123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119 |
- #!/usr/bin/env python
- ''' This is a sample for histogram plotting for RGB images and grayscale images for better understanding of colour distribution
- Benefit : Learn how to draw histogram of images
- Get familier with cv2.calcHist, cv2.equalizeHist,cv2.normalize and some drawing functions
- Level : Beginner or Intermediate
- Functions : 1) hist_curve : returns histogram of an image drawn as curves
- 2) hist_lines : return histogram of an image drawn as bins ( only for grayscale images )
- Usage : python hist.py <image_file>
- Abid Rahman 3/14/12 debug Gary Bradski
- '''
- # Python 2/3 compatibility
- from __future__ import print_function
- import cv2
- import numpy as np
- bins = np.arange(256).reshape(256,1)
- def hist_curve(im):
- h = np.zeros((300,256,3))
- if len(im.shape) == 2:
- color = [(255,255,255)]
- elif im.shape[2] == 3:
- color = [ (255,0,0),(0,255,0),(0,0,255) ]
- for ch, col in enumerate(color):
- hist_item = cv2.calcHist([im],[ch],None,[256],[0,256])
- cv2.normalize(hist_item,hist_item,0,255,cv2.NORM_MINMAX)
- hist=np.int32(np.around(hist_item))
- pts = np.int32(np.column_stack((bins,hist)))
- cv2.polylines(h,[pts],False,col)
- y=np.flipud(h)
- return y
- def hist_lines(im):
- h = np.zeros((300,256,3))
- if len(im.shape)!=2:
- print("hist_lines applicable only for grayscale images")
- #print("so converting image to grayscale for representation"
- im = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
- hist_item = cv2.calcHist([im],[0],None,[256],[0,256])
- cv2.normalize(hist_item,hist_item,0,255,cv2.NORM_MINMAX)
- hist=np.int32(np.around(hist_item))
- for x,y in enumerate(hist):
- cv2.line(h,(x,0),(x,y),(255,255,255))
- y = np.flipud(h)
- return y
- if __name__ == '__main__':
- import sys
- if len(sys.argv)>1:
- fname = sys.argv[1]
- else :
- fname = '../data/lena.jpg'
- print("usage : python hist.py <image_file>")
- im = cv2.imread(fname)
- if im is None:
- print('Failed to load image file:', fname)
- sys.exit(1)
- gray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
- print(''' Histogram plotting \n
- Keymap :\n
- a - show histogram for color image in curve mode \n
- b - show histogram in bin mode \n
- c - show equalized histogram (always in bin mode) \n
- d - show histogram for color image in curve mode \n
- e - show histogram for a normalized image in curve mode \n
- Esc - exit \n
- ''')
- cv2.imshow('image',im)
- while True:
- k = cv2.waitKey(0)&0xFF
- if k == ord('a'):
- curve = hist_curve(im)
- cv2.imshow('histogram',curve)
- cv2.imshow('image',im)
- print('a')
- elif k == ord('b'):
- print('b')
- lines = hist_lines(im)
- cv2.imshow('histogram',lines)
- cv2.imshow('image',gray)
- elif k == ord('c'):
- print('c')
- equ = cv2.equalizeHist(gray)
- lines = hist_lines(equ)
- cv2.imshow('histogram',lines)
- cv2.imshow('image',equ)
- elif k == ord('d'):
- print('d')
- curve = hist_curve(gray)
- cv2.imshow('histogram',curve)
- cv2.imshow('image',gray)
- elif k == ord('e'):
- print('e')
- norm = cv2.normalize(gray, gray, alpha = 0,beta = 255,norm_type = cv2.NORM_MINMAX)
- lines = hist_lines(norm)
- cv2.imshow('histogram',lines)
- cv2.imshow('image',norm)
- elif k == 27:
- print('ESC')
- cv2.destroyAllWindows()
- break
- cv2.destroyAllWindows()
|