123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef __OPENCV_OBJDETECT_HPP__
- #define __OPENCV_OBJDETECT_HPP__
- #include "opencv2/core.hpp"
- /**
- @defgroup objdetect Object Detection
- Haar Feature-based Cascade Classifier for Object Detection
- ----------------------------------------------------------
- The object detector described below has been initially proposed by Paul Viola @cite Viola01 and
- improved by Rainer Lienhart @cite Lienhart02 .
- First, a classifier (namely a *cascade of boosted classifiers working with haar-like features*) is
- trained with a few hundred sample views of a particular object (i.e., a face or a car), called
- positive examples, that are scaled to the same size (say, 20x20), and negative examples - arbitrary
- images of the same size.
- After a classifier is trained, it can be applied to a region of interest (of the same size as used
- during the training) in an input image. The classifier outputs a "1" if the region is likely to show
- the object (i.e., face/car), and "0" otherwise. To search for the object in the whole image one can
- move the search window across the image and check every location using the classifier. The
- classifier is designed so that it can be easily "resized" in order to be able to find the objects of
- interest at different sizes, which is more efficient than resizing the image itself. So, to find an
- object of an unknown size in the image the scan procedure should be done several times at different
- scales.
- The word "cascade" in the classifier name means that the resultant classifier consists of several
- simpler classifiers (*stages*) that are applied subsequently to a region of interest until at some
- stage the candidate is rejected or all the stages are passed. The word "boosted" means that the
- classifiers at every stage of the cascade are complex themselves and they are built out of basic
- classifiers using one of four different boosting techniques (weighted voting). Currently Discrete
- Adaboost, Real Adaboost, Gentle Adaboost and Logitboost are supported. The basic classifiers are
- decision-tree classifiers with at least 2 leaves. Haar-like features are the input to the basic
- classifiers, and are calculated as described below. The current algorithm uses the following
- Haar-like features:
- 
- The feature used in a particular classifier is specified by its shape (1a, 2b etc.), position within
- the region of interest and the scale (this scale is not the same as the scale used at the detection
- stage, though these two scales are multiplied). For example, in the case of the third line feature
- (2c) the response is calculated as the difference between the sum of image pixels under the
- rectangle covering the whole feature (including the two white stripes and the black stripe in the
- middle) and the sum of the image pixels under the black stripe multiplied by 3 in order to
- compensate for the differences in the size of areas. The sums of pixel values over a rectangular
- regions are calculated rapidly using integral images (see below and the integral description).
- To see the object detector at work, have a look at the facedetect demo:
- <https://github.com/Itseez/opencv/tree/master/samples/cpp/dbt_face_detection.cpp>
- The following reference is for the detection part only. There is a separate application called
- opencv_traincascade that can train a cascade of boosted classifiers from a set of samples.
- @note In the new C++ interface it is also possible to use LBP (local binary pattern) features in
- addition to Haar-like features. .. [Viola01] Paul Viola and Michael J. Jones. Rapid Object Detection
- using a Boosted Cascade of Simple Features. IEEE CVPR, 2001. The paper is available online at
- <http://research.microsoft.com/en-us/um/people/viola/Pubs/Detect/violaJones_CVPR2001.pdf>
- @{
- @defgroup objdetect_c C API
- @}
- */
- typedef struct CvHaarClassifierCascade CvHaarClassifierCascade;
- namespace cv
- {
- //! @addtogroup objdetect
- //! @{
- ///////////////////////////// Object Detection ////////////////////////////
- //! class for grouping object candidates, detected by Cascade Classifier, HOG etc.
- //! instance of the class is to be passed to cv::partition (see cxoperations.hpp)
- class CV_EXPORTS SimilarRects
- {
- public:
- SimilarRects(double _eps) : eps(_eps) {}
- inline bool operator()(const Rect& r1, const Rect& r2) const
- {
- double delta = eps*(std::min(r1.width, r2.width) + std::min(r1.height, r2.height))*0.5;
- return std::abs(r1.x - r2.x) <= delta &&
- std::abs(r1.y - r2.y) <= delta &&
- std::abs(r1.x + r1.width - r2.x - r2.width) <= delta &&
- std::abs(r1.y + r1.height - r2.y - r2.height) <= delta;
- }
- double eps;
- };
- /** @brief Groups the object candidate rectangles.
- @param rectList Input/output vector of rectangles. Output vector includes retained and grouped
- rectangles. (The Python list is not modified in place.)
- @param groupThreshold Minimum possible number of rectangles minus 1. The threshold is used in a
- group of rectangles to retain it.
- @param eps Relative difference between sides of the rectangles to merge them into a group.
