binomial_heap.hpp 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934
  1. // boost heap: binomial heap
  2. //
  3. // Copyright (C) 2010 Tim Blechmann
  4. //
  5. // Distributed under the Boost Software License, Version 1.0. (See
  6. // accompanying file LICENSE_1_0.txt or copy at
  7. // http://www.boost.org/LICENSE_1_0.txt)
  8. #ifndef BOOST_HEAP_BINOMIAL_HEAP_HPP
  9. #define BOOST_HEAP_BINOMIAL_HEAP_HPP
  10. #include <algorithm>
  11. #include <utility>
  12. #include <vector>
  13. #include <boost/assert.hpp>
  14. #include <boost/heap/detail/heap_comparison.hpp>
  15. #include <boost/heap/detail/heap_node.hpp>
  16. #include <boost/heap/detail/stable_heap.hpp>
  17. #include <boost/heap/detail/tree_iterator.hpp>
  18. #ifdef BOOST_HAS_PRAGMA_ONCE
  19. #pragma once
  20. #endif
  21. #ifndef BOOST_DOXYGEN_INVOKED
  22. #ifdef BOOST_HEAP_SANITYCHECKS
  23. #define BOOST_HEAP_ASSERT BOOST_ASSERT
  24. #else
  25. #define BOOST_HEAP_ASSERT(expression)
  26. #endif
  27. #endif
  28. namespace boost {
  29. namespace heap {
  30. namespace detail {
  31. typedef parameter::parameters<boost::parameter::optional<tag::allocator>,
  32. boost::parameter::optional<tag::compare>,
  33. boost::parameter::optional<tag::stable>,
  34. boost::parameter::optional<tag::constant_time_size>,
  35. boost::parameter::optional<tag::stability_counter_type>
  36. > binomial_heap_signature;
  37. template <typename T, typename Parspec>
  38. struct make_binomial_heap_base
  39. {
  40. static const bool constant_time_size = parameter::binding<Parspec,
  41. tag::constant_time_size,
  42. boost::mpl::true_
  43. >::type::value;
  44. typedef typename detail::make_heap_base<T, Parspec, constant_time_size>::type base_type;
  45. typedef typename detail::make_heap_base<T, Parspec, constant_time_size>::allocator_argument allocator_argument;
  46. typedef typename detail::make_heap_base<T, Parspec, constant_time_size>::compare_argument compare_argument;
  47. typedef parent_pointing_heap_node<typename base_type::internal_type> node_type;
  48. typedef typename allocator_argument::template rebind<node_type>::other allocator_type;
  49. struct type:
  50. base_type,
  51. allocator_type
  52. {
  53. type(compare_argument const & arg):
  54. base_type(arg)
  55. {}
  56. #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
  57. type(type const & rhs):
  58. base_type(rhs), allocator_type(rhs)
  59. {}
  60. type(type && rhs):
  61. base_type(std::move(static_cast<base_type&>(rhs))),
  62. allocator_type(std::move(static_cast<allocator_type&>(rhs)))
  63. {}
  64. type & operator=(type && rhs)
  65. {
  66. base_type::operator=(std::move(static_cast<base_type&>(rhs)));
  67. allocator_type::operator=(std::move(static_cast<allocator_type&>(rhs)));
  68. return *this;
  69. }
  70. type & operator=(type const & rhs)
  71. {
  72. base_type::operator=(static_cast<base_type const &>(rhs));
  73. allocator_type::operator=(static_cast<allocator_type const &>(rhs));
  74. return *this;
  75. }
  76. #endif
  77. };
  78. };
  79. }
  80. /**
  81. * \class binomial_heap
  82. * \brief binomial heap
  83. *
  84. * The template parameter T is the type to be managed by the container.
  85. * The user can specify additional options and if no options are provided default options are used.
