SYNOPSIS"
- .Vb 1
- \& #include <openssl/rand.h>
- \&
- \& int RAND_set_rand_engine(ENGINE *engine);
- \&
- \& int RAND_bytes(unsigned char *buf, int num);
- \& int RAND_pseudo_bytes(unsigned char *buf, int num);
- \&
- \& void RAND_seed(const void *buf, int num);
- \& void RAND_add(const void *buf, int num, int entropy);
- \& int RAND_status(void);
- \&
- \& int RAND_load_file(const char *file, long max_bytes);
- \& int RAND_write_file(const char *file);
- \& const char *RAND_file_name(char *file, size_t num);
- \&
- \& int RAND_egd(const char *path);
- \&
- \& void RAND_set_rand_method(const RAND_METHOD *meth);
- \& const RAND_METHOD *RAND_get_rand_method(void);
- \& RAND_METHOD *RAND_SSLeay(void);
- \&
- \& void RAND_cleanup(void);
- \&
- \& /* For Win32 only */
- \& void RAND_screen(void);
- \& int RAND_event(UINT, WPARAM, LPARAM);
- .Ve
- .SH "DESCRIPTION"
- .IX Header "DESCRIPTION"
- Since the introduction of the \s-1ENGINE API,\s0 the recommended way of controlling
- default implementations is by using the \s-1ENGINE API\s0 functions. The default
- \&\fB\s-1RAND_METHOD\s0\fR, as set by \fIRAND_set_rand_method()\fR and returned by
- \&\fIRAND_get_rand_method()\fR, is only used if no \s-1ENGINE\s0 has been set as the default
- \&\*(L"rand\*(R" implementation. Hence, these two functions are no longer the recommended
- way to control defaults.
- .PP
- If an alternative \fB\s-1RAND_METHOD\s0\fR implementation is being used (either set
- directly or as provided by an \s-1ENGINE\s0 module), then it is entirely responsible
- for the generation and management of a cryptographically secure \s-1PRNG\s0 stream. The
- mechanisms described below relate solely to the software \s-1PRNG\s0 implementation
- built in to OpenSSL and used by default.
- .PP
- These functions implement a cryptographically secure pseudo-random
- number generator (\s-1PRNG\s0). It is used by other library functions for
- example to generate random keys, and applications can use it when they
- need randomness.
- .PP
- A cryptographic \s-1PRNG\s0 must be seeded with unpredictable data such as
- mouse movements or keys pressed at random by the user. This is
- described in \fIRAND_add\fR\|(3). Its state can be saved in a seed file
- (see \fIRAND_load_file\fR\|(3)) to avoid having to go through the
- seeding process whenever the application is started.
- .PP
- \&\fIRAND_bytes\fR\|(3) describes how to obtain random data from the
- \&\s-1PRNG.\s0
- .SH "INTERNALS"
- .IX Header "INTERNALS"
- The \fIRAND_SSLeay()\fR method implements a \s-1PRNG\s0 based on a cryptographic
- hash function.
- .PP
- The following description of its design is based on the SSLeay
- documentation:
- .PP
- First up I will state the things I believe I need for a good \s-1RNG.\s0
- .IP "1." 4
- A good hashing algorithm to mix things up and to convert the \s-1RNG\s0 'state'
- to random numbers.
- .IP "2." 4
- An initial source of random 'state'.
- .IP "3." 4
- The state should be very large. If the \s-1RNG\s0 is being used to generate
- 4096 bit \s-1RSA\s0 keys, 2 2048 bit random strings are required (at a minimum).
- If your \s-1RNG\s0 state only has 128 bits, you are obviously limiting the
- search space to 128 bits, not 2048. I'm probably getting a little
- carried away on this last point but it does indicate that it may not be
- a bad idea to keep quite a lot of \s-1RNG\s0 state. It should be easier to
- break a cipher than guess the \s-1RNG\s0 seed data.
- .IP "4." 4
- Any \s-1RNG\s0 seed data should influence all subsequent random numbers
- generated. This implies that any random seed data entered will have
- an influence on all subsequent random numbers generated.
- .IP "5." 4
- When using data to seed the \s-1RNG\s0 state, the data used should not be
- extractable from the \s-1RNG\s0 state. I believe this should be a
- requirement because one possible source of 'secret' semi random
- data would be a private key or a password. This data must
- not be disclosed by either subsequent random numbers or a
- \&'core' dump left by a program crash.
- .IP "6." 4
- Given the same initial 'state', 2 systems should deviate in their \s-1RNG\s0 state
- (and hence the random numbers generated) over time if at all possible.
- .IP "7." 4
- Given the random number output stream, it should not be possible to determine
- the \s-1RNG\s0 state or the next random number.
- .PP
- The algorithm is as follows.
- .PP
- There is global state made up of a 1023 byte buffer (the 'state'), a
- working hash value ('md'), and a counter ('count').
- .PP
- Whenever seed data is added, it is inserted into the 'state' as
- follows.
- .PP
- The input is chopped up into units of 20 bytes (or less for
- the last block). Each of these blocks is run through the hash
- function as follows: The data passed to the hash function
- is the current 'md', the same number of bytes from the 'state'
- (the location determined by in incremented looping index) as
- the current 'block', the new key data 'block', and 'count'
- (which is incremented after each use).
- The result of this is kept in 'md' and also xored into the
- \&'state' at the same locations that were used as input into the
- hash function. I
- believe this system addresses points 1 (hash function; currently
- \&\s-1SHA\-1\s0), 3 (the 'state'), 4 (via the 'md'), 5 (by the use of a hash
- function and xor).
- .PP
- When bytes are extracted from the \s-1RNG,\s0 the following process is used.
- For each group of 10 bytes (or less), we do the following:
- .PP
- Input into the hash function the local 'md' (which is initialized from
- the global 'md' before any bytes are generated), the bytes that are to
- be overwritten by the random bytes, and bytes from the 'state'
- (incrementing looping index). From this digest output (which is kept
- in 'md'), the top (up to) 10 bytes are returned to the caller and the
- bottom 10 bytes are xored into the 'state'.
- .PP
- Finally, after we have finished 'num' random bytes for the caller,
- \&'count' (which is incremented) and the local and global 'md' are fed
- into the hash function and the results are kept in the global 'md'.
- .PP
- I believe the above addressed points 1 (use of \s-1SHA\-1\s0), 6 (by hashing
- into the 'state' the 'old' data from the caller that is about to be
- overwritten) and 7 (by not using the 10 bytes given to the caller to
- update the 'state', but they are used to update 'md').
- .PP
- So of the points raised, only 2 is not addressed (but see
- \&\fIRAND_add\fR\|(3)).
- .SH "SEE ALSO"
- .IX Header "SEE ALSO"
- \&\fIBN_rand\fR\|(3), \fIRAND_add\fR\|(3),
- \&\fIRAND_load_file\fR\|(3), \fIRAND_egd\fR\|(3),
- \&\fIRAND_bytes\fR\|(3),
- \&\fIRAND_set_rand_method\fR\|(3),
- \&\fIRAND_cleanup\fR\|(3)
|