quaternion.hpp 79 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773
  1. // boost quaternion.hpp header file
  2. // (C) Copyright Hubert Holin 2001.
  3. // Distributed under the Boost Software License, Version 1.0. (See
  4. // accompanying file LICENSE_1_0.txt or copy at
  5. // http://www.boost.org/LICENSE_1_0.txt)
  6. // See http://www.boost.org for updates, documentation, and revision history.
  7. #ifndef BOOST_QUATERNION_HPP
  8. #define BOOST_QUATERNION_HPP
  9. #include <complex>
  10. #include <iosfwd> // for the "<<" and ">>" operators
  11. #include <sstream> // for the "<<" operator
  12. #include <boost/config.hpp> // for BOOST_NO_STD_LOCALE
  13. #include <boost/detail/workaround.hpp>
  14. #ifndef BOOST_NO_STD_LOCALE
  15. #include <locale> // for the "<<" operator
  16. #endif /* BOOST_NO_STD_LOCALE */
  17. #include <valarray>
  18. #include <boost/math/special_functions/sinc.hpp> // for the Sinus cardinal
  19. #include <boost/math/special_functions/sinhc.hpp> // for the Hyperbolic Sinus cardinal
  20. namespace boost
  21. {
  22. namespace math
  23. {
  24. #define BOOST_QUATERNION_ACCESSOR_GENERATOR(type) \
  25. type real() const \
  26. { \
  27. return(a); \
  28. } \
  29. \
  30. quaternion<type> unreal() const \
  31. { \
  32. return(quaternion<type>(static_cast<type>(0),b,c,d)); \
  33. } \
  34. \
  35. type R_component_1() const \
  36. { \
  37. return(a); \
  38. } \
  39. \
  40. type R_component_2() const \
  41. { \
  42. return(b); \
  43. } \
  44. \
  45. type R_component_3() const \
  46. { \
  47. return(c); \
  48. } \
  49. \
  50. type R_component_4() const \
  51. { \
  52. return(d); \
  53. } \
  54. \
  55. ::std::complex<type> C_component_1() const \
  56. { \
  57. return(::std::complex<type>(a,b)); \
  58. } \
  59. \
  60. ::std::complex<type> C_component_2() const \
  61. { \
  62. return(::std::complex<type>(c,d)); \
  63. }
  64. #define BOOST_QUATERNION_MEMBER_ASSIGNMENT_GENERATOR(type) \
  65. template<typename X> \
  66. quaternion<type> & operator = (quaternion<X> const & a_affecter) \
  67. { \
  68. a = static_cast<type>(a_affecter.R_component_1()); \
  69. b = static_cast<type>(a_affecter.R_component_2()); \
  70. c = static_cast<type>(a_affecter.R_component_3()); \
  71. d = static_cast<type>(a_affecter.R_component_4()); \
  72. \
  73. return(*this); \
  74. } \
  75. \
  76. quaternion<type> & operator = (quaternion<type> const & a_affecter) \
  77. { \
  78. a = a_affecter.a; \
  79. b = a_affecter.b; \
  80. c = a_affecter.c; \
  81. d = a_affecter.d; \
  82. \
  83. return(*this); \
  84. } \
  85. \
  86. quaternion<type> & operator = (type const & a_affecter) \
  87. { \
  88. a = a_affecter; \
  89. \
  90. b = c = d = static_cast<type>(0); \
  91. \
  92. return(*this); \
  93. } \
  94. \
  95. quaternion<type> & operator = (::std::complex<type> const & a_affecter) \
  96. { \
  97. a = a_affecter.real(); \
  98. b = a_affecter.imag(); \
  99. \
  100. c = d = static_cast<type>(0); \
  101. \
  102. return(*this); \
  103. }
  104. #define BOOST_QUATERNION_MEMBER_DATA_GENERATOR(type) \
  105. type a; \
  106. type b; \
  107. type c; \
  108. type d;
  109. template<typename T>
  110. class quaternion
  111. {
  112. public:
  113. typedef T value_type;
  114. // constructor for H seen as R^4
  115. // (also default constructor)
  116. explicit quaternion( T const & requested_a = T(),
  117. T const & requested_b = T(),
  118. T const & requested_c = T(),
  119. T const & requested_d = T())
  120. : a(requested_a),
  121. b(requested_b),
  122. c(requested_c),
  123. d(requested_d)
  124. {
  125. // nothing to do!
  126. }
  127. // constructor for H seen as C^2
  128. explicit quaternion( ::std::complex<T> const & z0,
  129. ::std::complex<T> const & z1 = ::std::complex<T>())
  130. : a(z0.real()),
  131. b(z0.imag()),
  132. c(z1.real()),
  133. d(z1.imag())
  134. {
  135. // nothing to do!
  136. }
  137. // UNtemplated copy constructor
  138. // (this is taken care of by the compiler itself)
  139. // templated copy constructor
  140. template<typename X>
  141. explicit quaternion(quaternion<X> const & a_recopier)
  142. : a(static_cast<T>(a_recopier.R_component_1())),
  143. b(static_cast<T>(a_recopier.R_component_2())),
  144. c(static_cast<T>(a_recopier.R_component_3())),
  145. d(static_cast<T>(a_recopier.R_component_4()))
  146. {
  147. // nothing to do!
  148. }
  149. // destructor
  150. // (this is taken care of by the compiler itself)
  151. // accessors
  152. //
  153. // Note: Like complex number, quaternions do have a meaningful notion of "real part",
  154. // but unlike them there is no meaningful notion of "imaginary part".
  155. // Instead there is an "unreal part" which itself is a quaternion, and usually
  156. // nothing simpler (as opposed to the complex number case).
  157. // However, for practicallity, there are accessors for the other components
  158. // (these are necessary for the templated copy constructor, for instance).
