pem_lib.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865
  1. /* crypto/pem/pem_lib.c */
  2. /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
  3. * All rights reserved.
  4. *
  5. * This package is an SSL implementation written
  6. * by Eric Young (eay@cryptsoft.com).
  7. * The implementation was written so as to conform with Netscapes SSL.
  8. *
  9. * This library is free for commercial and non-commercial use as long as
  10. * the following conditions are aheared to. The following conditions
  11. * apply to all code found in this distribution, be it the RC4, RSA,
  12. * lhash, DES, etc., code; not just the SSL code. The SSL documentation
  13. * included with this distribution is covered by the same copyright terms
  14. * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  15. *
  16. * Copyright remains Eric Young's, and as such any Copyright notices in
  17. * the code are not to be removed.
  18. * If this package is used in a product, Eric Young should be given attribution
  19. * as the author of the parts of the library used.
  20. * This can be in the form of a textual message at program startup or
  21. * in documentation (online or textual) provided with the package.
  22. *
  23. * Redistribution and use in source and binary forms, with or without
  24. * modification, are permitted provided that the following conditions
  25. * are met:
  26. * 1. Redistributions of source code must retain the copyright
  27. * notice, this list of conditions and the following disclaimer.
  28. * 2. Redistributions in binary form must reproduce the above copyright
  29. * notice, this list of conditions and the following disclaimer in the
  30. * documentation and/or other materials provided with the distribution.
  31. * 3. All advertising materials mentioning features or use of this software
  32. * must display the following acknowledgement:
  33. * "This product includes cryptographic software written by
  34. * Eric Young (eay@cryptsoft.com)"
  35. * The word 'cryptographic' can be left out if the rouines from the library
  36. * being used are not cryptographic related :-).
  37. * 4. If you include any Windows specific code (or a derivative thereof) from
  38. * the apps directory (application code) you must include an acknowledgement:
  39. * "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  40. *
  41. * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  42. * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  43. * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  44. * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  45. * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  46. * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  47. * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  48. * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  49. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  50. * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  51. * SUCH DAMAGE.
  52. *
  53. * The licence and distribution terms for any publically available version or
  54. * derivative of this code cannot be changed. i.e. this code cannot simply be
  55. * copied and put under another distribution licence
  56. * [including the GNU Public Licence.]
  57. */
  58. #include <stdio.h>
  59. #include <ctype.h>
  60. #include "cryptlib.h"
  61. #include <openssl/buffer.h>
  62. #include <openssl/objects.h>
  63. #include <openssl/evp.h>
  64. #include <openssl/rand.h>
  65. #include <openssl/x509.h>
  66. #include <openssl/pem.h>
  67. #include <openssl/pkcs12.h>
  68. #include "asn1_locl.h"
  69. #ifndef OPENSSL_NO_DES
  70. # include <openssl/des.h>
  71. #endif
  72. #ifndef OPENSSL_NO_ENGINE
  73. # include <openssl/engine.h>
  74. #endif
  75. const char PEM_version[] = "PEM" OPENSSL_VERSION_PTEXT;
  76. #define MIN_LENGTH 4
  77. static int load_iv(char **fromp, unsigned char *to, int num);
  78. static int check_pem(const char *nm, const char *name);
  79. int pem_check_suffix(const char *pem_str, const char *suffix);
  80. int PEM_def_callback(char *buf, int num, int w, void *key)
  81. {
  82. #ifdef OPENSSL_NO_FP_API
  83. /*
  84. * We should not ever call the default callback routine from windows.
