123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199 |
- .\" Automatically generated by Pod::Man 4.09 (Pod::Simple 3.35)
- .\"
- .\" Standard preamble:
- .\" ========================================================================
- .de Sp \" Vertical space (when we can't use .PP)
- .if t .sp .5v
- .if n .sp
- ..
- .de Vb \" Begin verbatim text
- .ft CW
- .nf
- .ne \\$1
- ..
- .de Ve \" End verbatim text
- .ft R
- .fi
- ..
- .\" Set up some character translations and predefined strings. \*(-- will
- .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
- .\" double quote, and \*(R" will give a right double quote. \*(C+ will
- .\" give a nicer C++. Capital omega is used to do unbreakable dashes and
- .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
- .\" nothing in troff, for use with C<>.
- .tr \(*W-
- .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
- .ie n \{\
- . ds -- \(*W-
- . ds PI pi
- . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
- . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
- . ds L" ""
- . ds R" ""
- . ds C` ""
- . ds C' ""
- 'br\}
- .el\{\
- . ds -- \|\(em\|
- . ds PI \(*p
- . ds L" ``
- . ds R" ''
- . ds C`
- . ds C'
- 'br\}
- .\"
- .\" Escape single quotes in literal strings from groff's Unicode transform.
- .ie \n(.g .ds Aq \(aq
- .el .ds Aq '
- .\"
- .\" If the F register is >0, we'll generate index entries on stderr for
- .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
- .\" entries marked with X<> in POD. Of course, you'll have to process the
- .\" output yourself in some meaningful fashion.
- .\"
- .\" Avoid warning from groff about undefined register 'F'.
- .de IX
- ..
- .if !\nF .nr F 0
- .if \nF>0 \{\
- . de IX
- . tm Index:\\$1\t\\n%\t"\\$2"
- ..
- . if !\nF==2 \{\
- . nr % 0
- . nr F 2
- . \}
- .\}
- .\"
- .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
- .\" Fear. Run. Save yourself. No user-serviceable parts.
- . \" fudge factors for nroff and troff
- .if n \{\
- . ds #H 0
- . ds #V .8m
- . ds #F .3m
- . ds #[ \f1
- . ds #] \fP
- .\}
- .if t \{\
- . ds #H ((1u-(\\\\n(.fu%2u))*.13m)
- . ds #V .6m
- . ds #F 0
- . ds #[ \&
- . ds #] \&
- .\}
- . \" simple accents for nroff and troff
- .if n \{\
- . ds ' \&
- . ds ` \&
- . ds ^ \&
- . ds , \&
- . ds ~ ~
- . ds /
- .\}
- .if t \{\
- . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
- . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
- . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
- . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
- . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
- . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
- .\}
- . \" troff and (daisy-wheel) nroff accents
- .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
- .ds 8 \h'\*(#H'\(*b\h'-\*(#H'
- .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
- .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
- .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
- .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
- .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
- .ds ae a\h'-(\w'a'u*4/10)'e
- .ds Ae A\h'-(\w'A'u*4/10)'E
- . \" corrections for vroff
- .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
- .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
- . \" for low resolution devices (crt and lpr)
- .if \n(.H>23 .if \n(.V>19 \
- \{\
- . ds : e
- . ds 8 ss
- . ds o a
- . ds d- d\h'-1'\(ga
- . ds D- D\h'-1'\(hy
- . ds th \o'bp'
- . ds Th \o'LP'
- . ds ae ae
- . ds Ae AE
- .\}
- .rm #[ #] #H #V #F C
- .\" ========================================================================
- .\"
- .IX Title "EVP_BytesToKey 3"
- .TH EVP_BytesToKey 3 "2019-09-12" "1.0.2g" "OpenSSL"
- .\" For nroff, turn off justification. Always turn off hyphenation; it makes
- .\" way too many mistakes in technical documents.
- .if n .ad l
- .nh
- .SH "NAME"
- EVP_BytesToKey \- password based encryption routine
- .SH "SYNOPSIS"
- .IX Header "SYNOPSIS"
- .Vb 1
- \& #include <openssl/evp.h>
- \&
- \& int EVP_BytesToKey(const EVP_CIPHER *type,const EVP_MD *md,
- \& const unsigned char *salt,
- \& const unsigned char *data, int datal, int count,
- \& unsigned char *key,unsigned char *iv);
- .Ve
- .SH "DESCRIPTION"
- .IX Header "DESCRIPTION"
- \&\fIEVP_BytesToKey()\fR derives a key and \s-1IV\s0 from various parameters. \fBtype\fR is
- the cipher to derive the key and \s-1IV\s0 for. \fBmd\fR is the message digest to use.
- The \fBsalt\fR parameter is used as a salt in the derivation: it should point to
- an 8 byte buffer or \s-1NULL\s0 if no salt is used. \fBdata\fR is a buffer containing
- \&\fBdatal\fR bytes which is used to derive the keying data. \fBcount\fR is the
- iteration count to use. The derived key and \s-1IV\s0 will be written to \fBkey\fR
- and \fBiv\fR respectively.
- .SH "NOTES"
- .IX Header "NOTES"
- A typical application of this function is to derive keying material for an
- encryption algorithm from a password in the \fBdata\fR parameter.
- .PP
- Increasing the \fBcount\fR parameter slows down the algorithm which makes it
- harder for an attacker to peform a brute force attack using a large number
- of candidate passwords.
- .PP
- If the total key and \s-1IV\s0 length is less than the digest length and
- \&\fB\s-1MD5\s0\fR is used then the derivation algorithm is compatible with PKCS#5 v1.5
- otherwise a non standard extension is used to derive the extra data.
- .PP
- Newer applications should use a more modern algorithm such as \s-1PBKDF2\s0 as
- defined in PKCS#5v2.1 and provided by \s-1PKCS5_PBKDF2_HMAC.\s0
- .SH "KEY DERIVATION ALGORITHM"
- .IX Header "KEY DERIVATION ALGORITHM"
- The key and \s-1IV\s0 is derived by concatenating D_1, D_2, etc until
- enough data is available for the key and \s-1IV.\s0 D_i is defined as:
- .PP
- .Vb 1
- \& D_i = HASH^count(D_(i\-1) || data || salt)
- .Ve
- .PP
- where || denotes concatentaion, D_0 is empty, \s-1HASH\s0 is the digest
- algorithm in use, HASH^1(data) is simply \s-1HASH\s0(data), HASH^2(data)
- is \s-1HASH\s0(\s-1HASH\s0(data)) and so on.
- .PP
- The initial bytes are used for the key and the subsequent bytes for
- the \s-1IV.\s0
- .SH "RETURN VALUES"
- .IX Header "RETURN VALUES"
- If \fBdata\fR is \s-1NULL,\s0 then \fIEVP_BytesToKey()\fR returns the number of bytes
- needed to store the derived key.
- Otherwise, \fIEVP_BytesToKey()\fR returns the size of the derived key in bytes,
- or 0 on error.
- .SH "SEE ALSO"
- .IX Header "SEE ALSO"
- \&\fIevp\fR\|(3), \fIrand\fR\|(3),
- \&\fIEVP_EncryptInit\fR\|(3)
- .SH "HISTORY"
- .IX Header "HISTORY"
|