  159. BOOST_QUATERNION_ACCESSOR_GENERATOR(T)
  160. // assignment operators
  161. BOOST_QUATERNION_MEMBER_ASSIGNMENT_GENERATOR(T)
  162. // other assignment-related operators
  163. //
  164. // NOTE: Quaternion multiplication is *NOT* commutative;
  165. // symbolically, "q *= rhs;" means "q = q * rhs;"
  166. // and "q /= rhs;" means "q = q * inverse_of(rhs);"
  167. quaternion<T> & operator += (T const & rhs)
  168. {
  169. T at = a + rhs; // exception guard
  170. a = at;
  171. return(*this);
  172. }
  173. quaternion<T> & operator += (::std::complex<T> const & rhs)
  174. {
  175. T at = a + rhs.real(); // exception guard
  176. T bt = b + rhs.imag(); // exception guard
  177. a = at;
  178. b = bt;
  179. return(*this);
  180. }
  181. template<typename X>
  182. quaternion<T> & operator += (quaternion<X> const & rhs)
  183. {
  184. T at = a + static_cast<T>(rhs.R_component_1()); // exception guard
  185. T bt = b + static_cast<T>(rhs.R_component_2()); // exception guard
  186. T ct = c + static_cast<T>(rhs.R_component_3()); // exception guard
  187. T dt = d + static_cast<T>(rhs.R_component_4()); // exception guard
  188. a = at;
  189. b = bt;
  190. c = ct;
  191. d = dt;
  192. return(*this);
  193. }
  194. quaternion<T> & operator -= (T const & rhs)
  195. {
  196. T at = a - rhs; // exception guard
  197. a = at;
  198. return(*this);
  199. }
  200. quaternion<T> & operator -= (::std::complex<T> const & rhs)
  201. {
  202. T at = a - rhs.real(); // exception guard
  203. T bt = b - rhs.imag(); // exception guard
  204. a = at;
  205. b = bt;
  206. return(*this);
  207. }
  208. template<typename X>
  209. quaternion<T> & operator -= (quaternion<X> const & rhs)
  210. {
  211. T at = a - static_cast<T>(rhs.R_component_1()); // exception guard
  212. T bt = b - static_cast<T>(rhs.R_component_2()); // exception guard
  213. T ct = c - static_cast<T>(rhs.R_component_3()); // exception guard
  214. T dt = d - static_cast<T>(rhs.R_component_4()); // exception guard
  215. a = at;
  216. b = bt;
  217. c = ct;
  218. d = dt;
  219. return(*this);
  220. }
  221. quaternion<T> & operator *= (T const & rhs)
  222. {
  223. T at = a * rhs; // exception guard
  224. T bt = b * rhs; // exception guard
  225. T ct = c * rhs; // exception guard
  226. T dt = d * rhs; // exception guard
  227. a = at;
  228. b = bt;
  229. c = ct;
  230. d = dt;
  231. return(*this);
  232. }
  233. quaternion<T> & operator *= (::std::complex<T> const & rhs)
  234. {
  235. T ar = rhs.real();
  236. T br = rhs.imag();
  237. T at = +a*ar-b*br;
  238. T bt = +a*br+b*ar;
  239. T ct = +c*ar+d*br;
  240. T dt = -c*br+d*ar;
  241. a = at;
  242. b = bt;
  243. c = ct;
  244. d = dt;
  245. return(*this);
  246. }
  247. template<typename X>
  248. quaternion<T> & operator *= (quaternion<X> const & rhs)
  249. {
  250. T ar = static_cast<T>(rhs.R_component_1());
  251. T br = static_cast<T>(rhs.R_component_2());
  252. T cr = static_cast<T>(rhs.R_component_3());
  253. T dr = static_cast<T>(rhs.R_component_4());
  254. T at = +a*ar-b*br-c*cr-d*dr;
  255. T bt = +a*br+b*ar+c*dr-d*cr; //(a*br+ar*b)+(c*dr-cr*d);
  256. T ct = +a*cr-b*dr+c*ar+d*br; //(a*cr+ar*c)+(d*br-dr*b);
  257. T dt = +a*dr+b*cr-c*br+d*ar; //(a*dr+ar*d)+(b*cr-br*c);
  258. a = at;
  259. b = bt;
  260. c = ct;
  261. d = dt;
  262. return(*this);
  263. }
  264. quaternion<T> & operator /= (T const & rhs)
  265. {
  266. T at = a / rhs; // exception guard
  267. T bt = b / rhs; // exception guard
  268. T ct = c / rhs; // exception guard
  269. T dt = d / rhs; // exception guard
  270. a = at;
  271. b = bt;
  272. c = ct;
  273. d = dt;
  274. return(*this);
  275. }
  276. quaternion<T> & operator /= (::std::complex<T> const & rhs)
  277. {
  278. T ar = rhs.real();
  279. T br = rhs.imag();
  280. T denominator = ar*ar+br*br;
  281. T at = (+a*ar+b*br)/denominator; //(a*ar+b*br)/denominator;
  282. T bt = (-a*br+b*ar)/denominator; //(ar*b-a*br)/denominator;
  283. T ct = (+c*ar-d*br)/denominator; //(ar*c-d*br)/denominator;
  284. T dt = (+c*br+d*ar)/denominator; //(ar*d+br*c)/denominator;
  285. a = at;
  286. b = bt;
  287. c = ct;
  288. d = dt;
  289. return(*this);
  290. }
  291. template<typename X>
  292. quaternion<T> & operator /= (quaternion<X> const & rhs)
  293. {
  294. T ar = static_cast<T>(rhs.R_component_1());
  295. T br = static_cast<T>(rhs.R_component_2());
  296. T cr = static_cast<T>(rhs.R_component_3());
  297. T dr = static_cast<T>(rhs.R_component_4());
  298. T denominator = ar*ar+br*br+cr*cr+dr*dr;
  299. T at = (+a*ar+b*br+c*cr+d*dr)/denominator; //(a*ar+b*br+c*cr+d*dr)/denominator;
  300. T bt = (-a*br+b*ar-c*dr+d*cr)/denominator; //((ar*b-a*br)+(cr*d-c*dr))/denominator;
  301. T ct = (-a*cr+b*dr+c*ar-d*br)/denominator; //((ar*c-a*cr)+(dr*b-d*br))/denominator;
  302. T dt = (-a*dr-b*cr+c*br+d*ar)/denominator; //((ar*d-a*dr)+(br*c-b*cr))/denominator;
  303. a = at;
  304. b = bt;
  305. c = ct;
  306. d = dt;
  307. return(*this);
  308. }
  309. protected:
  310. BOOST_QUATERNION_MEMBER_DATA_GENERATOR(T)
  311. private:
  312. };
  313. // declaration of quaternion specialization
  314. template<> class quaternion<float>;
  315. template<> class quaternion<double>;
  316. template<> class quaternion<long double>;
  317. // helper templates for converting copy constructors (declaration)
  318. namespace detail
  319. {
  320. template< typename T,
  321. typename U
  322. >
  323. quaternion<T> quaternion_type_converter(quaternion<U> const & rhs);
  324. }
  325. // implementation of quaternion specialization
  326. #define BOOST_QUATERNION_CONSTRUCTOR_GENERATOR(type) \
  327. explicit quaternion( type const & requested_a = static_cast<type>(0), \
  328. type const & requested_b = static_cast<type>(0), \
  329. type const & requested_c = static_cast<type>(0), \
  330. type const & requested_d = static_cast<type>(0)) \
  331. : a(requested_a), \
  332. b(requested_b), \
  333. c(requested_c), \
  334. d(requested_d) \
  335. { \
  336. } \
  337. \
  338. explicit quaternion( ::std::complex<type> const & z0, \