  85. */
  86. PEMerr(PEM_F_PEM_DEF_CALLBACK, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
  87. return (-1);
  88. #else
  89. int i, j;
  90. const char *prompt;
  91. if (key) {
  92. i = strlen(key);
  93. i = (i > num) ? num : i;
  94. memcpy(buf, key, i);
  95. return (i);
  96. }
  97. prompt = EVP_get_pw_prompt();
  98. if (prompt == NULL)
  99. prompt = "Enter PEM pass phrase:";
  100. for (;;) {
  101. i = EVP_read_pw_string_min(buf, MIN_LENGTH, num, prompt, w);
  102. if (i != 0) {
  103. PEMerr(PEM_F_PEM_DEF_CALLBACK, PEM_R_PROBLEMS_GETTING_PASSWORD);
  104. memset(buf, 0, (unsigned int)num);
  105. return (-1);
  106. }
  107. j = strlen(buf);
  108. if (j < MIN_LENGTH) {
  109. fprintf(stderr,
  110. "phrase is too short, needs to be at least %d chars\n",
  111. MIN_LENGTH);
  112. } else
  113. break;
  114. }
  115. return (j);
  116. #endif
  117. }
  118. void PEM_proc_type(char *buf, int type)
  119. {
  120. const char *str;
  121. if (type == PEM_TYPE_ENCRYPTED)
  122. str = "ENCRYPTED";
  123. else if (type == PEM_TYPE_MIC_CLEAR)
  124. str = "MIC-CLEAR";
  125. else if (type == PEM_TYPE_MIC_ONLY)
  126. str = "MIC-ONLY";
  127. else
  128. str = "BAD-TYPE";
  129. BUF_strlcat(buf, "Proc-Type: 4,", PEM_BUFSIZE);
  130. BUF_strlcat(buf, str, PEM_BUFSIZE);
  131. BUF_strlcat(buf, "\n", PEM_BUFSIZE);
  132. }
  133. void PEM_dek_info(char *buf, const char *type, int len, char *str)
  134. {
  135. static const unsigned char map[17] = "0123456789ABCDEF";
  136. long i;
  137. int j;
  138. BUF_strlcat(buf, "DEK-Info: ", PEM_BUFSIZE);
  139. BUF_strlcat(buf, type, PEM_BUFSIZE);
  140. BUF_strlcat(buf, ",", PEM_BUFSIZE);
  141. j = strlen(buf);
  142. if (j + (len * 2) + 1 > PEM_BUFSIZE)
  143. return;
  144. for (i = 0; i < len; i++) {
  145. buf[j + i * 2] = map[(str[i] >> 4) & 0x0f];
  146. buf[j + i * 2 + 1] = map[(str[i]) & 0x0f];
  147. }
  148. buf[j + i * 2] = '\n';
  149. buf[j + i * 2 + 1] = '\0';
  150. }
  151. #ifndef OPENSSL_NO_FP_API
  152. void *PEM_ASN1_read(d2i_of_void *d2i, const char *name, FILE *fp, void **x,
  153. pem_password_cb *cb, void *u)
  154. {
  155. BIO *b;
  156. void *ret;
  157. if ((b = BIO_new(BIO_s_file())) == NULL) {
  158. PEMerr(PEM_F_PEM_ASN1_READ, ERR_R_BUF_LIB);
  159. return (0);
  160. }
  161. BIO_set_fp(b, fp, BIO_NOCLOSE);
  162. ret = PEM_ASN1_read_bio(d2i, name, b, x, cb, u);
  163. BIO_free(b);
  164. return (ret);
  165. }
  166. #endif
  167. static int check_pem(const char *nm, const char *name)
  168. {
  169. /* Normal matching nm and name */
  170. if (!strcmp(nm, name))
  171. return 1;
  172. /* Make PEM_STRING_EVP_PKEY match any private key */
  173. if (!strcmp(name, PEM_STRING_EVP_PKEY)) {
  174. int slen;
  175. const EVP_PKEY_ASN1_METHOD *ameth;
  176. if (!strcmp(nm, PEM_STRING_PKCS8))
  177. return 1;
  178. if (!strcmp(nm, PEM_STRING_PKCS8INF))
  179. return 1;
  180. slen = pem_check_suffix(nm, "PRIVATE KEY");
  181. if (slen > 0) {
  182. /*
  183. * NB: ENGINE implementations wont contain a deprecated old
  184. * private key decode function so don't look for them.
