123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596 |
- #!/usr/bin/python
- """
- Tracking of rotating point.
- Rotation speed is constant.
- Both state and measurements vectors are 1D (a point angle),
- Measurement is the real point angle + gaussian noise.
- The real and the estimated points are connected with yellow line segment,
- the real and the measured points are connected with red line segment.
- (if Kalman filter works correctly,
- the yellow segment should be shorter than the red one).
- Pressing any key (except ESC) will reset the tracking with a different speed.
- Pressing ESC will stop the program.
- """
- # Python 2/3 compatibility
- import sys
- PY3 = sys.version_info[0] == 3
- if PY3:
- long = int
- import cv2
- from math import cos, sin
- import numpy as np
- if __name__ == "__main__":
- img_height = 500
- img_width = 500
- kalman = cv2.KalmanFilter(2, 1, 0)
- code = long(-1)
- cv2.namedWindow("Kalman")
- while True:
- state = 0.1 * np.random.randn(2, 1)
- kalman.transitionMatrix = np.array([[1., 1.], [0., 1.]])
- kalman.measurementMatrix = 1. * np.ones((1, 2))
- kalman.processNoiseCov = 1e-5 * np.eye(2)
- kalman.measurementNoiseCov = 1e-1 * np.ones((1, 1))
- kalman.errorCovPost = 1. * np.ones((2, 2))
- kalman.statePost = 0.1 * np.random.randn(2, 1)
- while True:
- def calc_point(angle):
- return (np.around(img_width/2 + img_width/3*cos(angle), 0).astype(int),
- np.around(img_height/2 - img_width/3*sin(angle), 1).astype(int))
- state_angle = state[0, 0]
- state_pt = calc_point(state_angle)
- prediction = kalman.predict()
- predict_angle = prediction[0, 0]
- predict_pt = calc_point(predict_angle)
- measurement = kalman.measurementNoiseCov * np.random.randn(1, 1)
- # generate measurement
- measurement = np.dot(kalman.measurementMatrix, state) + measurement
- measurement_angle = measurement[0, 0]
- measurement_pt = calc_point(measurement_angle)
- # plot points
- def draw_cross(center, color, d):
- cv2.line(img,
- (center[0] - d, center[1] - d), (center[0] + d, center[1] + d),
- color, 1, cv2.LINE_AA, 0)
- cv2.line(img,
- (center[0] + d, center[1] - d), (center[0] - d, center[1] + d),
- color, 1, cv2.LINE_AA, 0)
- img = np.zeros((img_height, img_width, 3), np.uint8)
- draw_cross(np.int32(state_pt), (255, 255, 255), 3)
- draw_cross(np.int32(measurement_pt), (0, 0, 255), 3)
- draw_cross(np.int32(predict_pt), (0, 255, 0), 3)
- cv2.line(img, state_pt, measurement_pt, (0, 0, 255), 3, cv2.LINE_AA, 0)
- cv2.line(img, state_pt, predict_pt, (0, 255, 255), 3, cv2.LINE_AA, 0)
- kalman.correct(measurement)
- process_noise = kalman.processNoiseCov * np.random.randn(2, 1)
- state = np.dot(kalman.transitionMatrix, state) + process_noise
- cv2.imshow("Kalman", img)
- code = cv2.waitKey(100) % 0x100
- if code != -1:
- break
- if code in [27, ord('q'), ord('Q')]:
- break
- cv2.destroyWindow("Kalman")
|