  339. ::std::complex<type> const & z1 = ::std::complex<type>()) \
  340. : a(z0.real()), \
  341. b(z0.imag()), \
  342. c(z1.real()), \
  343. d(z1.imag()) \
  344. { \
  345. }
  346. #define BOOST_QUATERNION_MEMBER_ADD_GENERATOR_1(type) \
  347. quaternion<type> & operator += (type const & rhs) \
  348. { \
  349. a += rhs; \
  350. \
  351. return(*this); \
  352. }
  353. #define BOOST_QUATERNION_MEMBER_ADD_GENERATOR_2(type) \
  354. quaternion<type> & operator += (::std::complex<type> const & rhs) \
  355. { \
  356. a += rhs.real(); \
  357. b += rhs.imag(); \
  358. \
  359. return(*this); \
  360. }
  361. #define BOOST_QUATERNION_MEMBER_ADD_GENERATOR_3(type) \
  362. template<typename X> \
  363. quaternion<type> & operator += (quaternion<X> const & rhs) \
  364. { \
  365. a += static_cast<type>(rhs.R_component_1()); \
  366. b += static_cast<type>(rhs.R_component_2()); \
  367. c += static_cast<type>(rhs.R_component_3()); \
  368. d += static_cast<type>(rhs.R_component_4()); \
  369. \
  370. return(*this); \
  371. }
  372. #define BOOST_QUATERNION_MEMBER_SUB_GENERATOR_1(type) \
  373. quaternion<type> & operator -= (type const & rhs) \
  374. { \
  375. a -= rhs; \
  376. \
  377. return(*this); \
  378. }
  379. #define BOOST_QUATERNION_MEMBER_SUB_GENERATOR_2(type) \
  380. quaternion<type> & operator -= (::std::complex<type> const & rhs) \
  381. { \
  382. a -= rhs.real(); \
  383. b -= rhs.imag(); \
  384. \
  385. return(*this); \
  386. }
  387. #define BOOST_QUATERNION_MEMBER_SUB_GENERATOR_3(type) \
  388. template<typename X> \
  389. quaternion<type> & operator -= (quaternion<X> const & rhs) \
  390. { \
  391. a -= static_cast<type>(rhs.R_component_1()); \
  392. b -= static_cast<type>(rhs.R_component_2()); \
  393. c -= static_cast<type>(rhs.R_component_3()); \
  394. d -= static_cast<type>(rhs.R_component_4()); \
  395. \
  396. return(*this); \
  397. }
  398. #define BOOST_QUATERNION_MEMBER_MUL_GENERATOR_1(type) \
  399. quaternion<type> & operator *= (type const & rhs) \
  400. { \
  401. a *= rhs; \
  402. b *= rhs; \
  403. c *= rhs; \
  404. d *= rhs; \
  405. \
  406. return(*this); \
  407. }
  408. #define BOOST_QUATERNION_MEMBER_MUL_GENERATOR_2(type) \
  409. quaternion<type> & operator *= (::std::complex<type> const & rhs) \
  410. { \
  411. type ar = rhs.real(); \
  412. type br = rhs.imag(); \
  413. \
  414. type at = +a*ar-b*br; \
  415. type bt = +a*br+b*ar; \
  416. type ct = +c*ar+d*br; \
  417. type dt = -c*br+d*ar; \
  418. \
  419. a = at; \
  420. b = bt; \
  421. c = ct; \
  422. d = dt; \
  423. \
  424. return(*this); \
  425. }
  426. #define BOOST_QUATERNION_MEMBER_MUL_GENERATOR_3(type) \
  427. template<typename X> \
  428. quaternion<type> & operator *= (quaternion<X> const & rhs) \
  429. { \
  430. type ar = static_cast<type>(rhs.R_component_1()); \
  431. type br = static_cast<type>(rhs.R_component_2()); \
  432. type cr = static_cast<type>(rhs.R_component_3()); \
  433. type dr = static_cast<type>(rhs.R_component_4()); \
  434. \
  435. type at = +a*ar-b*br-c*cr-d*dr; \
  436. type bt = +a*br+b*ar+c*dr-d*cr; \
  437. type ct = +a*cr-b*dr+c*ar+d*br; \
  438. type dt = +a*dr+b*cr-c*br+d*ar; \
  439. \
  440. a = at; \
  441. b = bt; \
  442. c = ct; \
  443. d = dt; \
  444. \
  445. return(*this); \
  446. }
  447. // There is quite a lot of repetition in the code below. This is intentional.
  448. // The last conditional block is the normal form, and the others merely
  449. // consist of workarounds for various compiler deficiencies. Hopefuly, when
  450. // more compilers are conformant and we can retire support for those that are
  451. // not, we will be able to remove the clutter. This is makes the situation
  452. // (painfully) explicit.
  453. #define BOOST_QUATERNION_MEMBER_DIV_GENERATOR_1(type) \
  454. quaternion<type> & operator /= (type const & rhs) \
  455. { \
  456. a /= rhs; \
  457. b /= rhs; \
  458. c /= rhs; \
  459. d /= rhs; \
  460. \
  461. return(*this); \
  462. }
  463. #if defined(BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP)
  464. #define BOOST_QUATERNION_MEMBER_DIV_GENERATOR_2(type) \
  465. quaternion<type> & operator /= (::std::complex<type> const & rhs) \
  466. { \
  467. using ::std::valarray; \
  468. using ::std::abs; \
  469. \
  470. valarray<type> tr(2); \
  471. \
  472. tr[0] = rhs.real(); \
  473. tr[1] = rhs.imag(); \
  474. \
  475. type mixam = static_cast<type>(1)/(abs(tr).max)(); \
  476. \
  477. tr *= mixam; \
  478. \
  479. valarray<type> tt(4); \
  480. \
  481. tt[0] = +a*tr[0]+b*tr[1]; \
  482. tt[1] = -a*tr[1]+b*tr[0]; \
  483. tt[2] = +c*tr[0]-d*tr[1]; \
  484. tt[3] = +c*tr[1]+d*tr[0]; \
  485. \
  486. tr *= tr; \
  487. \
  488. tt *= (mixam/tr.sum()); \
  489. \
  490. a = tt[0]; \
  491. b = tt[1]; \
  492. c = tt[2]; \
  493. d = tt[3]; \
  494. \
  495. return(*this); \
  496. }
  497. #else
  498. #define BOOST_QUATERNION_MEMBER_DIV_GENERATOR_2(type) \
  499. quaternion<type> & operator /= (::std::complex<type> const & rhs) \
  500. { \
  501. using ::std::valarray; \
  502. \
  503. valarray<type> tr(2); \
  504. \
  505. tr[0] = rhs.real(); \
  506. tr[1] = rhs.imag(); \
  507. \
  508. type mixam = static_cast<type>(1)/(abs(tr).max)(); \
  509. \
  510. tr *= mixam; \
  511. \
  512. valarray<type> tt(4); \
  513. \
  514. tt[0] = +a*tr[0]+b*tr[1]; \
  515. tt[1] = -a*tr[1]+b*tr[0]; \
  516. tt[2] = +c*tr[0]-d*tr[1]; \
  517. tt[3] = +c*tr[1]+d*tr[0]; \
  518. \
  519. tr *= tr; \
  520. \
  521. tt *= (mixam/tr.sum()); \
  522. \
  523. a = tt[0]; \
  524. b = tt[1]; \
  525. c = tt[2]; \
  526. d = tt[3]; \
  527. \
  528. return(*this); \
  529. }
  530. #endif /* BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP */
  531. #if defined(BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP)
  532. #define BOOST_QUATERNION_MEMBER_DIV_GENERATOR_3(type) \
  533. template<typename X> \
  534. quaternion<type> & operator /= (quaternion<X> const & rhs) \
  535. { \
  536. using ::std::valarray; \
  537. using ::std::abs; \
  538. \
  539. valarray<type> tr(4); \
  540. \