- The function is a wrapper for the generic function partition . It clusters all the input rectangles
- using the rectangle equivalence criteria that combines rectangles with similar sizes and similar
- locations. The similarity is defined by eps. When eps=0 , no clustering is done at all. If
- \f$\texttt{eps}\rightarrow +\inf\f$ , all the rectangles are put in one cluster. Then, the small
- clusters containing less than or equal to groupThreshold rectangles are rejected. In each other
- cluster, the average rectangle is computed and put into the output rectangle list.
- */
- CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold, double eps = 0.2);
- /** @overload */
- CV_EXPORTS_W void groupRectangles(CV_IN_OUT std::vector<Rect>& rectList, CV_OUT std::vector<int>& weights,
- int groupThreshold, double eps = 0.2);
- /** @overload */
- CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, int groupThreshold,
- double eps, std::vector<int>* weights, std::vector<double>* levelWeights );
- /** @overload */
- CV_EXPORTS void groupRectangles(std::vector<Rect>& rectList, std::vector<int>& rejectLevels,
- std::vector<double>& levelWeights, int groupThreshold, double eps = 0.2);
- /** @overload */
- CV_EXPORTS void groupRectangles_meanshift(std::vector<Rect>& rectList, std::vector<double>& foundWeights,
- std::vector<double>& foundScales,
- double detectThreshold = 0.0, Size winDetSize = Size(64, 128));
- template<> CV_EXPORTS void DefaultDeleter<CvHaarClassifierCascade>::operator ()(CvHaarClassifierCascade* obj) const;
- enum { CASCADE_DO_CANNY_PRUNING = 1,
- CASCADE_SCALE_IMAGE = 2,
- CASCADE_FIND_BIGGEST_OBJECT = 4,
- CASCADE_DO_ROUGH_SEARCH = 8
- };
- class CV_EXPORTS_W BaseCascadeClassifier : public Algorithm
- {
- public:
- virtual ~BaseCascadeClassifier();
- virtual bool empty() const = 0;
- virtual bool load( const String& filename ) = 0;
- virtual void detectMultiScale( InputArray image,
- CV_OUT std::vector<Rect>& objects,
- double scaleFactor,
- int minNeighbors, int flags,
- Size minSize, Size maxSize ) = 0;
- virtual void detectMultiScale( InputArray image,
- CV_OUT std::vector<Rect>& objects,
- CV_OUT std::vector<int>& numDetections,
- double scaleFactor,
- int minNeighbors, int flags,
- Size minSize, Size maxSize ) = 0;
- virtual void detectMultiScale( InputArray image,
- CV_OUT std::vector<Rect>& objects,
- CV_OUT std::vector<int>& rejectLevels,
- CV_OUT std::vector<double>& levelWeights,
- double scaleFactor,
- int minNeighbors, int flags,
- Size minSize, Size maxSize,
- bool outputRejectLevels ) = 0;
- virtual bool isOldFormatCascade() const = 0;
- virtual Size getOriginalWindowSize() const = 0;
- virtual int getFeatureType() const = 0;
- virtual void* getOldCascade() = 0;
- class CV_EXPORTS MaskGenerator
- {
- public:
- virtual ~MaskGenerator() {}
- virtual Mat generateMask(const Mat& src)=0;
- virtual void initializeMask(const Mat& /*src*/) { }
- };
- virtual void setMaskGenerator(const Ptr<MaskGenerator>& maskGenerator) = 0;
- virtual Ptr<MaskGenerator> getMaskGenerator() = 0;
- };
- /** @brief Cascade classifier class for object detection.
- */
- class CV_EXPORTS_W CascadeClassifier
- {
- public:
- CV_WRAP CascadeClassifier();
- /** @brief Loads a classifier from a file.
- @param filename Name of the file from which the classifier is loaded.
- */
- CV_WRAP CascadeClassifier(const String& filename);
- ~CascadeClassifier();
- /** @brief Checks whether the classifier has been loaded.
- */
- CV_WRAP bool empty() const;
- /** @brief Loads a classifier from a file.
- @param filename Name of the file from which the classifier is loaded. The file may contain an old
- HAAR classifier trained by the haartraining application or a new cascade classifier trained by the
- traincascade application.
- */
- CV_WRAP bool load( const String& filename );
- /** @brief Reads a classifier from a FileStorage node.
- @note The file may contain a new cascade classifier (trained traincascade application) only.
- */
- CV_WRAP bool read( const FileNode& node );
- /** @brief Detects objects of different sizes in the input image. The detected objects are returned as a list
- of rectangles.
- @param image Matrix of the type CV_8U containing an image where objects are detected.