  86. *
  87. * The container supports the following options:
  88. * - \c boost::heap::stable<>, defaults to \c stable<false>
  89. * - \c boost::heap::compare<>, defaults to \c compare<std::less<T> >
  90. * - \c boost::heap::allocator<>, defaults to \c allocator<std::allocator<T> >
  91. * - \c boost::heap::constant_time_size<>, defaults to \c constant_time_size<true>
  92. * - \c boost::heap::stability_counter_type<>, defaults to \c stability_counter_type<boost::uintmax_t>
  93. *
  94. */
  95. #ifdef BOOST_DOXYGEN_INVOKED
  96. template<class T, class ...Options>
  97. #else
  98. template <typename T,
  99. class A0 = boost::parameter::void_,
  100. class A1 = boost::parameter::void_,
  101. class A2 = boost::parameter::void_,
  102. class A3 = boost::parameter::void_
  103. >
  104. #endif
  105. class binomial_heap:
  106. private detail::make_binomial_heap_base<T,
  107. typename detail::binomial_heap_signature::bind<A0, A1, A2, A3>::type
  108. >::type
  109. {
  110. typedef typename detail::binomial_heap_signature::bind<A0, A1, A2, A3>::type bound_args;
  111. typedef detail::make_binomial_heap_base<T, bound_args> base_maker;
  112. typedef typename base_maker::type super_t;
  113. typedef typename super_t::internal_type internal_type;
  114. typedef typename super_t::size_holder_type size_holder;
  115. typedef typename super_t::stability_counter_type stability_counter_type;
  116. typedef typename base_maker::allocator_argument allocator_argument;
  117. template <typename Heap1, typename Heap2>
  118. friend struct heap_merge_emulate;
  119. public:
  120. static const bool constant_time_size = super_t::constant_time_size;
  121. static const bool has_ordered_iterators = true;
  122. static const bool is_mergable = true;
  123. static const bool is_stable = detail::extract_stable<bound_args>::value;
  124. static const bool has_reserve = false;
  125. private:
  126. #ifndef BOOST_DOXYGEN_INVOKED
  127. struct implementation_defined:
  128. detail::extract_allocator_types<typename base_maker::allocator_argument>
  129. {
  130. typedef T value_type;
  131. typedef typename detail::extract_allocator_types<typename base_maker::allocator_argument>::size_type size_type;
  132. typedef typename detail::extract_allocator_types<typename base_maker::allocator_argument>::reference reference;
  133. typedef typename base_maker::compare_argument value_compare;
  134. typedef typename base_maker::allocator_type allocator_type;
  135. typedef typename base_maker::node_type node;
  136. typedef typename allocator_type::pointer node_pointer;
  137. typedef typename allocator_type::const_pointer const_node_pointer;
  138. typedef detail::node_handle<node_pointer, super_t, reference> handle_type;
  139. typedef typename base_maker::node_type node_type;
  140. typedef boost::intrusive::list<detail::heap_node_base<false>,
  141. boost::intrusive::constant_time_size<true>
  142. > node_list_type;
  143. typedef typename node_list_type::iterator node_list_iterator;
  144. typedef typename node_list_type::const_iterator node_list_const_iterator;
  145. typedef detail::value_extractor<value_type, internal_type, super_t> value_extractor;
  146. typedef detail::recursive_tree_iterator<node_type,
  147. node_list_const_iterator,
  148. const value_type,
  149. value_extractor,
  150. detail::list_iterator_converter<node_type, node_list_type>
  151. > iterator;
  152. typedef iterator const_iterator;
  153. typedef detail::tree_iterator<node_type,
  154. const value_type,
  155. allocator_type,
  156. value_extractor,
  157. detail::list_iterator_converter<node_type, node_list_type>,
  158. true,
  159. true,