  541. tr[0] = static_cast<type>(rhs.R_component_1()); \
  542. tr[1] = static_cast<type>(rhs.R_component_2()); \
  543. tr[2] = static_cast<type>(rhs.R_component_3()); \
  544. tr[3] = static_cast<type>(rhs.R_component_4()); \
  545. \
  546. type mixam = static_cast<type>(1)/(abs(tr).max)(); \
  547. \
  548. tr *= mixam; \
  549. \
  550. valarray<type> tt(4); \
  551. \
  552. tt[0] = +a*tr[0]+b*tr[1]+c*tr[2]+d*tr[3]; \
  553. tt[1] = -a*tr[1]+b*tr[0]-c*tr[3]+d*tr[2]; \
  554. tt[2] = -a*tr[2]+b*tr[3]+c*tr[0]-d*tr[1]; \
  555. tt[3] = -a*tr[3]-b*tr[2]+c*tr[1]+d*tr[0]; \
  556. \
  557. tr *= tr; \
  558. \
  559. tt *= (mixam/tr.sum()); \
  560. \
  561. a = tt[0]; \
  562. b = tt[1]; \
  563. c = tt[2]; \
  564. d = tt[3]; \
  565. \
  566. return(*this); \
  567. }
  568. #else
  569. #define BOOST_QUATERNION_MEMBER_DIV_GENERATOR_3(type) \
  570. template<typename X> \
  571. quaternion<type> & operator /= (quaternion<X> const & rhs) \
  572. { \
  573. using ::std::valarray; \
  574. \
  575. valarray<type> tr(4); \
  576. \
  577. tr[0] = static_cast<type>(rhs.R_component_1()); \
  578. tr[1] = static_cast<type>(rhs.R_component_2()); \
  579. tr[2] = static_cast<type>(rhs.R_component_3()); \
  580. tr[3] = static_cast<type>(rhs.R_component_4()); \
  581. \
  582. type mixam = static_cast<type>(1)/(abs(tr).max)(); \
  583. \
  584. tr *= mixam; \
  585. \
  586. valarray<type> tt(4); \
  587. \
  588. tt[0] = +a*tr[0]+b*tr[1]+c*tr[2]+d*tr[3]; \
  589. tt[1] = -a*tr[1]+b*tr[0]-c*tr[3]+d*tr[2]; \
  590. tt[2] = -a*tr[2]+b*tr[3]+c*tr[0]-d*tr[1]; \
  591. tt[3] = -a*tr[3]-b*tr[2]+c*tr[1]+d*tr[0]; \
  592. \
  593. tr *= tr; \
  594. \
  595. tt *= (mixam/tr.sum()); \
  596. \
  597. a = tt[0]; \
  598. b = tt[1]; \
  599. c = tt[2]; \
  600. d = tt[3]; \
  601. \
  602. return(*this); \
  603. }
  604. #endif /* BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP */
  605. #define BOOST_QUATERNION_MEMBER_ADD_GENERATOR(type) \
  606. BOOST_QUATERNION_MEMBER_ADD_GENERATOR_1(type) \
  607. BOOST_QUATERNION_MEMBER_ADD_GENERATOR_2(type) \
  608. BOOST_QUATERNION_MEMBER_ADD_GENERATOR_3(type)
  609. #define BOOST_QUATERNION_MEMBER_SUB_GENERATOR(type) \
  610. BOOST_QUATERNION_MEMBER_SUB_GENERATOR_1(type) \
  611. BOOST_QUATERNION_MEMBER_SUB_GENERATOR_2(type) \
  612. BOOST_QUATERNION_MEMBER_SUB_GENERATOR_3(type)
  613. #define BOOST_QUATERNION_MEMBER_MUL_GENERATOR(type) \
  614. BOOST_QUATERNION_MEMBER_MUL_GENERATOR_1(type) \
  615. BOOST_QUATERNION_MEMBER_MUL_GENERATOR_2(type) \
  616. BOOST_QUATERNION_MEMBER_MUL_GENERATOR_3(type)
  617. #define BOOST_QUATERNION_MEMBER_DIV_GENERATOR(type) \
  618. BOOST_QUATERNION_MEMBER_DIV_GENERATOR_1(type) \
  619. BOOST_QUATERNION_MEMBER_DIV_GENERATOR_2(type) \
  620. BOOST_QUATERNION_MEMBER_DIV_GENERATOR_3(type)
  621. #define BOOST_QUATERNION_MEMBER_ALGEBRAIC_GENERATOR(type) \
  622. BOOST_QUATERNION_MEMBER_ADD_GENERATOR(type) \
  623. BOOST_QUATERNION_MEMBER_SUB_GENERATOR(type) \
  624. BOOST_QUATERNION_MEMBER_MUL_GENERATOR(type) \
  625. BOOST_QUATERNION_MEMBER_DIV_GENERATOR(type)
  626. template<>
  627. class quaternion<float>
  628. {
  629. public:
  630. typedef float value_type;
  631. BOOST_QUATERNION_CONSTRUCTOR_GENERATOR(float)
  632. // UNtemplated copy constructor
  633. // (this is taken care of by the compiler itself)
  634. // explicit copy constructors (precision-loosing converters)
  635. explicit quaternion(quaternion<double> const & a_recopier)
  636. {
  637. *this = detail::quaternion_type_converter<float, double>(a_recopier);
  638. }
  639. explicit quaternion(quaternion<long double> const & a_recopier)
  640. {
  641. *this = detail::quaternion_type_converter<float, long double>(a_recopier);
  642. }
  643. // destructor
  644. // (this is taken care of by the compiler itself)
  645. // accessors
  646. //
  647. // Note: Like complex number, quaternions do have a meaningful notion of "real part",
  648. // but unlike them there is no meaningful notion of "imaginary part".
  649. // Instead there is an "unreal part" which itself is a quaternion, and usually
  650. // nothing simpler (as opposed to the complex number case).
  651. // However, for practicallity, there are accessors for the other components
  652. // (these are necessary for the templated copy constructor, for instance).
  653. BOOST_QUATERNION_ACCESSOR_GENERATOR(float)
  654. // assignment operators
  655. BOOST_QUATERNION_MEMBER_ASSIGNMENT_GENERATOR(float)
  656. // other assignment-related operators
  657. //
  658. // NOTE: Quaternion multiplication is *NOT* commutative;
  659. // symbolically, "q *= rhs;" means "q = q * rhs;"
  660. // and "q /= rhs;" means "q = q * inverse_of(rhs);"
  661. BOOST_QUATERNION_MEMBER_ALGEBRAIC_GENERATOR(float)
  662. protected:
  663. BOOST_QUATERNION_MEMBER_DATA_GENERATOR(float)
  664. private:
  665. };
  666. template<>
  667. class quaternion<double>
  668. {
  669. public:
  670. typedef double value_type;
  671. BOOST_QUATERNION_CONSTRUCTOR_GENERATOR(double)
  672. // UNtemplated copy constructor
  673. // (this is taken care of by the compiler itself)
  674. // converting copy constructor
  675. explicit quaternion(quaternion<float> const & a_recopier)
  676. {
  677. *this = detail::quaternion_type_converter<double, float>(a_recopier);
  678. }
  679. // explicit copy constructors (precision-loosing converters)
  680. explicit quaternion(quaternion<long double> const & a_recopier)
  681. {
  682. *this = detail::quaternion_type_converter<double, long double>(a_recopier);
  683. }
  684. // destructor
  685. // (this is taken care of by the compiler itself)
  686. // accessors
  687. //
  688. // Note: Like complex number, quaternions do have a meaningful notion of "real part",
  689. // but unlike them there is no meaningful notion of "imaginary part".
  690. // Instead there is an "unreal part" which itself is a quaternion, and usually
  691. // nothing simpler (as opposed to the complex number case).
  692. // However, for practicallity, there are accessors for the other components
  693. // (these are necessary for the templated copy constructor, for instance).