- @param objects Vector of rectangles where each rectangle contains the detected object, the
- rectangles may be partially outside the original image.
- @param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
- @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
- to retain it.
- @param flags Parameter with the same meaning for an old cascade as in the function
- cvHaarDetectObjects. It is not used for a new cascade.
- @param minSize Minimum possible object size. Objects smaller than that are ignored.
- @param maxSize Maximum possible object size. Objects larger than that are ignored.
- The function is parallelized with the TBB library.
- @note
- - (Python) A face detection example using cascade classifiers can be found at
- opencv_source_code/samples/python/facedetect.py
- */
- CV_WRAP void detectMultiScale( InputArray image,
- CV_OUT std::vector<Rect>& objects,
- double scaleFactor = 1.1,
- int minNeighbors = 3, int flags = 0,
- Size minSize = Size(),
- Size maxSize = Size() );
- /** @overload
- @param image Matrix of the type CV_8U containing an image where objects are detected.
- @param objects Vector of rectangles where each rectangle contains the detected object, the
- rectangles may be partially outside the original image.
- @param numDetections Vector of detection numbers for the corresponding objects. An object's number
- of detections is the number of neighboring positively classified rectangles that were joined
- together to form the object.
- @param scaleFactor Parameter specifying how much the image size is reduced at each image scale.
- @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have
- to retain it.
- @param flags Parameter with the same meaning for an old cascade as in the function
- cvHaarDetectObjects. It is not used for a new cascade.
- @param minSize Minimum possible object size. Objects smaller than that are ignored.
- @param maxSize Maximum possible object size. Objects larger than that are ignored.
- */
- CV_WRAP_AS(detectMultiScale2) void detectMultiScale( InputArray image,
- CV_OUT std::vector<Rect>& objects,
- CV_OUT std::vector<int>& numDetections,
- double scaleFactor=1.1,
- int minNeighbors=3, int flags=0,
- Size minSize=Size(),
- Size maxSize=Size() );
- /** @overload
- if `outputRejectLevels` is `true` returns `rejectLevels` and `levelWeights`
- */
- CV_WRAP_AS(detectMultiScale3) void detectMultiScale( InputArray image,
- CV_OUT std::vector<Rect>& objects,
- CV_OUT std::vector<int>& rejectLevels,
- CV_OUT std::vector<double>& levelWeights,
- double scaleFactor = 1.1,
- int minNeighbors = 3, int flags = 0,
- Size minSize = Size(),
- Size maxSize = Size(),
- bool outputRejectLevels = false );
- CV_WRAP bool isOldFormatCascade() const;
- CV_WRAP Size getOriginalWindowSize() const;
- CV_WRAP int getFeatureType() const;
- void* getOldCascade();
- CV_WRAP static bool convert(const String& oldcascade, const String& newcascade);
- void setMaskGenerator(const Ptr<BaseCascadeClassifier::MaskGenerator>& maskGenerator);
- Ptr<BaseCascadeClassifier::MaskGenerator> getMaskGenerator();
- Ptr<BaseCascadeClassifier> cc;
- };
- CV_EXPORTS Ptr<BaseCascadeClassifier::MaskGenerator> createFaceDetectionMaskGenerator();
- //////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector //////////////
- //! struct for detection region of interest (ROI)
- struct DetectionROI
- {
- //! scale(size) of the bounding box
- double scale;
- //! set of requrested locations to be evaluated
- std::vector<cv::Point> locations;
- //! vector that will contain confidence values for each location
- std::vector<double> confidences;
- };
- struct CV_EXPORTS_W HOGDescriptor
- {
- public:
- enum { L2Hys = 0
- };
- enum { DEFAULT_NLEVELS = 64
- };
- CV_WRAP HOGDescriptor() : winSize(64,128), blockSize(16,16), blockStride(8,8),
- cellSize(8,8), nbins(9), derivAperture(1), winSigma(-1),
- histogramNormType(HOGDescriptor::L2Hys), L2HysThreshold(0.2), gammaCorrection(true),
- free_coef(-1.f), nlevels(HOGDescriptor::DEFAULT_NLEVELS), signedGradient(false)
- {}
- CV_WRAP HOGDescriptor(Size _winSize, Size _blockSize, Size _blockStride,
- Size _cellSize, int _nbins, int _derivAperture=1, double _winSigma=-1,
- int _histogramNormType=HOGDescriptor::L2Hys,
- double _L2HysThreshold=0.2, bool _gammaCorrection=false,