  185. */
  186. ameth = EVP_PKEY_asn1_find_str(NULL, nm, slen);
  187. if (ameth && ameth->old_priv_decode)
  188. return 1;
  189. }
  190. return 0;
  191. }
  192. if (!strcmp(name, PEM_STRING_PARAMETERS)) {
  193. int slen;
  194. const EVP_PKEY_ASN1_METHOD *ameth;
  195. slen = pem_check_suffix(nm, "PARAMETERS");
  196. if (slen > 0) {
  197. ENGINE *e;
  198. ameth = EVP_PKEY_asn1_find_str(&e, nm, slen);
  199. if (ameth) {
  200. int r;
  201. if (ameth->param_decode)
  202. r = 1;
  203. else
  204. r = 0;
  205. #ifndef OPENSSL_NO_ENGINE
  206. if (e)
  207. ENGINE_finish(e);
  208. #endif
  209. return r;
  210. }
  211. }
  212. return 0;
  213. }
  214. /* If reading DH parameters handle X9.42 DH format too */
  215. if (!strcmp(nm, PEM_STRING_DHXPARAMS) &&
  216. !strcmp(name, PEM_STRING_DHPARAMS))
  217. return 1;
  218. /* Permit older strings */
  219. if (!strcmp(nm, PEM_STRING_X509_OLD) && !strcmp(name, PEM_STRING_X509))
  220. return 1;
  221. if (!strcmp(nm, PEM_STRING_X509_REQ_OLD) &&
  222. !strcmp(name, PEM_STRING_X509_REQ))
  223. return 1;
  224. /* Allow normal certs to be read as trusted certs */
  225. if (!strcmp(nm, PEM_STRING_X509) &&
  226. !strcmp(name, PEM_STRING_X509_TRUSTED))
  227. return 1;
  228. if (!strcmp(nm, PEM_STRING_X509_OLD) &&
  229. !strcmp(name, PEM_STRING_X509_TRUSTED))
  230. return 1;
  231. /* Some CAs use PKCS#7 with CERTIFICATE headers */
  232. if (!strcmp(nm, PEM_STRING_X509) && !strcmp(name, PEM_STRING_PKCS7))
  233. return 1;
  234. if (!strcmp(nm, PEM_STRING_PKCS7_SIGNED) &&
  235. !strcmp(name, PEM_STRING_PKCS7))
  236. return 1;
  237. #ifndef OPENSSL_NO_CMS
  238. if (!strcmp(nm, PEM_STRING_X509) && !strcmp(name, PEM_STRING_CMS))
  239. return 1;
  240. /* Allow CMS to be read from PKCS#7 headers */
  241. if (!strcmp(nm, PEM_STRING_PKCS7) && !strcmp(name, PEM_STRING_CMS))
  242. return 1;
  243. #endif
  244. return 0;
  245. }
  246. int PEM_bytes_read_bio(unsigned char **pdata, long *plen, char **pnm,
  247. const char *name, BIO *bp, pem_password_cb *cb,
  248. void *u)
  249. {
  250. EVP_CIPHER_INFO cipher;
  251. char *nm = NULL, *header = NULL;
  252. unsigned char *data = NULL;
  253. long len;
  254. int ret = 0;
  255. for (;;) {
  256. if (!PEM_read_bio(bp, &nm, &header, &data, &len)) {
  257. if (ERR_GET_REASON(ERR_peek_error()) == PEM_R_NO_START_LINE)
  258. ERR_add_error_data(2, "Expecting: ", name);
  259. return 0;
  260. }
  261. if (check_pem(nm, name))
  262. break;
  263. OPENSSL_free(nm);
  264. OPENSSL_free(header);
  265. OPENSSL_free(data);
  266. }
  267. if (!PEM_get_EVP_CIPHER_INFO(header, &cipher))
  268. goto err;
  269. if (!PEM_do_header(&cipher, data, &len, cb, u))
  270. goto err;
  271. *pdata = data;
  272. *plen = len;
  273. if (pnm)
  274. *pnm = nm;
  275. ret = 1;
  276. err:
  277. if (!ret || !pnm)
  278. OPENSSL_free(nm);
  279. OPENSSL_free(header);
  280. if (!ret)
  281. OPENSSL_free(data);
  282. return ret;
  283. }
  284. #ifndef OPENSSL_NO_FP_API