  160. value_compare
  161. > ordered_iterator;
  162. };
  163. #endif
  164. public:
  165. typedef T value_type;
  166. typedef typename implementation_defined::size_type size_type;
  167. typedef typename implementation_defined::difference_type difference_type;
  168. typedef typename implementation_defined::value_compare value_compare;
  169. typedef typename implementation_defined::allocator_type allocator_type;
  170. typedef typename implementation_defined::reference reference;
  171. typedef typename implementation_defined::const_reference const_reference;
  172. typedef typename implementation_defined::pointer pointer;
  173. typedef typename implementation_defined::const_pointer const_pointer;
  174. /// \copydoc boost::heap::priority_queue::iterator
  175. typedef typename implementation_defined::iterator iterator;
  176. typedef typename implementation_defined::const_iterator const_iterator;
  177. typedef typename implementation_defined::ordered_iterator ordered_iterator;
  178. typedef typename implementation_defined::handle_type handle_type;
  179. private:
  180. typedef typename implementation_defined::node_type node_type;
  181. typedef typename implementation_defined::node_list_type node_list_type;
  182. typedef typename implementation_defined::node_pointer node_pointer;
  183. typedef typename implementation_defined::const_node_pointer const_node_pointer;
  184. typedef typename implementation_defined::node_list_iterator node_list_iterator;
  185. typedef typename implementation_defined::node_list_const_iterator node_list_const_iterator;
  186. typedef typename super_t::internal_compare internal_compare;
  187. public:
  188. /// \copydoc boost::heap::priority_queue::priority_queue(value_compare const &)
  189. explicit binomial_heap(value_compare const & cmp = value_compare()):
  190. super_t(cmp), top_element(0)
  191. {}
  192. /// \copydoc boost::heap::priority_queue::priority_queue(priority_queue const &)
  193. binomial_heap(binomial_heap const & rhs):
  194. super_t(rhs), top_element(0)
  195. {
  196. if (rhs.empty())
  197. return;
  198. clone_forest(rhs);
  199. size_holder::set_size(rhs.get_size());
  200. }
  201. /// \copydoc boost::heap::priority_queue::operator=(priority_queue const &)
  202. binomial_heap & operator=(binomial_heap const & rhs)
  203. {
  204. clear();
  205. size_holder::set_size(rhs.get_size());
  206. static_cast<super_t&>(*this) = rhs;
  207. if (rhs.empty())
  208. top_element = NULL;
  209. else
  210. clone_forest(rhs);
  211. return *this;
  212. }
  213. #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
  214. /// \copydoc boost::heap::priority_queue::priority_queue(priority_queue &&)
  215. binomial_heap(binomial_heap && rhs):
  216. super_t(std::move(rhs)), top_element(rhs.top_element)
  217. {
  218. trees.splice(trees.begin(), rhs.trees);
  219. rhs.top_element = NULL;
  220. }
  221. /// \copydoc boost::heap::priority_queue::operator=(priority_queue &&)
  222. binomial_heap & operator=(binomial_heap && rhs)
  223. {
  224. clear();
  225. super_t::operator=(std::move(rhs));
  226. trees.splice(trees.begin(), rhs.trees);
  227. top_element = rhs.top_element;
  228. rhs.top_element = NULL;
  229. return *this;
  230. }
  231. #endif
  232. ~binomial_heap(void)
  233. {
  234. clear();
  235. }
  236. /// \copydoc boost::heap::priority_queue::empty
  237. bool empty(void) const
  238. {
  239. return top_element == NULL;
  240. }
  241. /**
  242. * \b Effects: Returns the number of elements contained in the priority queue.
  243. *
  244. * \b Complexity: Constant, if configured with constant_time_size<true>, otherwise linear.