- int _nlevels=HOGDescriptor::DEFAULT_NLEVELS, bool _signedGradient=false)
- : winSize(_winSize), blockSize(_blockSize), blockStride(_blockStride), cellSize(_cellSize),
- nbins(_nbins), derivAperture(_derivAperture), winSigma(_winSigma),
- histogramNormType(_histogramNormType), L2HysThreshold(_L2HysThreshold),
- gammaCorrection(_gammaCorrection), free_coef(-1.f), nlevels(_nlevels), signedGradient(_signedGradient)
- {}
- CV_WRAP HOGDescriptor(const String& filename)
- {
- load(filename);
- }
- HOGDescriptor(const HOGDescriptor& d)
- {
- d.copyTo(*this);
- }
- virtual ~HOGDescriptor() {}
- CV_WRAP size_t getDescriptorSize() const;
- CV_WRAP bool checkDetectorSize() const;
- CV_WRAP double getWinSigma() const;
- CV_WRAP virtual void setSVMDetector(InputArray _svmdetector);
- virtual bool read(FileNode& fn);
- virtual void write(FileStorage& fs, const String& objname) const;
- CV_WRAP virtual bool load(const String& filename, const String& objname = String());
- CV_WRAP virtual void save(const String& filename, const String& objname = String()) const;
- virtual void copyTo(HOGDescriptor& c) const;
- CV_WRAP virtual void compute(InputArray img,
- CV_OUT std::vector<float>& descriptors,
- Size winStride = Size(), Size padding = Size(),
- const std::vector<Point>& locations = std::vector<Point>()) const;
- //! with found weights output
- CV_WRAP virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations,
- CV_OUT std::vector<double>& weights,
- double hitThreshold = 0, Size winStride = Size(),
- Size padding = Size(),
- const std::vector<Point>& searchLocations = std::vector<Point>()) const;
- //! without found weights output
- virtual void detect(const Mat& img, CV_OUT std::vector<Point>& foundLocations,
- double hitThreshold = 0, Size winStride = Size(),
- Size padding = Size(),
- const std::vector<Point>& searchLocations=std::vector<Point>()) const;
- //! with result weights output
- CV_WRAP virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations,
- CV_OUT std::vector<double>& foundWeights, double hitThreshold = 0,
- Size winStride = Size(), Size padding = Size(), double scale = 1.05,
- double finalThreshold = 2.0,bool useMeanshiftGrouping = false) const;
- //! without found weights output
- virtual void detectMultiScale(InputArray img, CV_OUT std::vector<Rect>& foundLocations,
- double hitThreshold = 0, Size winStride = Size(),
- Size padding = Size(), double scale = 1.05,
- double finalThreshold = 2.0, bool useMeanshiftGrouping = false) const;
- CV_WRAP virtual void computeGradient(const Mat& img, CV_OUT Mat& grad, CV_OUT Mat& angleOfs,
- Size paddingTL = Size(), Size paddingBR = Size()) const;
- CV_WRAP static std::vector<float> getDefaultPeopleDetector();
- CV_WRAP static std::vector<float> getDaimlerPeopleDetector();
- CV_PROP Size winSize;
- CV_PROP Size blockSize;
- CV_PROP Size blockStride;
- CV_PROP Size cellSize;
- CV_PROP int nbins;
- CV_PROP int derivAperture;
- CV_PROP double winSigma;
- CV_PROP int histogramNormType;
- CV_PROP double L2HysThreshold;
- CV_PROP bool gammaCorrection;
- CV_PROP std::vector<float> svmDetector;
- UMat oclSvmDetector;
- float free_coef;
- CV_PROP int nlevels;
- CV_PROP bool signedGradient;
- //! evaluate specified ROI and return confidence value for each location
- virtual void detectROI(const cv::Mat& img, const std::vector<cv::Point> &locations,
- CV_OUT std::vector<cv::Point>& foundLocations, CV_OUT std::vector<double>& confidences,
- double hitThreshold = 0, cv::Size winStride = Size(),
- cv::Size padding = Size()) const;
- //! evaluate specified ROI and return confidence value for each location in multiple scales
- virtual void detectMultiScaleROI(const cv::Mat& img,
- CV_OUT std::vector<cv::Rect>& foundLocations,
- std::vector<DetectionROI>& locations,
- double hitThreshold = 0,
- int groupThreshold = 0) const;
- //! read/parse Dalal's alt model file
- void readALTModel(String modelfile);
- void groupRectangles(std::vector<cv::Rect>& rectList, std::vector<double>& weights, int groupThreshold, double eps) const;
- };
- //! @} objdetect
- }
- #include "opencv2/objdetect/detection_based_tracker.hpp"
- #ifndef DISABLE_OPENCV_24_COMPATIBILITY
- #include "opencv2/objdetect/objdetect_c.h"
- #endif
- #endif
|