  285. int PEM_ASN1_write(i2d_of_void *i2d, const char *name, FILE *fp,
  286. void *x, const EVP_CIPHER *enc, unsigned char *kstr,
  287. int klen, pem_password_cb *callback, void *u)
  288. {
  289. BIO *b;
  290. int ret;
  291. if ((b = BIO_new(BIO_s_file())) == NULL) {
  292. PEMerr(PEM_F_PEM_ASN1_WRITE, ERR_R_BUF_LIB);
  293. return (0);
  294. }
  295. BIO_set_fp(b, fp, BIO_NOCLOSE);
  296. ret = PEM_ASN1_write_bio(i2d, name, b, x, enc, kstr, klen, callback, u);
  297. BIO_free(b);
  298. return (ret);
  299. }
  300. #endif
  301. int PEM_ASN1_write_bio(i2d_of_void *i2d, const char *name, BIO *bp,
  302. void *x, const EVP_CIPHER *enc, unsigned char *kstr,
  303. int klen, pem_password_cb *callback, void *u)
  304. {
  305. EVP_CIPHER_CTX ctx;
  306. int dsize = 0, i, j, ret = 0;
  307. unsigned char *p, *data = NULL;
  308. const char *objstr = NULL;
  309. char buf[PEM_BUFSIZE];
  310. unsigned char key[EVP_MAX_KEY_LENGTH];
  311. unsigned char iv[EVP_MAX_IV_LENGTH];
  312. if (enc != NULL) {
  313. objstr = OBJ_nid2sn(EVP_CIPHER_nid(enc));
  314. if (objstr == NULL) {
  315. PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, PEM_R_UNSUPPORTED_CIPHER);
  316. goto err;
  317. }
  318. }
  319. if ((dsize = i2d(x, NULL)) < 0) {
  320. PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, ERR_R_ASN1_LIB);
  321. dsize = 0;
  322. goto err;
  323. }
  324. /* dzise + 8 bytes are needed */
  325. /* actually it needs the cipher block size extra... */
  326. data = (unsigned char *)OPENSSL_malloc((unsigned int)dsize + 20);
  327. if (data == NULL) {
  328. PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, ERR_R_MALLOC_FAILURE);
  329. goto err;
  330. }
  331. p = data;
  332. i = i2d(x, &p);
  333. if (enc != NULL) {
  334. if (kstr == NULL) {
  335. if (callback == NULL)
  336. klen = PEM_def_callback(buf, PEM_BUFSIZE, 1, u);
  337. else
  338. klen = (*callback) (buf, PEM_BUFSIZE, 1, u);
  339. if (klen <= 0) {
  340. PEMerr(PEM_F_PEM_ASN1_WRITE_BIO, PEM_R_READ_KEY);
  341. goto err;
  342. }
  343. #ifdef CHARSET_EBCDIC
  344. /* Convert the pass phrase from EBCDIC */
  345. ebcdic2ascii(buf, buf, klen);
  346. #endif
  347. kstr = (unsigned char *)buf;
  348. }
  349. RAND_add(data, i, 0); /* put in the RSA key. */
  350. OPENSSL_assert(enc->iv_len <= (int)sizeof(iv));
  351. if (RAND_pseudo_bytes(iv, enc->iv_len) < 0) /* Generate a salt */
  352. goto err;
  353. /*
  354. * The 'iv' is used as the iv and as a salt. It is NOT taken from
  355. * the BytesToKey function
  356. */
  357. if (!EVP_BytesToKey(enc, EVP_md5(), iv, kstr, klen, 1, key, NULL))
  358. goto err;
  359. if (kstr == (unsigned char *)buf)
  360. OPENSSL_cleanse(buf, PEM_BUFSIZE);
  361. OPENSSL_assert(strlen(objstr) + 23 + 2 * enc->iv_len + 13 <=
  362. sizeof buf);
  363. buf[0] = '\0';
  364. PEM_proc_type(buf, PEM_TYPE_ENCRYPTED);
  365. PEM_dek_info(buf, objstr, enc->iv_len, (char *)iv);
  366. /* k=strlen(buf); */
  367. EVP_CIPHER_CTX_init(&ctx);
  368. ret = 1;
  369. if (!EVP_EncryptInit_ex(&ctx, enc, NULL, key, iv)