  694. BOOST_QUATERNION_ACCESSOR_GENERATOR(double)
  695. // assignment operators
  696. BOOST_QUATERNION_MEMBER_ASSIGNMENT_GENERATOR(double)
  697. // other assignment-related operators
  698. //
  699. // NOTE: Quaternion multiplication is *NOT* commutative;
  700. // symbolically, "q *= rhs;" means "q = q * rhs;"
  701. // and "q /= rhs;" means "q = q * inverse_of(rhs);"
  702. BOOST_QUATERNION_MEMBER_ALGEBRAIC_GENERATOR(double)
  703. protected:
  704. BOOST_QUATERNION_MEMBER_DATA_GENERATOR(double)
  705. private:
  706. };
  707. template<>
  708. class quaternion<long double>
  709. {
  710. public:
  711. typedef long double value_type;
  712. BOOST_QUATERNION_CONSTRUCTOR_GENERATOR(long double)
  713. // UNtemplated copy constructor
  714. // (this is taken care of by the compiler itself)
  715. // converting copy constructors
  716. explicit quaternion(quaternion<float> const & a_recopier)
  717. {
  718. *this = detail::quaternion_type_converter<long double, float>(a_recopier);
  719. }
  720. explicit quaternion(quaternion<double> const & a_recopier)
  721. {
  722. *this = detail::quaternion_type_converter<long double, double>(a_recopier);
  723. }
  724. // destructor
  725. // (this is taken care of by the compiler itself)
  726. // accessors
  727. //
  728. // Note: Like complex number, quaternions do have a meaningful notion of "real part",
  729. // but unlike them there is no meaningful notion of "imaginary part".
  730. // Instead there is an "unreal part" which itself is a quaternion, and usually
  731. // nothing simpler (as opposed to the complex number case).
  732. // However, for practicallity, there are accessors for the other components
  733. // (these are necessary for the templated copy constructor, for instance).
  734. BOOST_QUATERNION_ACCESSOR_GENERATOR(long double)
  735. // assignment operators
  736. BOOST_QUATERNION_MEMBER_ASSIGNMENT_GENERATOR(long double)
  737. // other assignment-related operators
  738. //
  739. // NOTE: Quaternion multiplication is *NOT* commutative;
  740. // symbolically, "q *= rhs;" means "q = q * rhs;"
  741. // and "q /= rhs;" means "q = q * inverse_of(rhs);"
  742. BOOST_QUATERNION_MEMBER_ALGEBRAIC_GENERATOR(long double)
  743. protected:
  744. BOOST_QUATERNION_MEMBER_DATA_GENERATOR(long double)
  745. private:
  746. };
  747. #undef BOOST_QUATERNION_MEMBER_ALGEBRAIC_GENERATOR
  748. #undef BOOST_QUATERNION_MEMBER_ADD_GENERATOR
  749. #undef BOOST_QUATERNION_MEMBER_SUB_GENERATOR
  750. #undef BOOST_QUATERNION_MEMBER_MUL_GENERATOR
  751. #undef BOOST_QUATERNION_MEMBER_DIV_GENERATOR
  752. #undef BOOST_QUATERNION_MEMBER_ADD_GENERATOR_1
  753. #undef BOOST_QUATERNION_MEMBER_ADD_GENERATOR_2
  754. #undef BOOST_QUATERNION_MEMBER_ADD_GENERATOR_3
  755. #undef BOOST_QUATERNION_MEMBER_SUB_GENERATOR_1
  756. #undef BOOST_QUATERNION_MEMBER_SUB_GENERATOR_2
  757. #undef BOOST_QUATERNION_MEMBER_SUB_GENERATOR_3
  758. #undef BOOST_QUATERNION_MEMBER_MUL_GENERATOR_1
  759. #undef BOOST_QUATERNION_MEMBER_MUL_GENERATOR_2
  760. #undef BOOST_QUATERNION_MEMBER_MUL_GENERATOR_3
  761. #undef BOOST_QUATERNION_MEMBER_DIV_GENERATOR_1
  762. #undef BOOST_QUATERNION_MEMBER_DIV_GENERATOR_2
  763. #undef BOOST_QUATERNION_MEMBER_DIV_GENERATOR_3
  764. #undef BOOST_QUATERNION_CONSTRUCTOR_GENERATOR
  765. #undef BOOST_QUATERNION_MEMBER_ASSIGNMENT_GENERATOR
  766. #undef BOOST_QUATERNION_MEMBER_DATA_GENERATOR
  767. #undef BOOST_QUATERNION_ACCESSOR_GENERATOR
  768. // operators
  769. #define BOOST_QUATERNION_OPERATOR_GENERATOR_BODY(op) \
  770. { \
  771. quaternion<T> res(lhs); \
  772. res op##= rhs; \
  773. return(res); \
  774. }
  775. #define BOOST_QUATERNION_OPERATOR_GENERATOR_1_L(op) \
  776. template<typename T> \
  777. inline quaternion<T> operator op (T const & lhs, quaternion<T> const & rhs) \
  778. BOOST_QUATERNION_OPERATOR_GENERATOR_BODY(op)
  779. #define BOOST_QUATERNION_OPERATOR_GENERATOR_1_R(op) \
  780. template<typename T> \
  781. inline quaternion<T> operator op (quaternion<T> const & lhs, T const & rhs) \
  782. BOOST_QUATERNION_OPERATOR_GENERATOR_BODY(op)
  783. #define BOOST_QUATERNION_OPERATOR_GENERATOR_2_L(op) \
  784. template<typename T> \
  785. inline quaternion<T> operator op (::std::complex<T> const & lhs, quaternion<T> const & rhs) \
  786. BOOST_QUATERNION_OPERATOR_GENERATOR_BODY(op)
  787. #define BOOST_QUATERNION_OPERATOR_GENERATOR_2_R(op) \
  788. template<typename T> \
  789. inline quaternion<T> operator op (quaternion<T> const & lhs, ::std::complex<T> const & rhs) \
  790. BOOST_QUATERNION_OPERATOR_GENERATOR_BODY(op)
  791. #define BOOST_QUATERNION_OPERATOR_GENERATOR_3(op) \
  792. template<typename T> \
  793. inline quaternion<T> operator op (quaternion<T> const & lhs, quaternion<T> const & rhs) \
  794. BOOST_QUATERNION_OPERATOR_GENERATOR_BODY(op)
  795. #define BOOST_QUATERNION_OPERATOR_GENERATOR(op) \
  796. BOOST_QUATERNION_OPERATOR_GENERATOR_1_L(op) \
  797. BOOST_QUATERNION_OPERATOR_GENERATOR_1_R(op) \
  798. BOOST_QUATERNION_OPERATOR_GENERATOR_2_L(op) \
  799. BOOST_QUATERNION_OPERATOR_GENERATOR_2_R(op) \
  800. BOOST_QUATERNION_OPERATOR_GENERATOR_3(op)
  801. BOOST_QUATERNION_OPERATOR_GENERATOR(+)
  802. BOOST_QUATERNION_OPERATOR_GENERATOR(-)
  803. BOOST_QUATERNION_OPERATOR_GENERATOR(*)
  804. BOOST_QUATERNION_OPERATOR_GENERATOR(/)
  805. #undef BOOST_QUATERNION_OPERATOR_GENERATOR
  806. #undef BOOST_QUATERNION_OPERATOR_GENERATOR_1_L
  807. #undef BOOST_QUATERNION_OPERATOR_GENERATOR_1_R
  808. #undef BOOST_QUATERNION_OPERATOR_GENERATOR_2_L
  809. #undef BOOST_QUATERNION_OPERATOR_GENERATOR_2_R
  810. #undef BOOST_QUATERNION_OPERATOR_GENERATOR_3
  811. #undef BOOST_QUATERNION_OPERATOR_GENERATOR_BODY
  812. template<typename T>
  813. inline quaternion<T> operator + (quaternion<T> const & q)
  814. {
  815. return(q);
  816. }
  817. template<typename T>
  818. inline quaternion<T> operator - (quaternion<T> const & q)
  819. {
  820. return(quaternion<T>(-q.R_component_1(),-q.R_component_2(),-q.R_component_3(),-q.R_component_4()));
