mmc.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905
  1. /*
  2. * (C) Copyright 2003
  3. * Kyle Harris, kharris@nexus-tech.net
  4. *
  5. * SPDX-License-Identifier: GPL-2.0+
  6. */
  7. #include <common.h>
  8. #include <command.h>
  9. #include <console.h>
  10. #include <mmc.h>
  11. static int curr_device = -1;
  12. static char *sprintf_speed(char *buf, ulong sz, uint ms)
  13. {
  14. uint64_t kbytes_per_sec;
  15. uint64_t mb_per_sec;
  16. uint32_t remain;
  17. if (!ms)
  18. goto out;
  19. kbytes_per_sec = ((sz >> 10) * 1000) / ms;
  20. mb_per_sec = kbytes_per_sec >> 10;
  21. remain = ((kbytes_per_sec - (mb_per_sec << 10)) * 100) >> 10;
  22. if (mb_per_sec)
  23. sprintf(buf, "%llu.%02u MB/s", mb_per_sec, remain);
  24. else if (kbytes_per_sec)
  25. sprintf(buf, "%llu KB/s", kbytes_per_sec);
  26. else
  27. goto out;
  28. return buf;
  29. out:
  30. strcpy(buf, "### MB/s");
  31. return buf;
  32. }
  33. static void show_stats(struct mmc *mmc)
  34. {
  35. char buf[50];
  36. struct mmc_statistics *s;
  37. s = &mmc->rd_stats;
  38. printf("read %s. error %d/%d (%d%%)\n",
  39. sprintf_speed(buf,
  40. s->total_sz * mmc->read_bl_len,
  41. s->total_time),
  42. s->errors, s->transfers,
  43. s->transfers ? (100 * s->errors / s->transfers) : 0);
  44. s = &mmc->wr_stats;
  45. printf("write %s. error %d/%d (%d%%)\n",
  46. sprintf_speed(buf,
  47. s->total_sz * mmc->read_bl_len,
  48. s->total_time),
  49. s->errors, s->transfers,
  50. s->transfers ? (100 * s->errors / s->transfers) : 0);
  51. }
  52. static void print_mmcinfo(struct mmc *mmc)
  53. {
  54. int i;
  55. printf("Device: %s\n", mmc->cfg->name);
  56. printf("Manufacturer ID: %x\n", mmc->cid[0] >> 24);
  57. printf("OEM: %x\n", (mmc->cid[0] >> 8) & 0xffff);
  58. printf("Name: %c%c%c%c%c \n", mmc->cid[0] & 0xff,
  59. (mmc->cid[1] >> 24), (mmc->cid[1] >> 16) & 0xff,
  60. (mmc->cid[1] >> 8) & 0xff, mmc->cid[1] & 0xff);
  61. printf("Tran Speed: %d\n", mmc->tran_speed);
  62. printf("Rd Block Len: %d\n", mmc->read_bl_len);
  63. printf("%s version %d.%d", IS_SD(mmc) ? "SD" : "MMC",
  64. EXTRACT_SDMMC_MAJOR_VERSION(mmc->version),
  65. EXTRACT_SDMMC_MINOR_VERSION(mmc->version));
  66. if (EXTRACT_SDMMC_CHANGE_VERSION(mmc->version) != 0)
  67. printf(".%d", EXTRACT_SDMMC_CHANGE_VERSION(mmc->version));
  68. printf("\n");
  69. printf("High Capacity: %s\n", mmc->high_capacity ? "Yes" : "No");
  70. puts("Capacity: ");
  71. print_size(mmc->capacity, "\n");
  72. printf("Bus Width: %d-bit%s\n", mmc->bus_width,
  73. mmc->ddr_mode ? " DDR" : "");
  74. puts("Erase Group Size: ");
  75. print_size(((u64)mmc->erase_grp_size) << 9, "\n");
  76. if (!IS_SD(mmc) && mmc->version >= MMC_VERSION_4_41) {
  77. bool has_enh = (mmc->part_support & ENHNCD_SUPPORT) != 0;
  78. bool usr_enh = has_enh && (mmc->part_attr & EXT_CSD_ENH_USR);
  79. puts("HC WP Group Size: ");
  80. print_size(((u64)mmc->hc_wp_grp_size) << 9, "\n");
  81. puts("User Capacity: ");
  82. print_size(mmc->capacity_user, usr_enh ? " ENH" : "");
  83. if (mmc->wr_rel_set & EXT_CSD_WR_DATA_REL_USR)
  84. puts(" WRREL\n");
  85. else
  86. putc('\n');
  87. if (usr_enh) {
  88. puts("User Enhanced Start: ");
  89. print_size(mmc->enh_user_start, "\n");
  90. puts("User Enhanced Size: ");
  91. print_size(mmc->enh_user_size, "\n");
  92. }
  93. puts("Boot Capacity: ");
  94. print_size(mmc->capacity_boot, has_enh ? " ENH\n" : "\n");
  95. puts("RPMB Capacity: ");
  96. print_size(mmc->capacity_rpmb, has_enh ? " ENH\n" : "\n");
  97. for (i = 0; i < ARRAY_SIZE(mmc->capacity_gp); i++) {
  98. bool is_enh = has_enh &&