  370. || !EVP_EncryptUpdate(&ctx, data, &j, data, i)
  371. || !EVP_EncryptFinal_ex(&ctx, &(data[j]), &i))
  372. ret = 0;
  373. EVP_CIPHER_CTX_cleanup(&ctx);
  374. if (ret == 0)
  375. goto err;
  376. i += j;
  377. } else {
  378. ret = 1;
  379. buf[0] = '\0';
  380. }
  381. i = PEM_write_bio(bp, name, buf, data, i);
  382. if (i <= 0)
  383. ret = 0;
  384. err:
  385. OPENSSL_cleanse(key, sizeof(key));
  386. OPENSSL_cleanse(iv, sizeof(iv));
  387. OPENSSL_cleanse((char *)&ctx, sizeof(ctx));
  388. OPENSSL_cleanse(buf, PEM_BUFSIZE);
  389. if (data != NULL) {
  390. OPENSSL_cleanse(data, (unsigned int)dsize);
  391. OPENSSL_free(data);
  392. }
  393. return (ret);
  394. }
  395. int PEM_do_header(EVP_CIPHER_INFO *cipher, unsigned char *data, long *plen,
  396. pem_password_cb *callback, void *u)
  397. {
  398. int i = 0, j, o, klen;
  399. long len;
  400. EVP_CIPHER_CTX ctx;
  401. unsigned char key[EVP_MAX_KEY_LENGTH];
  402. char buf[PEM_BUFSIZE];
  403. len = *plen;
  404. if (cipher->cipher == NULL)
  405. return (1);
  406. if (callback == NULL)
  407. klen = PEM_def_callback(buf, PEM_BUFSIZE, 0, u);
  408. else
  409. klen = callback(buf, PEM_BUFSIZE, 0, u);
  410. if (klen <= 0) {
  411. PEMerr(PEM_F_PEM_DO_HEADER, PEM_R_BAD_PASSWORD_READ);
  412. return (0);
  413. }
  414. #ifdef CHARSET_EBCDIC
  415. /* Convert the pass phrase from EBCDIC */
  416. ebcdic2ascii(buf, buf, klen);
  417. #endif
  418. if (!EVP_BytesToKey(cipher->cipher, EVP_md5(), &(cipher->iv[0]),
  419. (unsigned char *)buf, klen, 1, key, NULL))
  420. return 0;
  421. j = (int)len;
  422. EVP_CIPHER_CTX_init(&ctx);
  423. o = EVP_DecryptInit_ex(&ctx, cipher->cipher, NULL, key, &(cipher->iv[0]));
  424. if (o)
  425. o = EVP_DecryptUpdate(&ctx, data, &i, data, j);
  426. if (o)
  427. o = EVP_DecryptFinal_ex(&ctx, &(data[i]), &j);
  428. EVP_CIPHER_CTX_cleanup(&ctx);
  429. OPENSSL_cleanse((char *)buf, sizeof(buf));
  430. OPENSSL_cleanse((char *)key, sizeof(key));
  431. if (o)
  432. j += i;
  433. else {
  434. PEMerr(PEM_F_PEM_DO_HEADER, PEM_R_BAD_DECRYPT);
  435. return (0);
  436. }
  437. *plen = j;
  438. return (1);
  439. }
  440. int PEM_get_EVP_CIPHER_INFO(char *header, EVP_CIPHER_INFO *cipher)
  441. {
  442. const EVP_CIPHER *enc = NULL;
  443. char *p, c;
  444. char **header_pp = &header;
  445. cipher->cipher = NULL;
  446. if ((header == NULL) || (*header == '\0') || (*header == '\n'))
  447. return (1);
  448. if (strncmp(header, "Proc-Type: ", 11) != 0) {
  449. PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_PROC_TYPE);
  450. return (0);
  451. }
  452. header += 11;
  453. if (*header != '4')
  454. return (0);
  455. header++;
  456. if (*header != ',')
  457. return (0);
  458. header++;
  459. if (strncmp(header, "ENCRYPTED", 9) != 0) {
  460. PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_ENCRYPTED);
  461. return (0);
  462. }
  463. for (; (*header != '\n') && (*header != '\0'); header++) ;
  464. if (*header == '\0') {