  821. }
  822. template<typename T>
  823. inline bool operator == (T const & lhs, quaternion<T> const & rhs)
  824. {
  825. return (
  826. (rhs.R_component_1() == lhs)&&
  827. (rhs.R_component_2() == static_cast<T>(0))&&
  828. (rhs.R_component_3() == static_cast<T>(0))&&
  829. (rhs.R_component_4() == static_cast<T>(0))
  830. );
  831. }
  832. template<typename T>
  833. inline bool operator == (quaternion<T> const & lhs, T const & rhs)
  834. {
  835. return (
  836. (lhs.R_component_1() == rhs)&&
  837. (lhs.R_component_2() == static_cast<T>(0))&&
  838. (lhs.R_component_3() == static_cast<T>(0))&&
  839. (lhs.R_component_4() == static_cast<T>(0))
  840. );
  841. }
  842. template<typename T>
  843. inline bool operator == (::std::complex<T> const & lhs, quaternion<T> const & rhs)
  844. {
  845. return (
  846. (rhs.R_component_1() == lhs.real())&&
  847. (rhs.R_component_2() == lhs.imag())&&
  848. (rhs.R_component_3() == static_cast<T>(0))&&
  849. (rhs.R_component_4() == static_cast<T>(0))
  850. );
  851. }
  852. template<typename T>
  853. inline bool operator == (quaternion<T> const & lhs, ::std::complex<T> const & rhs)
  854. {
  855. return (
  856. (lhs.R_component_1() == rhs.real())&&
  857. (lhs.R_component_2() == rhs.imag())&&
  858. (lhs.R_component_3() == static_cast<T>(0))&&
  859. (lhs.R_component_4() == static_cast<T>(0))
  860. );
  861. }
  862. template<typename T>
  863. inline bool operator == (quaternion<T> const & lhs, quaternion<T> const & rhs)
  864. {
  865. return (
  866. (rhs.R_component_1() == lhs.R_component_1())&&
  867. (rhs.R_component_2() == lhs.R_component_2())&&
  868. (rhs.R_component_3() == lhs.R_component_3())&&
  869. (rhs.R_component_4() == lhs.R_component_4())
  870. );
  871. }
  872. #define BOOST_QUATERNION_NOT_EQUAL_GENERATOR \
  873. { \
  874. return(!(lhs == rhs)); \
  875. }
  876. template<typename T>
  877. inline bool operator != (T const & lhs, quaternion<T> const & rhs)
  878. BOOST_QUATERNION_NOT_EQUAL_GENERATOR
  879. template<typename T>
  880. inline bool operator != (quaternion<T> const & lhs, T const & rhs)
  881. BOOST_QUATERNION_NOT_EQUAL_GENERATOR
  882. template<typename T>
  883. inline bool operator != (::std::complex<T> const & lhs, quaternion<T> const & rhs)
  884. BOOST_QUATERNION_NOT_EQUAL_GENERATOR
  885. template<typename T>
  886. inline bool operator != (quaternion<T> const & lhs, ::std::complex<T> const & rhs)
  887. BOOST_QUATERNION_NOT_EQUAL_GENERATOR
  888. template<typename T>
  889. inline bool operator != (quaternion<T> const & lhs, quaternion<T> const & rhs)
  890. BOOST_QUATERNION_NOT_EQUAL_GENERATOR
  891. #undef BOOST_QUATERNION_NOT_EQUAL_GENERATOR
  892. // Note: we allow the following formats, whith a, b, c, and d reals
  893. // a
  894. // (a), (a,b), (a,b,c), (a,b,c,d)
  895. // (a,(c)), (a,(c,d)), ((a)), ((a),c), ((a),(c)), ((a),(c,d)), ((a,b)), ((a,b),c), ((a,b),(c)), ((a,b),(c,d))
  896. template<typename T, typename charT, class traits>
  897. ::std::basic_istream<charT,traits> & operator >> ( ::std::basic_istream<charT,traits> & is,
  898. quaternion<T> & q)
  899. {
  900. #ifdef BOOST_NO_STD_LOCALE
  901. #else
  902. const ::std::ctype<charT> & ct = ::std::use_facet< ::std::ctype<charT> >(is.getloc());
  903. #endif /* BOOST_NO_STD_LOCALE */
  904. T a = T();
  905. T b = T();
  906. T c = T();
  907. T d = T();
  908. ::std::complex<T> u = ::std::complex<T>();
  909. ::std::complex<T> v = ::std::complex<T>();
  910. charT ch = charT();
  911. char cc;
  912. is >> ch; // get the first lexeme
  913. if (!is.good()) goto finish;
  914. #ifdef BOOST_NO_STD_LOCALE
  915. cc = ch;
  916. #else
  917. cc = ct.narrow(ch, char());
  918. #endif /* BOOST_NO_STD_LOCALE */
  919. if (cc == '(') // read "(", possible: (a), (a,b), (a,b,c), (a,b,c,d), (a,(c)), (a,(c,d)), ((a)), ((a),c), ((a),(c)), ((a),(c,d)), ((a,b)), ((a,b),c), ((a,b),(c)), ((a,b,),(c,d,))
  920. {
  921. is >> ch; // get the second lexeme
  922. if (!is.good()) goto finish;
  923. #ifdef BOOST_NO_STD_LOCALE
  924. cc = ch;
  925. #else
  926. cc = ct.narrow(ch, char());
  927. #endif /* BOOST_NO_STD_LOCALE */
  928. if (cc == '(') // read "((", possible: ((a)), ((a),c), ((a),(c)), ((a),(c,d)), ((a,b)), ((a,b),c), ((a,b),(c)), ((a,b,),(c,d,))
  929. {
  930. is.putback(ch);
  931. is >> u; // we extract the first and second components
  932. a = u.real();
  933. b = u.imag();
  934. if (!is.good()) goto finish;
  935. is >> ch; // get the next lexeme
  936. if (!is.good()) goto finish;
  937. #ifdef BOOST_NO_STD_LOCALE
  938. cc = ch;
  939. #else
  940. cc = ct.narrow(ch, char());
  941. #endif /* BOOST_NO_STD_LOCALE */
  942. if (cc == ')') // format: ((a)) or ((a,b))
  943. {
  944. q = quaternion<T>(a,b);
  945. }
  946. else if (cc == ',') // read "((a)," or "((a,b),", possible: ((a),c), ((a),(c)), ((a),(c,d)), ((a,b),c), ((a,b),(c)), ((a,b,),(c,d,))
  947. {
  948. is >> v; // we extract the third and fourth components
  949. c = v.real();
  950. d = v.imag();
  951. if (!is.good()) goto finish;
  952. is >> ch; // get the last lexeme
  953. if (!is.good()) goto finish;
  954. #ifdef BOOST_NO_STD_LOCALE
  955. cc = ch;
  956. #else
  957. cc = ct.narrow(ch, char());
  958. #endif /* BOOST_NO_STD_LOCALE */
  959. if (cc == ')') // format: ((a),c), ((a),(c)), ((a),(c,d)), ((a,b),c), ((a,b),(c)) or ((a,b,),(c,d,))
  960. {
  961. q = quaternion<T>(a,b,c,d);
  962. }
  963. else // error
  964. {
  965. is.setstate(::std::ios_base::failbit);
  966. }
  967. }
  968. else // error
  969. {
  970. is.setstate(::std::ios_base::failbit);
  971. }
  972. }
  973. else // read "(a", possible: (a), (a,b), (a,b,c), (a,b,c,d), (a,(c)), (a,(c,d))
  974. {
  975. is.putback(ch);
  976. is >> a; // we extract the first component
  977. if (!is.good()) goto finish;
  978. is >> ch; // get the third lexeme
  979. if (!is.good()) goto finish;
  980. #ifdef BOOST_NO_STD_LOCALE
  981. cc = ch;
