123456789101112131415161718192021222324252627282930313233343536373839 |
- #!/usr/bin/python
- '''
- This example illustrates how to use cv2.HoughCircles() function.
- Usage:
- houghcircles.py [<image_name>]
- image argument defaults to ../data/board.jpg
- '''
- # Python 2/3 compatibility
- from __future__ import print_function
- import cv2
- import numpy as np
- import sys
- if __name__ == '__main__':
- print(__doc__)
- try:
- fn = sys.argv[1]
- except IndexError:
- fn = "../data/board.jpg"
- src = cv2.imread(fn, 1)
- img = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
- img = cv2.medianBlur(img, 5)
- cimg = src.copy() # numpy function
- circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 10, np.array([]), 100, 30, 1, 30)
- a, b, c = circles.shape
- for i in range(b):
- cv2.circle(cimg, (circles[0][i][0], circles[0][i][1]), circles[0][i][2], (0, 0, 255), 3, cv2.LINE_AA)
- cv2.circle(cimg, (circles[0][i][0], circles[0][i][1]), 2, (0, 255, 0), 3, cv2.LINE_AA) # draw center of circle
- cv2.imshow("source", src)
- cv2.imshow("detected circles", cimg)
- cv2.waitKey(0)
|