slic.hpp 6.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165
  1. /*********************************************************************
  2. * Software License Agreement (BSD License)
  3. *
  4. * Copyright (c) 2013
  5. * Radhakrishna Achanta
  6. * email : Radhakrishna [dot] Achanta [at] epfl [dot] ch
  7. * web : http://ivrl.epfl.ch/people/achanta
  8. *
  9. * Redistribution and use in source and binary forms, with or without
  10. * modification, are permitted provided that the following conditions
  11. * are met:
  12. *
  13. * * Redistributions of source code must retain the above copyright
  14. * notice, this list of conditions and the following disclaimer.
  15. * * Redistributions in binary form must reproduce the above
  16. * copyright notice, this list of conditions and the following
  17. * disclaimer in the documentation and/or other materials provided
  18. * with the distribution.
  19. * * Neither the name of the copyright holders nor the names of its
  20. * contributors may be used to endorse or promote products derived
  21. * from this software without specific prior written permission.
  22. *
  23. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  24. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  25. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
  26. * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
  27. * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
  28. * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  29. * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  30. * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  31. * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  32. * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
  33. * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
  34. * POSSIBILITY OF SUCH DAMAGE.
  35. *********************************************************************/
  36. /*
  37. "SLIC Superpixels Compared to State-of-the-art Superpixel Methods"
  38. Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua,
  39. and Sabine Susstrunk, IEEE TPAMI, Volume 34, Issue 11, Pages 2274-2282,
  40. November 2012.
  41. "SLIC Superpixels" Radhakrishna Achanta, Appu Shaji, Kevin Smith,
  42. Aurelien Lucchi, Pascal Fua, and Sabine Süsstrunk, EPFL Technical
  43. Report no. 149300, June 2010.
  44. OpenCV port by: Cristian Balint <cristian dot balint at gmail dot com>
  45. */
  46. #ifndef __OPENCV_SLIC_HPP__
  47. #define __OPENCV_SLIC_HPP__
  48. #ifdef __cplusplus
  49. #include <opencv2/core.hpp>
  50. namespace cv
  51. {
  52. namespace ximgproc
  53. {
  54. //! @addtogroup ximgproc_superpixel
  55. //! @{
  56. /** @brief Class implementing the SLIC (Simple Linear Iterative Clustering) superpixels
  57. algorithm described in @cite Achanta2012.
  58. SLIC (Simple Linear Iterative Clustering) clusters pixels using pixel channels and image plane space
  59. to efficiently generate compact, nearly uniform superpixels. The simplicity of approach makes it
  60. extremely easy to use a lone parameter specifies the number of superpixels and the efficiency of
  61. the algorithm makes it very practical.
  62. */
  63. class CV_EXPORTS_W SuperpixelSLIC : public Algorithm
  64. {
  65. public:
  66. /** @brief Calculates the actual amount of superpixels on a given segmentation computed
  67. and stored in SuperpixelSLIC object.
  68. */
  69. CV_WRAP virtual int getNumberOfSuperpixels() const = 0;
  70. /** @brief Calculates the superpixel segmentation on a given image with the initialized
  71. parameters in the SuperpixelSLIC object.
  72. This function can be called again without the need of initializing the algorithm with
  73. createSuperpixelSLIC(). This save the computational cost of allocating memory for all the
  74. structures of the algorithm.
  75. @param num_iterations Number of iterations. Higher number improves the result.
  76. The function computes the superpixels segmentation of an image with the parameters initialized
  77. with the function createSuperpixelSLIC(). The algorithms starts from a grid of superpixels and
  78. then refines the boundaries by proposing updates of edges boundaries.
  79. */
  80. CV_WRAP virtual void iterate( int num_iterations = 10 ) = 0;
  81. /** @brief Returns the segmentation labeling of the image.
  82. Each label represents a superpixel, and each pixel is assigned to one superpixel label.
  83. @param labels_out Return: A CV_32SC1 integer array containing the labels of the superpixel
  84. segmentation. The labels are in the range [0, getNumberOfSuperpixels()].
  85. The function returns an image with the labels of the superpixel segmentation. The labels are in
  86. the range [0, getNumberOfSuperpixels()].
  87. */
  88. CV_WRAP virtual void getLabels( OutputArray labels_out ) const = 0;
  89. /** @brief Returns the mask of the superpixel segmentation stored in SuperpixelSLIC object.
  90. @param image Return: CV_8U1 image mask where -1 indicates that the pixel is a superpixel border,
  91. and 0 otherwise.
  92. @param thick_line If false, the border is only one pixel wide, otherwise all pixels at the border
  93. are masked.
  94. The function return the boundaries of the superpixel segmentation.
  95. */
  96. CV_WRAP virtual void getLabelContourMask( OutputArray image, bool thick_line = true ) const = 0;
  97. /** @brief Enforce label connectivity.
  98. @param min_element_size The minimum element size in percents that should be absorbed into a bigger
  99. superpixel. Given resulted average superpixel size valid value should be in 0-100 range, 25 means
  100. that less then a quarter sized superpixel should be absorbed, this is default.
  101. The function merge component that is too small, assigning the previously found adjacent label
  102. to this component. Calling this function may change the final number of superpixels.
  103. */
  104. CV_WRAP virtual void enforceLabelConnectivity( int min_element_size = 25 ) = 0;
  105. };
  106. /** @brief Class implementing the SLIC (Simple Linear Iterative Clustering) superpixels
  107. @param image Image to segment
  108. @param algorithm Chooses the algorithm variant to use:
  109. SLIC segments image using a desired region_size, and in addition
  110. SLICO will choose an adaptive compactness factor.
  111. @param region_size Chooses an average superpixel size measured in pixels
  112. @param ruler Chooses the enforcement of superpixel smoothness factor of superpixel
  113. The function initializes a SuperpixelSLIC object for the input image. It sets the parameters of choosed
  114. superpixel algorithm, which are: region_size and ruler. It preallocate some buffers for future
  115. computing iterations over the given image. An example of SLIC versus SLICO is ilustrated in the
  116. following picture.
  117. ![image](pics/slic_slico_kermit.png)
  118. */
  119. enum SLIC { SLIC = 100, SLICO = 101 };
  120. CV_EXPORTS_W Ptr<SuperpixelSLIC> createSuperpixelSLIC( InputArray image, int algorithm = SLICO,
  121. int region_size = 10, float ruler = 10.0f );
  122. //! @}
  123. }
  124. }
  125. #endif
  126. #endif