  982. #else
  983. cc = ct.narrow(ch, char());
  984. #endif /* BOOST_NO_STD_LOCALE */
  985. if (cc == ')') // format: (a)
  986. {
  987. q = quaternion<T>(a);
  988. }
  989. else if (cc == ',') // read "(a,", possible: (a,b), (a,b,c), (a,b,c,d), (a,(c)), (a,(c,d))
  990. {
  991. is >> ch; // get the fourth lexeme
  992. if (!is.good()) goto finish;
  993. #ifdef BOOST_NO_STD_LOCALE
  994. cc = ch;
  995. #else
  996. cc = ct.narrow(ch, char());
  997. #endif /* BOOST_NO_STD_LOCALE */
  998. if (cc == '(') // read "(a,(", possible: (a,(c)), (a,(c,d))
  999. {
  1000. is.putback(ch);
  1001. is >> v; // we extract the third and fourth component
  1002. c = v.real();
  1003. d = v.imag();
  1004. if (!is.good()) goto finish;
  1005. is >> ch; // get the ninth lexeme
  1006. if (!is.good()) goto finish;
  1007. #ifdef BOOST_NO_STD_LOCALE
  1008. cc = ch;
  1009. #else
  1010. cc = ct.narrow(ch, char());
  1011. #endif /* BOOST_NO_STD_LOCALE */
  1012. if (cc == ')') // format: (a,(c)) or (a,(c,d))
  1013. {
  1014. q = quaternion<T>(a,b,c,d);
  1015. }
  1016. else // error
  1017. {
  1018. is.setstate(::std::ios_base::failbit);
  1019. }
  1020. }
  1021. else // read "(a,b", possible: (a,b), (a,b,c), (a,b,c,d)
  1022. {
  1023. is.putback(ch);
  1024. is >> b; // we extract the second component
  1025. if (!is.good()) goto finish;
  1026. is >> ch; // get the fifth lexeme
  1027. if (!is.good()) goto finish;
  1028. #ifdef BOOST_NO_STD_LOCALE
  1029. cc = ch;
  1030. #else
  1031. cc = ct.narrow(ch, char());
  1032. #endif /* BOOST_NO_STD_LOCALE */
  1033. if (cc == ')') // format: (a,b)
  1034. {
  1035. q = quaternion<T>(a,b);
  1036. }
  1037. else if (cc == ',') // read "(a,b,", possible: (a,b,c), (a,b,c,d)
  1038. {
  1039. is >> c; // we extract the third component
  1040. if (!is.good()) goto finish;
  1041. is >> ch; // get the seventh lexeme
  1042. if (!is.good()) goto finish;
  1043. #ifdef BOOST_NO_STD_LOCALE
  1044. cc = ch;
  1045. #else
  1046. cc = ct.narrow(ch, char());
  1047. #endif /* BOOST_NO_STD_LOCALE */
  1048. if (cc == ')') // format: (a,b,c)
  1049. {
  1050. q = quaternion<T>(a,b,c);
  1051. }
  1052. else if (cc == ',') // read "(a,b,c,", possible: (a,b,c,d)
  1053. {
  1054. is >> d; // we extract the fourth component
  1055. if (!is.good()) goto finish;
  1056. is >> ch; // get the ninth lexeme
  1057. if (!is.good()) goto finish;
  1058. #ifdef BOOST_NO_STD_LOCALE
  1059. cc = ch;
  1060. #else
  1061. cc = ct.narrow(ch, char());
  1062. #endif /* BOOST_NO_STD_LOCALE */
  1063. if (cc == ')') // format: (a,b,c,d)
  1064. {
  1065. q = quaternion<T>(a,b,c,d);
  1066. }
  1067. else // error
  1068. {
  1069. is.setstate(::std::ios_base::failbit);
  1070. }
  1071. }
  1072. else // error
  1073. {
  1074. is.setstate(::std::ios_base::failbit);
  1075. }
  1076. }
  1077. else // error
  1078. {
  1079. is.setstate(::std::ios_base::failbit);
  1080. }
  1081. }
  1082. }
  1083. else // error
  1084. {
  1085. is.setstate(::std::ios_base::failbit);
  1086. }
  1087. }
  1088. }
  1089. else // format: a
  1090. {
  1091. is.putback(ch);
  1092. is >> a; // we extract the first component
  1093. if (!is.good()) goto finish;
  1094. q = quaternion<T>(a);
  1095. }
  1096. finish:
  1097. return(is);
  1098. }
  1099. template<typename T, typename charT, class traits>
  1100. ::std::basic_ostream<charT,traits> & operator << ( ::std::basic_ostream<charT,traits> & os,
  1101. quaternion<T> const & q)
  1102. {
  1103. ::std::basic_ostringstream<charT,traits> s;
  1104. s.flags(os.flags());
  1105. #ifdef BOOST_NO_STD_LOCALE
  1106. #else
  1107. s.imbue(os.getloc());
  1108. #endif /* BOOST_NO_STD_LOCALE */
  1109. s.precision(os.precision());
  1110. s << '(' << q.R_component_1() << ','
  1111. << q.R_component_2() << ','
  1112. << q.R_component_3() << ','
  1113. << q.R_component_4() << ')';
  1114. return os << s.str();
  1115. }
  1116. // values
  1117. template<typename T>
  1118. inline T real(quaternion<T> const & q)
  1119. {
  1120. return(q.real());
  1121. }
  1122. template<typename T>
  1123. inline quaternion<T> unreal(quaternion<T> const & q)
  1124. {
  1125. return(q.unreal());
  1126. }
  1127. #define BOOST_QUATERNION_VALARRAY_LOADER \
  1128. using ::std::valarray; \
  1129. \
  1130. valarray<T> temp(4); \
  1131. \
  1132. temp[0] = q.R_component_1(); \
  1133. temp[1] = q.R_component_2(); \
  1134. temp[2] = q.R_component_3(); \
  1135. temp[3] = q.R_component_4();
  1136. template<typename T>
  1137. inline T sup(quaternion<T> const & q)
  1138. {
  1139. #ifdef BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP
  1140. using ::std::abs;
  1141. #endif /* BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP */
  1142. BOOST_QUATERNION_VALARRAY_LOADER
  1143. return((abs(temp).max)());
  1144. }
  1145. template<typename T>
  1146. inline T l1(quaternion<T> const & q)
  1147. {
  1148. #ifdef BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP
  1149. using ::std::abs;
  1150. #endif /* BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP */
  1151. BOOST_QUATERNION_VALARRAY_LOADER
  1152. return(abs(temp).sum());
  1153. }
  1154. template<typename T>
  1155. inline T abs(quaternion<T> const & q)
  1156. {
  1157. #ifdef BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP
  1158. using ::std::abs;
  1159. #endif /* BOOST_NO_ARGUMENT_DEPENDENT_LOOKUP */
  1160. using ::std::sqrt;
  1161. BOOST_QUATERNION_VALARRAY_LOADER
  1162. T maxim = (abs(temp).max)(); // overflow protection
  1163. if (maxim == static_cast<T>(0))
  1164. {
  1165. return(maxim);
  1166. }
  1167. else
  1168. {
  1169. T mixam = static_cast<T>(1)/maxim; // prefer multiplications over divisions
  1170. temp *= mixam;
  1171. temp *= temp;
  1172. return(maxim*sqrt(temp.sum()));
  1173. }
  1174. //return(sqrt(norm(q)));
  1175. }
  1176. #undef BOOST_QUATERNION_VALARRAY_LOADER
  1177. // Note: This is the Cayley norm, not the Euclidian norm...
