dnn.hpp 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304
  1. /*M///////////////////////////////////////////////////////////////////////////////////////
  2. //
  3. // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
  4. //
  5. // By downloading, copying, installing or using the software you agree to this license.
  6. // If you do not agree to this license, do not download, install,
  7. // copy or use the software.
  8. //
  9. //
  10. // License Agreement
  11. // For Open Source Computer Vision Library
  12. //
  13. // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
  14. // Third party copyrights are property of their respective owners.
  15. //
  16. // Redistribution and use in source and binary forms, with or without modification,
  17. // are permitted provided that the following conditions are met:
  18. //
  19. // * Redistribution's of source code must retain the above copyright notice,
  20. // this list of conditions and the following disclaimer.
  21. //
  22. // * Redistribution's in binary form must reproduce the above copyright notice,
  23. // this list of conditions and the following disclaimer in the documentation
  24. // and/or other materials provided with the distribution.
  25. //
  26. // * The name of the copyright holders may not be used to endorse or promote products
  27. // derived from this software without specific prior written permission.
  28. //
  29. // This software is provided by the copyright holders and contributors "as is" and
  30. // any express or implied warranties, including, but not limited to, the implied
  31. // warranties of merchantability and fitness for a particular purpose are disclaimed.
  32. // In no event shall the Intel Corporation or contributors be liable for any direct,
  33. // indirect, incidental, special, exemplary, or consequential damages
  34. // (including, but not limited to, procurement of substitute goods or services;
  35. // loss of use, data, or profits; or business interruption) however caused
  36. // and on any theory of liability, whether in contract, strict liability,
  37. // or tort (including negligence or otherwise) arising in any way out of
  38. // the use of this software, even if advised of the possibility of such damage.
  39. //
  40. //M*/
  41. #ifndef __OPENCV_DNN_DNN_HPP__
  42. #define __OPENCV_DNN_DNN_HPP__
  43. #include <vector>
  44. #include <opencv2/core.hpp>
  45. #include <opencv2/dnn/dict.hpp>
  46. #include <opencv2/dnn/blob.hpp>
  47. namespace cv
  48. {
  49. namespace dnn //! This namespace is used for dnn module functionlaity.
  50. {
  51. //! @addtogroup dnn
  52. //! @{
  53. /** @brief Initialize dnn module and built-in layers.
  54. *
  55. * This function automatically called on most of OpenCV builds,
  56. * but you need to call it manually on some specific configurations (iOS for example).
  57. */
  58. CV_EXPORTS void initModule();
  59. /** @brief This class provides all data needed to initialize layer.
  60. *
  61. * It includes dictionary with scalar params (which can be readed by using Dict interface),
  62. * blob params #blobs and optional meta information: #name and #type of layer instance.
  63. */
  64. struct CV_EXPORTS LayerParams : public Dict
  65. {
  66. std::vector<Blob> blobs; //!< List of learned parameters stored as blobs.
  67. String name; //!< Name of the layer instance (optional, can be used internal purposes).
  68. String type; //!< Type name which was used for creating layer by layer factory (optional).
  69. };
  70. /** @brief This interface class allows to build new Layers - are building blocks of networks.
  71. *
  72. * Each class, derived from Layer, must implement allocate() methods to declare own outputs and forward() to compute outputs.
  73. * Also before using the new layer into networks you must register your layer by using one of @ref LayerFactoryModule "LayerFactory" macros.
  74. */
  75. struct CV_EXPORTS Layer
  76. {
  77. //! List of learned parameters must be stored here to allow read them by using Net::getParam().
  78. std::vector<Blob> blobs;
  79. /** @brief Allocates internal buffers and output blobs with respect to the shape of inputs.
  80. * @param[in] input vector of already allocated input blobs
  81. * @param[out] output vector of output blobs, which must be allocated
  82. *
  83. * This method must create each produced blob according to shape of @p input blobs and internal layer params.
  84. * If this method is called first time then @p output vector consists from empty blobs and its size determined by number of output connections.
  85. * This method can be called multiple times if size of any @p input blob was changed.
  86. */
  87. virtual void allocate(const std::vector<Blob*> &input, std::vector<Blob> &output) = 0;
  88. /** @brief Given the @p input blobs, computes the output @p blobs.
  89. * @param[in] input the input blobs.
  90. * @param[out] output allocated output blobs, which will store results of the computation.