  245. *
  246. * */
  247. size_type size(void) const
  248. {
  249. if (constant_time_size)
  250. return size_holder::get_size();
  251. if (empty())
  252. return 0;
  253. else
  254. return detail::count_list_nodes<node_type, node_list_type>(trees);
  255. }
  256. /// \copydoc boost::heap::priority_queue::max_size
  257. size_type max_size(void) const
  258. {
  259. return allocator_type::max_size();
  260. }
  261. /// \copydoc boost::heap::priority_queue::clear
  262. void clear(void)
  263. {
  264. typedef detail::node_disposer<node_type, typename node_list_type::value_type, allocator_type> disposer;
  265. trees.clear_and_dispose(disposer(*this));
  266. size_holder::set_size(0);
  267. top_element = NULL;
  268. }
  269. /// \copydoc boost::heap::priority_queue::get_allocator
  270. allocator_type get_allocator(void) const
  271. {
  272. return *this;
  273. }
  274. /// \copydoc boost::heap::priority_queue::swap
  275. void swap(binomial_heap & rhs)
  276. {
  277. super_t::swap(rhs);
  278. std::swap(top_element, rhs.top_element);
  279. trees.swap(rhs.trees);
  280. }
  281. /// \copydoc boost::heap::priority_queue::top
  282. const_reference top(void) const
  283. {
  284. BOOST_ASSERT(!empty());
  285. return super_t::get_value(top_element->value);
  286. }
  287. /**
  288. * \b Effects: Adds a new element to the priority queue. Returns handle to element
  289. *
  290. * \b Complexity: Logarithmic.
  291. *
  292. * */
  293. handle_type push(value_type const & v)
  294. {
  295. node_pointer n = allocator_type::allocate(1);
  296. new(n) node_type(super_t::make_node(v));
  297. insert_node(trees.begin(), n);
  298. if (!top_element || super_t::operator()(top_element->value, n->value))
  299. top_element = n;
  300. size_holder::increment();
  301. sanity_check();
  302. return handle_type(n);
  303. }
  304. #if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES) && !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
  305. /**
  306. * \b Effects: Adds a new element to the priority queue. The element is directly constructed in-place. Returns handle to element.
  307. *
  308. * \b Complexity: Logarithmic.
  309. *
  310. * */
  311. template <class... Args>
  312. handle_type emplace(Args&&... args)
  313. {
  314. node_pointer n = allocator_type::allocate(1);
  315. new(n) node_type(super_t::make_node(std::forward<Args>(args)...));
  316. insert_node(trees.begin(), n);
  317. if (!top_element || super_t::operator()(top_element->value, n->value))
  318. top_element = n;
  319. size_holder::increment();
  320. sanity_check();
  321. return handle_type(n);
  322. }
  323. #endif
  324. /**
  325. * \b Effects: Removes the top element from the priority queue.
  326. *
  327. * \b Complexity: Logarithmic.
  328. *
  329. * */
  330. void pop(void)
  331. {
  332. BOOST_ASSERT(!empty());
  333. node_pointer element = top_element;
  334. trees.erase(node_list_type::s_iterator_to(*element));
  335. size_holder::decrement();
  336. if (element->child_count()) {
  337. size_type sz = (1 << element->child_count()) - 1;
  338. binomial_heap children(value_comp(), element->children, sz);
  339. if (trees.empty()) {
  340. stability_counter_type stability_count = super_t::get_stability_count();
  341. size_t size = constant_time_size ? size_holder::get_size()
  342. : 0;
  343. swap(children);
  344. super_t::set_stability_count(stability_count);
  345. if (constant_time_size)
  346. size_holder::set_size( size );
  347. } else
  348. merge_and_clear_nodes(children);
  349. }
  350. if (trees.empty())
  351. top_element = NULL;
  352. else
  353. update_top_element();
  354. element->~node_type();
  355. allocator_type::deallocate(element, 1);
  356. sanity_check();
  357. }
  358. /**
  359. * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
  360. *
  361. * \b Complexity: Logarithmic.
  362. *
  363. * */
  364. void update (handle_type handle, const_reference v)
  365. {
  366. if (super_t::operator()(super_t::get_value(handle.node_->value), v))
  367. increase(handle, v);
  368. else
  369. decrease(handle, v);
  370. }
  371. /**
  372. * \b Effects: Updates the heap after the element handled by \c handle has been changed.
  373. *
  374. * \b Complexity: Logarithmic.
  375. *
  376. * \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined!