  465. PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_SHORT_HEADER);
  466. return (0);
  467. }
  468. header++;
  469. if (strncmp(header, "DEK-Info: ", 10) != 0) {
  470. PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_NOT_DEK_INFO);
  471. return (0);
  472. }
  473. header += 10;
  474. p = header;
  475. for (;;) {
  476. c = *header;
  477. #ifndef CHARSET_EBCDIC
  478. if (!(((c >= 'A') && (c <= 'Z')) || (c == '-') ||
  479. ((c >= '0') && (c <= '9'))))
  480. break;
  481. #else
  482. if (!(isupper(c) || (c == '-') || isdigit(c)))
  483. break;
  484. #endif
  485. header++;
  486. }
  487. *header = '\0';
  488. cipher->cipher = enc = EVP_get_cipherbyname(p);
  489. *header = c;
  490. header++;
  491. if (enc == NULL) {
  492. PEMerr(PEM_F_PEM_GET_EVP_CIPHER_INFO, PEM_R_UNSUPPORTED_ENCRYPTION);
  493. return (0);
  494. }
  495. if (!load_iv(header_pp, &(cipher->iv[0]), enc->iv_len))
  496. return (0);
  497. return (1);
  498. }
  499. static int load_iv(char **fromp, unsigned char *to, int num)
  500. {
  501. int v, i;
  502. char *from;
  503. from = *fromp;
  504. for (i = 0; i < num; i++)
  505. to[i] = 0;
  506. num *= 2;
  507. for (i = 0; i < num; i++) {
  508. if ((*from >= '0') && (*from <= '9'))
  509. v = *from - '0';
  510. else if ((*from >= 'A') && (*from <= 'F'))
  511. v = *from - 'A' + 10;
  512. else if ((*from >= 'a') && (*from <= 'f'))
  513. v = *from - 'a' + 10;
  514. else {
  515. PEMerr(PEM_F_LOAD_IV, PEM_R_BAD_IV_CHARS);
  516. return (0);
  517. }
  518. from++;
  519. to[i / 2] |= v << (long)((!(i & 1)) * 4);
  520. }
  521. *fromp = from;
  522. return (1);
  523. }
  524. #ifndef OPENSSL_NO_FP_API
  525. int PEM_write(FILE *fp, const char *name, const char *header,
  526. const unsigned char *data, long len)
  527. {
  528. BIO *b;
  529. int ret;
  530. if ((b = BIO_new(BIO_s_file())) == NULL) {
  531. PEMerr(PEM_F_PEM_WRITE, ERR_R_BUF_LIB);
  532. return (0);
  533. }
  534. BIO_set_fp(b, fp, BIO_NOCLOSE);
  535. ret = PEM_write_bio(b, name, header, data, len);
  536. BIO_free(b);
  537. return (ret);
  538. }
  539. #endif
  540. int PEM_write_bio(BIO *bp, const char *name, const char *header,
  541. const unsigned char *data, long len)
  542. {
  543. int nlen, n, i, j, outl;
  544. unsigned char *buf = NULL;
  545. EVP_ENCODE_CTX ctx;
  546. int reason = ERR_R_BUF_LIB;
  547. EVP_EncodeInit(&ctx);
  548. nlen = strlen(name);
  549. if ((BIO_write(bp, "-----BEGIN ", 11) != 11) ||
  550. (BIO_write(bp, name, nlen) != nlen) ||
  551. (BIO_write(bp, "-----\n", 6) != 6))
  552. goto err;
  553. i = strlen(header);
  554. if (i > 0) {
  555. if ((BIO_write(bp, header, i) != i) || (BIO_write(bp, "\n", 1) != 1))
  556. goto err;
  557. }
  558. buf = OPENSSL_malloc(PEM_BUFSIZE * 8);
  559. if (buf == NULL) {
  560. reason = ERR_R_MALLOC_FAILURE;
  561. goto err;
  562. }
  563. i = j = 0;
  564. while (len > 0) {
  565. n = (int)((len > (PEM_BUFSIZE * 5)) ? (PEM_BUFSIZE * 5) : len);
  566. EVP_EncodeUpdate(&ctx, buf, &outl, &(data[j]), n);
