1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950 |
- #!/usr/bin/env python
- '''
- K-means clusterization sample.
- Usage:
- kmeans.py
- Keyboard shortcuts:
- ESC - exit
- space - generate new distribution
- '''
- # Python 2/3 compatibility
- from __future__ import print_function
- import numpy as np
- import cv2
- from gaussian_mix import make_gaussians
- if __name__ == '__main__':
- cluster_n = 5
- img_size = 512
- print(__doc__)
- # generating bright palette
- colors = np.zeros((1, cluster_n, 3), np.uint8)
- colors[0,:] = 255
- colors[0,:,0] = np.arange(0, 180, 180.0/cluster_n)
- colors = cv2.cvtColor(colors, cv2.COLOR_HSV2BGR)[0]
- while True:
- print('sampling distributions...')
- points, _ = make_gaussians(cluster_n, img_size)
- term_crit = (cv2.TERM_CRITERIA_EPS, 30, 0.1)
- ret, labels, centers = cv2.kmeans(points, cluster_n, None, term_crit, 10, 0)
- img = np.zeros((img_size, img_size, 3), np.uint8)
- for (x, y), label in zip(np.int32(points), labels.ravel()):
- c = list(map(int, colors[label]))
- cv2.circle(img, (x, y), 1, c, -1)
- cv2.imshow('gaussian mixture', img)
- ch = 0xFF & cv2.waitKey(0)
- if ch == 27:
- break
- cv2.destroyAllWindows()
|