  377. * */
  378. void update (handle_type handle)
  379. {
  380. node_pointer this_node = handle.node_;
  381. if (this_node->parent) {
  382. if (super_t::operator()(super_t::get_value(this_node->parent->value), super_t::get_value(this_node->value)))
  383. increase(handle);
  384. else
  385. decrease(handle);
  386. }
  387. else
  388. decrease(handle);
  389. }
  390. /**
  391. * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
  392. *
  393. * \b Complexity: Logarithmic.
  394. *
  395. * \b Note: The new value is expected to be greater than the current one
  396. * */
  397. void increase (handle_type handle, const_reference v)
  398. {
  399. handle.node_->value = super_t::make_node(v);
  400. increase(handle);
  401. }
  402. /**
  403. * \b Effects: Updates the heap after the element handled by \c handle has been changed.
  404. *
  405. * \b Complexity: Logarithmic.
  406. *
  407. * \b Note: If this is not called, after a handle has been updated, the behavior of the data structure is undefined!
  408. * */
  409. void increase (handle_type handle)
  410. {
  411. node_pointer n = handle.node_;
  412. siftup(n, *this);
  413. update_top_element();
  414. sanity_check();
  415. }
  416. /**
  417. * \b Effects: Assigns \c v to the element handled by \c handle & updates the priority queue.
  418. *
  419. * \b Complexity: Logarithmic.
  420. *
  421. * \b Note: The new value is expected to be less than the current one
  422. * */
  423. void decrease (handle_type handle, const_reference v)
  424. {
  425. handle.node_->value = super_t::make_node(v);
  426. decrease(handle);
  427. }
  428. /**
  429. * \b Effects: Updates the heap after the element handled by \c handle has been changed.
  430. *
  431. * \b Complexity: Logarithmic.
  432. *
  433. * \b Note: The new value is expected to be less than the current one. If this is not called, after a handle has been updated, the behavior of the data structure is undefined!
  434. * */
  435. void decrease (handle_type handle)
  436. {
  437. node_pointer n = handle.node_;
  438. siftdown(n);
  439. update_top_element();
  440. }
  441. /**
  442. * \b Effects: Merge with priority queue rhs.
  443. *
  444. * \b Complexity: Logarithmic.
  445. *
  446. * */
  447. void merge(binomial_heap & rhs)
  448. {
  449. if (rhs.empty())
  450. return;
  451. if (empty()) {
  452. swap(rhs);
  453. return;
  454. }
  455. size_type new_size = size_holder::get_size() + rhs.get_size();
  456. merge_and_clear_nodes(rhs);
  457. size_holder::set_size(new_size);
  458. rhs.set_size(0);
  459. rhs.top_element = NULL;
  460. super_t::set_stability_count((std::max)(super_t::get_stability_count(),
  461. rhs.get_stability_count()));
  462. rhs.set_stability_count(0);
  463. }
  464. public:
  465. /// \copydoc boost::heap::priority_queue::begin
  466. iterator begin(void) const
  467. {
  468. return iterator(trees.begin());
  469. }
  470. /// \copydoc boost::heap::priority_queue::end
  471. iterator end(void) const
  472. {
  473. return iterator(trees.end());
  474. }
  475. /// \copydoc boost::heap::fibonacci_heap::ordered_begin
  476. ordered_iterator ordered_begin(void) const
  477. {
  478. return ordered_iterator(trees.begin(), trees.end(), top_element, super_t::value_comp());
  479. }
  480. /// \copydoc boost::heap::fibonacci_heap::ordered_end
  481. ordered_iterator ordered_end(void) const
  482. {
  483. return ordered_iterator(NULL, super_t::value_comp());
  484. }
  485. /**
  486. * \b Effects: Removes the element handled by \c handle from the priority_queue.
  487. *
  488. * \b Complexity: Logarithmic.