  91. */
  92. virtual void forward(std::vector<Blob*> &input, std::vector<Blob> &output) = 0;
  93. /** @brief Returns index of input blob into the input array.
  94. * @param inputName label of input blob
  95. *
  96. * Each layer input and output can be labeled to easily identify them using "%<layer_name%>[.output_name]" notation.
  97. * This method maps label of input blob to its index into input vector.
  98. */
  99. virtual int inputNameToIndex(String inputName);
  100. /** @brief Returns index of output blob in output array.
  101. * @see inputNameToIndex()
  102. */
  103. virtual int outputNameToIndex(String outputName);
  104. String name; //!< Name of the layer instance, can be used for logging or other internal purposes.
  105. String type; //!< Type name which was used for creating layer by layer factory.
  106. Layer();
  107. explicit Layer(const LayerParams &params); //!< Initialize only #name, #type and #blobs fields.
  108. virtual ~Layer();
  109. };
  110. /** @brief This class allows to create and manipulate comprehensive artificial neural networks.
  111. *
  112. * Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances,
  113. * and edges specify relationships between layers inputs and outputs.
  114. *
  115. * Each network layer has unique integer id and unique string name inside its network.
  116. * LayerId can store either layer name or layer id.
  117. *
  118. * This class supports reference counting of its instances, i. e. copies point to the same instance.
  119. */
  120. class CV_EXPORTS Net
  121. {
  122. public:
  123. Net(); //!< Default constructor.
  124. ~Net(); //!< Destructor frees the net only if there aren't references to the net anymore.
  125. /** @brief Adds new layer to the net.
  126. * @param name unique name of the adding layer.
  127. * @param type typename of the adding layer (type must be registered in LayerRegister).
  128. * @param params parameters which will be used to initialize the creating layer.
  129. * @returns unique identifier of created layer, or -1 if a failure will happen.
  130. */
  131. int addLayer(const String &name, const String &type, LayerParams &params);
  132. /** @brief Adds new layer and connects its first input to the first output of previously added layer.
  133. * @see addLayer()
  134. */
  135. int addLayerToPrev(const String &name, const String &type, LayerParams &params);
  136. /** @brief Converts string name of the layer to the integer identifier.
  137. * @returns id of the layer, or -1 if the layer wasn't found.
  138. */
  139. int getLayerId(const String &layer);
  140. /** @brief Container for strings and integers. */
  141. typedef DictValue LayerId;
  142. /** @brief Delete layer for the network (not implemented yet) */
  143. void deleteLayer(LayerId layer);
  144. /** @brief Connects output of the first layer to input of the second layer.
  145. * @param outPin descriptor of the first layer output.
  146. * @param inpPin descriptor of the second layer input.
  147. *
  148. * Descriptors have the following template <DFN>&lt;layer_name&gt;[.input_number]</DFN>:
  149. * - the first part of the template <DFN>layer_name</DFN> is sting name of the added layer.
  150. * If this part is empty then the network input pseudo layer will be used;
  151. * - the second optional part of the template <DFN>input_number</DFN>
  152. * is either number of the layer input, either label one.
  153. * If this part is omitted then the first layer input will be used.
  154. *
  155. * @see setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex()
  156. */
  157. void connect(String outPin, String inpPin);
  158. /** @brief Connects #@p outNum output of the first layer to #@p inNum input of the second layer.
  159. * @param outLayerId identifier of the first layer
  160. * @param inpLayerId identifier of the second layer
  161. * @param outNum number of the first layer output
  162. * @param inpNum number of the second layer input
  163. */
  164. void connect(int outLayerId, int outNum, int inpLayerId, int inpNum);
  165. /** @brief Sets ouputs names of the network input pseudo layer.
  166. *
  167. * Each net always has special own the network input pseudo layer with id=0.
  168. * This layer stores the user blobs only and don't make any computations.
  169. * In fact, this layer provides the only way to pass user data into the network.
  170. * As any other layer, this layer can label its outputs and this function provides an easy way to do this.
  171. */
  172. void setNetInputs(const std::vector<String> &inputBlobNames);
  173. /** @brief Runs forward pass for the whole network */
  174. void forward();
  175. /** @brief Runs forward pass to compute output of layer @p toLayer */
  176. void forward(LayerId toLayer);
  177. /** @brief Runs forward pass to compute output of layer @p toLayer, but computations start from @p startLayer */
  178. void forward(LayerId startLayer, LayerId toLayer);
  179. /** @overload */
  180. void forward(const std::vector<LayerId> &startLayers, const std::vector<LayerId> &toLayers);
  181. //TODO:
  182. /** @brief Optimized forward.