  567. if ((outl) && (BIO_write(bp, (char *)buf, outl) != outl))
  568. goto err;
  569. i += outl;
  570. len -= n;
  571. j += n;
  572. }
  573. EVP_EncodeFinal(&ctx, buf, &outl);
  574. if ((outl > 0) && (BIO_write(bp, (char *)buf, outl) != outl))
  575. goto err;
  576. OPENSSL_cleanse(buf, PEM_BUFSIZE * 8);
  577. OPENSSL_free(buf);
  578. buf = NULL;
  579. if ((BIO_write(bp, "-----END ", 9) != 9) ||
  580. (BIO_write(bp, name, nlen) != nlen) ||
  581. (BIO_write(bp, "-----\n", 6) != 6))
  582. goto err;
  583. return (i + outl);
  584. err:
  585. if (buf) {
  586. OPENSSL_cleanse(buf, PEM_BUFSIZE * 8);
  587. OPENSSL_free(buf);
  588. }
  589. PEMerr(PEM_F_PEM_WRITE_BIO, reason);
  590. return (0);
  591. }
  592. #ifndef OPENSSL_NO_FP_API
  593. int PEM_read(FILE *fp, char **name, char **header, unsigned char **data,
  594. long *len)
  595. {
  596. BIO *b;
  597. int ret;
  598. if ((b = BIO_new(BIO_s_file())) == NULL) {
  599. PEMerr(PEM_F_PEM_READ, ERR_R_BUF_LIB);
  600. return (0);
  601. }
  602. BIO_set_fp(b, fp, BIO_NOCLOSE);
  603. ret = PEM_read_bio(b, name, header, data, len);
  604. BIO_free(b);
  605. return (ret);
  606. }
  607. #endif
  608. int PEM_read_bio(BIO *bp, char **name, char **header, unsigned char **data,
  609. long *len)
  610. {
  611. EVP_ENCODE_CTX ctx;
  612. int end = 0, i, k, bl = 0, hl = 0, nohead = 0;
  613. char buf[256];
  614. BUF_MEM *nameB;
  615. BUF_MEM *headerB;
  616. BUF_MEM *dataB, *tmpB;
  617. nameB = BUF_MEM_new();
  618. headerB = BUF_MEM_new();
  619. dataB = BUF_MEM_new();
  620. if ((nameB == NULL) || (headerB == NULL) || (dataB == NULL)) {
  621. BUF_MEM_free(nameB);
  622. BUF_MEM_free(headerB);
  623. BUF_MEM_free(dataB);
  624. PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE);
  625. return (0);
  626. }
  627. buf[254] = '\0';
  628. for (;;) {
  629. i = BIO_gets(bp, buf, 254);
  630. if (i <= 0) {
  631. PEMerr(PEM_F_PEM_READ_BIO, PEM_R_NO_START_LINE);
  632. goto err;
  633. }
  634. while ((i >= 0) && (buf[i] <= ' '))
  635. i--;
  636. buf[++i] = '\n';
  637. buf[++i] = '\0';
  638. if (strncmp(buf, "-----BEGIN ", 11) == 0) {
  639. i = strlen(&(buf[11]));
  640. if (strncmp(&(buf[11 + i - 6]), "-----\n", 6) != 0)
  641. continue;
  642. if (!BUF_MEM_grow(nameB, i + 9)) {
  643. PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE);
  644. goto err;
  645. }
  646. memcpy(nameB->data, &(buf[11]), i - 6);
  647. nameB->data[i - 6] = '\0';
  648. break;
  649. }
  650. }
  651. hl = 0;
  652. if (!BUF_MEM_grow(headerB, 256)) {
  653. PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE);
  654. goto err;
  655. }
  656. headerB->data[0] = '\0';
  657. for (;;) {
  658. i = BIO_gets(bp, buf, 254);
  659. if (i <= 0)
  660. break;
  661. while ((i >= 0) && (buf[i] <= ' '))
  662. i--;
  663. buf[++i] = '\n';
  664. buf[++i] = '\0';
  665. if (buf[0] == '\n')
  666. break;
  667. if (!BUF_MEM_grow(headerB, hl + i + 9)) {
  668. PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE);
  669. goto err;