  489. * */
  490. void erase(handle_type handle)
  491. {
  492. node_pointer n = handle.node_;
  493. siftup(n, force_inf());
  494. top_element = n;
  495. pop();
  496. }
  497. /// \copydoc boost::heap::d_ary_heap_mutable::s_handle_from_iterator
  498. static handle_type s_handle_from_iterator(iterator const & it)
  499. {
  500. node_type * ptr = const_cast<node_type *>(it.get_node());
  501. return handle_type(ptr);
  502. }
  503. /// \copydoc boost::heap::priority_queue::value_comp
  504. value_compare const & value_comp(void) const
  505. {
  506. return super_t::value_comp();
  507. }
  508. /// \copydoc boost::heap::priority_queue::operator<(HeapType const & rhs) const
  509. template <typename HeapType>
  510. bool operator<(HeapType const & rhs) const
  511. {
  512. return detail::heap_compare(*this, rhs);
  513. }
  514. /// \copydoc boost::heap::priority_queue::operator>(HeapType const & rhs) const
  515. template <typename HeapType>
  516. bool operator>(HeapType const & rhs) const
  517. {
  518. return detail::heap_compare(rhs, *this);
  519. }
  520. /// \copydoc boost::heap::priority_queue::operator>=(HeapType const & rhs) const
  521. template <typename HeapType>
  522. bool operator>=(HeapType const & rhs) const
  523. {
  524. return !operator<(rhs);
  525. }
  526. /// \copydoc boost::heap::priority_queue::operator<=(HeapType const & rhs) const
  527. template <typename HeapType>
  528. bool operator<=(HeapType const & rhs) const
  529. {
  530. return !operator>(rhs);
  531. }
  532. /// \copydoc boost::heap::priority_queue::operator==(HeapType const & rhs) const
  533. template <typename HeapType>
  534. bool operator==(HeapType const & rhs) const
  535. {
  536. return detail::heap_equality(*this, rhs);
  537. }
  538. /// \copydoc boost::heap::priority_queue::operator!=(HeapType const & rhs) const
  539. template <typename HeapType>
  540. bool operator!=(HeapType const & rhs) const
  541. {
  542. return !(*this == rhs);
  543. }
  544. private:
  545. #if !defined(BOOST_DOXYGEN_INVOKED)
  546. void merge_and_clear_nodes(binomial_heap & rhs)
  547. {
  548. BOOST_HEAP_ASSERT (!empty());
  549. BOOST_HEAP_ASSERT (!rhs.empty());
  550. node_list_iterator this_iterator = trees.begin();
  551. node_pointer carry_node = NULL;
  552. while (!rhs.trees.empty()) {
  553. node_pointer rhs_node = static_cast<node_pointer>(&rhs.trees.front());
  554. size_type rhs_degree = rhs_node->child_count();
  555. if (super_t::operator()(top_element->value, rhs_node->value))
  556. top_element = rhs_node;
  557. try_again:
  558. node_pointer this_node = static_cast<node_pointer>(&*this_iterator);
  559. size_type this_degree = this_node->child_count();
  560. sorted_by_degree();
  561. rhs.sorted_by_degree();
  562. if (this_degree == rhs_degree) {
  563. if (carry_node) {
  564. if (carry_node->child_count() < this_degree) {
  565. trees.insert(this_iterator, *carry_node);
  566. carry_node = NULL;
  567. } else {
  568. rhs.trees.pop_front();
  569. carry_node = merge_trees(carry_node, rhs_node);
  570. }
  571. ++this_iterator;
  572. } else {
  573. this_iterator = trees.erase(this_iterator);
  574. rhs.trees.pop_front();
  575. carry_node = merge_trees(this_node, rhs_node);
  576. }
  577. if (this_iterator == trees.end())
  578. break;
  579. else
  580. continue;
  581. }
  582. if (this_degree < rhs_degree) {
  583. if (carry_node) {
  584. if (carry_node->child_count() < this_degree) {
  585. trees.insert(this_iterator, *carry_node);
  586. carry_node = NULL;