  183. * @warning Not implemented yet.
  184. * @details Makes forward only those layers which weren't changed after previous forward().
  185. */
  186. void forwardOpt(LayerId toLayer);
  187. /** @overload */
  188. void forwardOpt(const std::vector<LayerId> &toLayers);
  189. /** @brief Sets the new value for the layer output blob
  190. * @param outputName descriptor of the updating layer output blob.
  191. * @param blob new blob.
  192. * @see connect(String, String) to know format of the descriptor.
  193. * @note If updating blob is not empty then @p blob must have the same shape,
  194. * because network reshaping is not implemented yet.
  195. */
  196. void setBlob(String outputName, const Blob &blob);
  197. /** @brief Returns the layer output blob.
  198. * @param outputName the descriptor of the returning layer output blob.
  199. * @see connect(String, String)
  200. */
  201. Blob getBlob(String outputName);
  202. /** @brief Sets the new value for the learned param of the layer.
  203. * @param layer name or id of the layer.
  204. * @param numParam index of the layer parameter in the Layer::blobs array.
  205. * @param blob the new value.
  206. * @see Layer::blobs
  207. * @note If shape of the new blob differs from the previous shape,
  208. * then the following forward pass may fail.
  209. */
  210. void setParam(LayerId layer, int numParam, const Blob &blob);
  211. /** @brief Returns parameter blob of the layer.
  212. * @param layer name or id of the layer.
  213. * @param numParam index of the layer parameter in the Layer::blobs array.
  214. * @see Layer::blobs
  215. */
  216. Blob getParam(LayerId layer, int numParam = 0);
  217. private:
  218. struct Impl;
  219. Ptr<Impl> impl;
  220. };
  221. /** @brief Small interface class for loading trained serialized models of different dnn-frameworks. */
  222. class Importer
  223. {
  224. public:
  225. /** @brief Adds loaded layers into the @p net and sets connetions between them. */
  226. virtual void populateNet(Net net) = 0;
  227. virtual ~Importer();
  228. };
  229. /** @brief Creates the importer of <a href="http://caffe.berkeleyvision.org">Caffe</a> framework network.
  230. * @param prototxt path to the .prototxt file with text description of the network architecture.
  231. * @param caffeModel path to the .caffemodel file with learned network.
  232. * @returns Pointer to the created importer, NULL in failure cases.
  233. */
  234. CV_EXPORTS Ptr<Importer> createCaffeImporter(const String &prototxt, const String &caffeModel = String());
  235. /** @brief Creates the importer of <a href="http://torch.ch">Torch7</a> framework network.
  236. * @param filename path to the file, dumped from Torch by using torch.save() function.
  237. * @param isBinary specifies whether the network was serialized in ascii mode or binary.
  238. * @returns Pointer to the created importer, NULL in failure cases.
  239. *
  240. * @warning Torch7 importer is experimental now, you need explicitly set CMake opencv_dnn_BUILD_TORCH_IMPORTER flag to compile its.
  241. *
  242. * @note Ascii mode of Torch serializer is more preferable, because binary mode extensively use long type of C language,
  243. * which has different bit-length on different systems.
  244. *
  245. * The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object
  246. * with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors.
  247. *
  248. * List of supported layers (i.e. object instances derived from Torch nn.Module class):
  249. * - nn.Sequential
  250. * - nn.Parallel
  251. * - nn.Concat
  252. * - nn.Linear
  253. * - nn.SpatialConvolution
  254. * - nn.SpatialMaxPooling, nn.SpatialAveragePooling
  255. * - nn.ReLU, nn.TanH, nn.Sigmoid
  256. * - nn.Reshape
  257. *
  258. * Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported.
  259. */
  260. CV_EXPORTS Ptr<Importer> createTorchImporter(const String &filename, bool isBinary = true);
  261. /** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework.
  262. * @warning This function has the same limitations as createTorchImporter().
  263. */
  264. CV_EXPORTS Blob readTorchBlob(const String &filename, bool isBinary = true);
  265. //! @}
  266. }
  267. }
  268. #include <opencv2/dnn/layer.hpp>
  269. #include <opencv2/dnn/dnn.inl.hpp>
  270. #endif /* __OPENCV_DNN_DNN_HPP__ */