  670. }
  671. if (strncmp(buf, "-----END ", 9) == 0) {
  672. nohead = 1;
  673. break;
  674. }
  675. memcpy(&(headerB->data[hl]), buf, i);
  676. headerB->data[hl + i] = '\0';
  677. hl += i;
  678. }
  679. bl = 0;
  680. if (!BUF_MEM_grow(dataB, 1024)) {
  681. PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE);
  682. goto err;
  683. }
  684. dataB->data[0] = '\0';
  685. if (!nohead) {
  686. for (;;) {
  687. i = BIO_gets(bp, buf, 254);
  688. if (i <= 0)
  689. break;
  690. while ((i >= 0) && (buf[i] <= ' '))
  691. i--;
  692. buf[++i] = '\n';
  693. buf[++i] = '\0';
  694. if (i != 65)
  695. end = 1;
  696. if (strncmp(buf, "-----END ", 9) == 0)
  697. break;
  698. if (i > 65)
  699. break;
  700. if (!BUF_MEM_grow_clean(dataB, i + bl + 9)) {
  701. PEMerr(PEM_F_PEM_READ_BIO, ERR_R_MALLOC_FAILURE);
  702. goto err;
  703. }
  704. memcpy(&(dataB->data[bl]), buf, i);
  705. dataB->data[bl + i] = '\0';
  706. bl += i;
  707. if (end) {
  708. buf[0] = '\0';
  709. i = BIO_gets(bp, buf, 254);
  710. if (i <= 0)
  711. break;
  712. while ((i >= 0) && (buf[i] <= ' '))
  713. i--;
  714. buf[++i] = '\n';
  715. buf[++i] = '\0';
  716. break;
  717. }
  718. }
  719. } else {
  720. tmpB = headerB;
  721. headerB = dataB;
  722. dataB = tmpB;
  723. bl = hl;
  724. }
  725. i = strlen(nameB->data);
  726. if ((strncmp(buf, "-----END ", 9) != 0) ||
  727. (strncmp(nameB->data, &(buf[9]), i) != 0) ||
  728. (strncmp(&(buf[9 + i]), "-----\n", 6) != 0)) {
  729. PEMerr(PEM_F_PEM_READ_BIO, PEM_R_BAD_END_LINE);
  730. goto err;
  731. }
  732. EVP_DecodeInit(&ctx);
  733. i = EVP_DecodeUpdate(&ctx,
  734. (unsigned char *)dataB->data, &bl,
  735. (unsigned char *)dataB->data, bl);
  736. if (i < 0) {
  737. PEMerr(PEM_F_PEM_READ_BIO, PEM_R_BAD_BASE64_DECODE);
  738. goto err;
  739. }
  740. i = EVP_DecodeFinal(&ctx, (unsigned char *)&(dataB->data[bl]), &k);
  741. if (i < 0) {
  742. PEMerr(PEM_F_PEM_READ_BIO, PEM_R_BAD_BASE64_DECODE);
  743. goto err;
  744. }
  745. bl += k;
  746. if (bl == 0)
  747. goto err;
  748. *name = nameB->data;
  749. *header = headerB->data;
  750. *data = (unsigned char *)dataB->data;
  751. *len = bl;
  752. OPENSSL_free(nameB);
  753. OPENSSL_free(headerB);
  754. OPENSSL_free(dataB);
  755. return (1);
  756. err:
  757. BUF_MEM_free(nameB);
  758. BUF_MEM_free(headerB);
  759. BUF_MEM_free(dataB);
  760. return (0);
  761. }
  762. /*
  763. * Check pem string and return prefix length. If for example the pem_str ==
  764. * "RSA PRIVATE KEY" and suffix = "PRIVATE KEY" the return value is 3 for the
  765. * string "RSA".
  766. */
  767. int pem_check_suffix(const char *pem_str, const char *suffix)
  768. {
  769. int pem_len = strlen(pem_str);
  770. int suffix_len = strlen(suffix);
  771. const char *p;
  772. if (suffix_len + 1 >= pem_len)
  773. return 0;
  774. p = pem_str + pem_len - suffix_len;
  775. if (strcmp(p, suffix))
  776. return 0;
  777. p--;
  778. if (*p != ' ')
  779. return 0;
  780. return p - pem_str;
  781. }