  587. ++this_iterator;
  588. } else if (carry_node->child_count() == rhs_degree) {
  589. rhs.trees.pop_front();
  590. carry_node = merge_trees(carry_node, rhs_node);
  591. continue;
  592. } else {
  593. this_iterator = trees.erase(this_iterator);
  594. carry_node = merge_trees(this_node, carry_node);
  595. }
  596. goto try_again;
  597. } else {
  598. ++this_iterator;
  599. if (this_iterator == trees.end())
  600. break;
  601. goto try_again;
  602. }
  603. if (this_iterator == trees.end())
  604. break;
  605. else
  606. continue;
  607. }
  608. if (this_degree > rhs_degree) {
  609. rhs.trees.pop_front();
  610. if (carry_node) {
  611. if (carry_node->child_count() < rhs_degree) {
  612. trees.insert(this_iterator, *carry_node);
  613. trees.insert(this_iterator, *rhs_node);
  614. carry_node = NULL;
  615. } else
  616. carry_node = merge_trees(rhs_node, carry_node);
  617. } else
  618. trees.insert(this_iterator, *rhs_node);
  619. }
  620. }
  621. if (!rhs.trees.empty()) {
  622. if (carry_node) {
  623. node_list_iterator rhs_it = rhs.trees.begin();
  624. while (static_cast<node_pointer>(&*rhs_it)->child_count() < carry_node->child_count())
  625. ++rhs_it;
  626. rhs.insert_node(rhs_it, carry_node);
  627. rhs.increment();
  628. sorted_by_degree();
  629. rhs.sorted_by_degree();
  630. if (trees.empty()) {
  631. trees.splice(trees.end(), rhs.trees, rhs.trees.begin(), rhs.trees.end());
  632. update_top_element();
  633. } else
  634. merge_and_clear_nodes(rhs);
  635. } else
  636. trees.splice(trees.end(), rhs.trees, rhs.trees.begin(), rhs.trees.end());
  637. return;
  638. }
  639. if (carry_node)
  640. insert_node(this_iterator, carry_node);
  641. }
  642. void clone_forest(binomial_heap const & rhs)
  643. {
  644. BOOST_HEAP_ASSERT(trees.empty());
  645. typedef typename node_type::template node_cloner<allocator_type> node_cloner;
  646. trees.clone_from(rhs.trees, node_cloner(*this, NULL), detail::nop_disposer());
  647. update_top_element();
  648. }
  649. struct force_inf
  650. {
  651. template <typename X>
  652. bool operator()(X const &, X const &) const
  653. {
  654. return false;
  655. }
  656. };
  657. template <typename Compare>
  658. void siftup(node_pointer n, Compare const & cmp)
  659. {
  660. while (n->parent) {
  661. node_pointer parent = n->parent;
  662. node_pointer grand_parent = parent->parent;
  663. if (cmp(n->value, parent->value))
  664. return;
  665. n->remove_from_parent();
  666. n->swap_children(parent);
  667. n->update_children();
  668. parent->update_children();
  669. if (grand_parent) {
  670. parent->remove_from_parent();
  671. grand_parent->add_child(n);
  672. } else {
  673. node_list_iterator it = trees.erase(node_list_type::s_iterator_to(*parent));
  674. trees.insert(it, *n);
  675. }
  676. n->add_child(parent);
  677. }
  678. }
  679. void siftdown(node_pointer n)
  680. {
  681. while (n->child_count()) {
  682. node_pointer max_child = detail::find_max_child<node_list_type, node_type, internal_compare>(n->children, super_t::get_internal_cmp());
  683. if (super_t::operator()(max_child->value, n->value))
  684. return;
  685. max_child->remove_from_parent();
  686. n->swap_children(max_child);
  687. n->update_children();
  688. max_child->update_children();
  689. node_pointer parent = n->parent;
  690. if (parent) {
  691. n->remove_from_parent();
  692. max_child->add_child(n);
  693. parent->add_child(max_child);
  694. } else {
  695. node_list_iterator position = trees.erase(node_list_type::s_iterator_to(*n));