  1178. template<typename T>
  1179. inline T norm(quaternion<T>const & q)
  1180. {
  1181. return(real(q*conj(q)));
  1182. }
  1183. template<typename T>
  1184. inline quaternion<T> conj(quaternion<T> const & q)
  1185. {
  1186. return(quaternion<T>( +q.R_component_1(),
  1187. -q.R_component_2(),
  1188. -q.R_component_3(),
  1189. -q.R_component_4()));
  1190. }
  1191. template<typename T>
  1192. inline quaternion<T> spherical( T const & rho,
  1193. T const & theta,
  1194. T const & phi1,
  1195. T const & phi2)
  1196. {
  1197. using ::std::cos;
  1198. using ::std::sin;
  1199. //T a = cos(theta)*cos(phi1)*cos(phi2);
  1200. //T b = sin(theta)*cos(phi1)*cos(phi2);
  1201. //T c = sin(phi1)*cos(phi2);
  1202. //T d = sin(phi2);
  1203. T courrant = static_cast<T>(1);
  1204. T d = sin(phi2);
  1205. courrant *= cos(phi2);
  1206. T c = sin(phi1)*courrant;
  1207. courrant *= cos(phi1);
  1208. T b = sin(theta)*courrant;
  1209. T a = cos(theta)*courrant;
  1210. return(rho*quaternion<T>(a,b,c,d));
  1211. }
  1212. template<typename T>
  1213. inline quaternion<T> semipolar( T const & rho,
  1214. T const & alpha,
  1215. T const & theta1,
  1216. T const & theta2)
  1217. {
  1218. using ::std::cos;
  1219. using ::std::sin;
  1220. T a = cos(alpha)*cos(theta1);
  1221. T b = cos(alpha)*sin(theta1);
  1222. T c = sin(alpha)*cos(theta2);
  1223. T d = sin(alpha)*sin(theta2);
  1224. return(rho*quaternion<T>(a,b,c,d));
  1225. }
  1226. template<typename T>
  1227. inline quaternion<T> multipolar( T const & rho1,
  1228. T const & theta1,
  1229. T const & rho2,
  1230. T const & theta2)
  1231. {
  1232. using ::std::cos;
  1233. using ::std::sin;
  1234. T a = rho1*cos(theta1);
  1235. T b = rho1*sin(theta1);
  1236. T c = rho2*cos(theta2);
  1237. T d = rho2*sin(theta2);
  1238. return(quaternion<T>(a,b,c,d));
  1239. }
  1240. template<typename T>
  1241. inline quaternion<T> cylindrospherical( T const & t,
  1242. T const & radius,
  1243. T const & longitude,
  1244. T const & latitude)
  1245. {
  1246. using ::std::cos;
  1247. using ::std::sin;
  1248. T b = radius*cos(longitude)*cos(latitude);
  1249. T c = radius*sin(longitude)*cos(latitude);
  1250. T d = radius*sin(latitude);
  1251. return(quaternion<T>(t,b,c,d));
  1252. }
  1253. template<typename T>
  1254. inline quaternion<T> cylindrical(T const & r,
  1255. T const & angle,
  1256. T const & h1,
  1257. T const & h2)
  1258. {
  1259. using ::std::cos;
  1260. using ::std::sin;
  1261. T a = r*cos(angle);
  1262. T b = r*sin(angle);
  1263. return(quaternion<T>(a,b,h1,h2));
  1264. }
  1265. // transcendentals
  1266. // (please see the documentation)
  1267. template<typename T>
  1268. inline quaternion<T> exp(quaternion<T> const & q)
  1269. {
  1270. using ::std::exp;
  1271. using ::std::cos;
  1272. using ::boost::math::sinc_pi;
  1273. T u = exp(real(q));
  1274. T z = abs(unreal(q));
  1275. T w = sinc_pi(z);
  1276. return(u*quaternion<T>(cos(z),
  1277. w*q.R_component_2(), w*q.R_component_3(),
  1278. w*q.R_component_4()));
  1279. }
  1280. template<typename T>
  1281. inline quaternion<T> cos(quaternion<T> const & q)
  1282. {
  1283. using ::std::sin;
  1284. using ::std::cos;
  1285. using ::std::cosh;
  1286. using ::boost::math::sinhc_pi;
  1287. T z = abs(unreal(q));
  1288. T w = -sin(q.real())*sinhc_pi(z);
  1289. return(quaternion<T>(cos(q.real())*cosh(z),
  1290. w*q.R_component_2(), w*q.R_component_3(),
  1291. w*q.R_component_4()));
  1292. }
  1293. template<typename T>
  1294. inline quaternion<T> sin(quaternion<T> const & q)
  1295. {
  1296. using ::std::sin;
  1297. using ::std::cos;
  1298. using ::std::cosh;
  1299. using ::boost::math::sinhc_pi;
  1300. T z = abs(unreal(q));
  1301. T w = +cos(q.real())*sinhc_pi(z);
  1302. return(quaternion<T>(sin(q.real())*cosh(z),
  1303. w*q.R_component_2(), w*q.R_component_3(),
  1304. w*q.R_component_4()));
  1305. }
  1306. template<typename T>
  1307. inline quaternion<T> tan(quaternion<T> const & q)
  1308. {
  1309. return(sin(q)/cos(q));
  1310. }
  1311. template<typename T>
  1312. inline quaternion<T> cosh(quaternion<T> const & q)
  1313. {
  1314. return((exp(+q)+exp(-q))/static_cast<T>(2));
  1315. }
  1316. template<typename T>
  1317. inline quaternion<T> sinh(quaternion<T> const & q)
  1318. {
  1319. return((exp(+q)-exp(-q))/static_cast<T>(2));
  1320. }
  1321. template<typename T>
  1322. inline quaternion<T> tanh(quaternion<T> const & q)
  1323. {
  1324. return(sinh(q)/cosh(q));
  1325. }
  1326. template<typename T>
  1327. quaternion<T> pow(quaternion<T> const & q,
  1328. int n)
  1329. {
  1330. if (n > 1)
  1331. {
  1332. int m = n>>1;
  1333. quaternion<T> result = pow(q, m);
  1334. result *= result;
  1335. if (n != (m<<1))
  1336. {
  1337. result *= q; // n odd
  1338. }
  1339. return(result);
  1340. }
  1341. else if (n == 1)
  1342. {
  1343. return(q);
  1344. }
  1345. else if (n == 0)
  1346. {
  1347. return(quaternion<T>(static_cast<T>(1)));
  1348. }
  1349. else /* n < 0 */
  1350. {
  1351. return(pow(quaternion<T>(static_cast<T>(1))/q,-n));
  1352. }
  1353. }
  1354. // helper templates for converting copy constructors (definition)
  1355. namespace detail
  1356. {
  1357. template< typename T,
  1358. typename U
  1359. >
  1360. quaternion<T> quaternion_type_converter(quaternion<U> const & rhs)
  1361. {
  1362. return(quaternion<T>( static_cast<T>(rhs.R_component_1()),
  1363. static_cast<T>(rhs.R_component_2()),
  1364. static_cast<T>(rhs.R_component_3()),
  1365. static_cast<T>(rhs.R_component_4())));
  1366. }
  1367. }
  1368. }
  1369. }
  1370. #endif /* BOOST_QUATERNION_HPP */