  696. max_child->add_child(n);
  697. trees.insert(position, *max_child);
  698. }
  699. }
  700. }
  701. void insert_node(node_list_iterator it, node_pointer n)
  702. {
  703. if (it != trees.end())
  704. BOOST_HEAP_ASSERT(static_cast<node_pointer>(&*it)->child_count() >= n->child_count());
  705. while(true) {
  706. BOOST_HEAP_ASSERT(!n->is_linked());
  707. if (it == trees.end())
  708. break;
  709. node_pointer this_node = static_cast<node_pointer>(&*it);
  710. size_type this_degree = this_node->child_count();
  711. size_type n_degree = n->child_count();
  712. if (this_degree == n_degree) {
  713. BOOST_HEAP_ASSERT(it->is_linked());
  714. it = trees.erase(it);
  715. n = merge_trees(n, this_node);
  716. } else
  717. break;
  718. }
  719. trees.insert(it, *n);
  720. }
  721. // private constructor, just used in pop()
  722. explicit binomial_heap(value_compare const & cmp, node_list_type & child_list, size_type size):
  723. super_t(cmp)
  724. {
  725. size_holder::set_size(size);
  726. if (size)
  727. top_element = static_cast<node_pointer>(&*child_list.begin()); // not correct, but we will reset it later
  728. else
  729. top_element = NULL;
  730. for (node_list_iterator it = child_list.begin(); it != child_list.end(); ++it) {
  731. node_pointer n = static_cast<node_pointer>(&*it);
  732. n->parent = NULL;
  733. }
  734. trees.splice(trees.end(), child_list, child_list.begin(), child_list.end());
  735. trees.sort(detail::cmp_by_degree<node_type>());
  736. }
  737. node_pointer merge_trees (node_pointer node1, node_pointer node2)
  738. {
  739. BOOST_HEAP_ASSERT(node1->child_count() == node2->child_count());
  740. if (super_t::operator()(node1->value, node2->value))
  741. std::swap(node1, node2);
  742. if (node2->parent)
  743. node2->remove_from_parent();
  744. node1->add_child(node2);
  745. return node1;
  746. }
  747. void update_top_element(void)
  748. {
  749. top_element = detail::find_max_child<node_list_type, node_type, internal_compare>(trees, super_t::get_internal_cmp());
  750. }
  751. void sorted_by_degree(void) const
  752. {
  753. #ifdef BOOST_HEAP_SANITYCHECKS
  754. int degree = -1;
  755. for (node_list_const_iterator it = trees.begin(); it != trees.end(); ++it) {
  756. const_node_pointer n = static_cast<const_node_pointer>(&*it);
  757. BOOST_HEAP_ASSERT(int(n->child_count()) > degree);
  758. degree = n->child_count();
  759. BOOST_HEAP_ASSERT((detail::is_heap<node_type, super_t>(n, *this)));
  760. size_type child_nodes = detail::count_nodes<node_type>(n);
  761. BOOST_HEAP_ASSERT(child_nodes == size_type(1 << static_cast<const_node_pointer>(&*it)->child_count()));
  762. }
  763. #endif
  764. }
  765. void sanity_check(void)
  766. {
  767. #ifdef BOOST_HEAP_SANITYCHECKS
  768. sorted_by_degree();
  769. if (!empty()) {
  770. node_pointer found_top = detail::find_max_child<node_list_type, node_type, internal_compare>(trees, super_t::get_internal_cmp());
  771. BOOST_HEAP_ASSERT(top_element == found_top);
  772. }
  773. if (constant_time_size) {
  774. size_t counted = detail::count_list_nodes<node_type, node_list_type>(trees);
  775. size_t stored = size_holder::get_size();
  776. BOOST_HEAP_ASSERT(counted == stored);
  777. }
  778. #endif
  779. }
  780. node_pointer top_element;
  781. node_list_type trees;
  782. #endif // BOOST_DOXYGEN_INVOKED
  783. };
  784. } /* namespace heap */
  785. } /* namespace boost */
  786. #undef BOOST_HEAP_ASSERT
  787. #endif /* BOOST_HEAP_D_ARY_HEAP_HPP */