  99. (mmc->part_attr & EXT_CSD_ENH_GP(i));
  100. if (mmc->capacity_gp[i]) {
  101. printf("GP%i Capacity: ", i+1);
  102. print_size(mmc->capacity_gp[i],
  103. is_enh ? " ENH" : "");
  104. if (mmc->wr_rel_set & EXT_CSD_WR_DATA_REL_GP(i))
  105. puts(" WRREL\n");
  106. else
  107. putc('\n');
  108. }
  109. }
  110. }
  111. show_stats(mmc);
  112. }
  113. static struct mmc *init_mmc_device(int dev, bool force_init)
  114. {
  115. struct mmc *mmc;
  116. mmc = find_mmc_device(dev);
  117. if (!mmc) {
  118. printf("no mmc device at slot %x\n", dev);
  119. return NULL;
  120. }
  121. if (force_init)
  122. mmc->has_init = 0;
  123. if (mmc_init(mmc))
  124. return NULL;
  125. return mmc;
  126. }
  127. static int do_mmcinfo(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  128. {
  129. struct mmc *mmc;
  130. if (curr_device < 0) {
  131. if (get_mmc_num() > 0)
  132. curr_device = 0;
  133. else {
  134. puts("No MMC device available\n");
  135. return 1;
  136. }
  137. }
  138. mmc = init_mmc_device(curr_device, false);
  139. if (!mmc)
  140. return CMD_RET_FAILURE;
  141. print_mmcinfo(mmc);
  142. return CMD_RET_SUCCESS;
  143. }
  144. #ifdef CONFIG_SUPPORT_EMMC_RPMB
  145. static int confirm_key_prog(void)
  146. {
  147. puts("Warning: Programming authentication key can be done only once !\n"
  148. " Use this command only if you are sure of what you are doing,\n"
  149. "Really perform the key programming? <y/N> ");
  150. if (confirm_yesno())
  151. return 1;
  152. puts("Authentication key programming aborted\n");
  153. return 0;
  154. }
  155. static int do_mmcrpmb_key(cmd_tbl_t *cmdtp, int flag,
  156. int argc, char * const argv[])
  157. {
  158. void *key_addr;
  159. struct mmc *mmc = find_mmc_device(curr_device);
  160. if (argc != 2)
  161. return CMD_RET_USAGE;
  162. key_addr = (void *)simple_strtoul(argv[1], NULL, 16);
  163. if (!confirm_key_prog())
  164. return CMD_RET_FAILURE;
  165. if (mmc_rpmb_set_key(mmc, key_addr)) {
  166. printf("ERROR - Key already programmed ?\n");
  167. return CMD_RET_FAILURE;
  168. }
  169. return CMD_RET_SUCCESS;
  170. }
  171. static int do_mmcrpmb_read(cmd_tbl_t *cmdtp, int flag,
  172. int argc, char * const argv[])
  173. {
  174. u16 blk, cnt;
  175. void *addr;
  176. int n;
  177. void *key_addr = NULL;
  178. struct mmc *mmc = find_mmc_device(curr_device);
  179. if (argc < 4)
  180. return CMD_RET_USAGE;
  181. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  182. blk = simple_strtoul(argv[2], NULL, 16);
  183. cnt = simple_strtoul(argv[3], NULL, 16);
  184. if (argc == 5)
  185. key_addr = (void *)simple_strtoul(argv[4], NULL, 16);
  186. printf("\nMMC RPMB read: dev # %d, block # %d, count %d ... ",
  187. curr_device, blk, cnt);
  188. n = mmc_rpmb_read(mmc, addr, blk, cnt, key_addr);
  189. printf("%d RPMB blocks read: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  190. if (n != cnt)
  191. return CMD_RET_FAILURE;
  192. return CMD_RET_SUCCESS;
  193. }
  194. static int do_mmcrpmb_write(cmd_tbl_t *cmdtp, int flag,
  195. int argc, char * const argv[])
  196. {
  197. u16 blk, cnt;
  198. void *addr;
  199. int n;
  200. void *key_addr;
  201. struct mmc *mmc = find_mmc_device(curr_device);
  202. if (argc != 5)
  203. return CMD_RET_USAGE;
  204. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  205. blk = simple_strtoul(argv[2], NULL, 16);
  206. cnt = simple_strtoul(argv[3], NULL, 16);
  207. key_addr = (void *)simple_strtoul(argv[4], NULL, 16);
  208. printf("\nMMC RPMB write: dev # %d, block # %d, count %d ... ",
  209. curr_device, blk, cnt);
  210. n = mmc_rpmb_write(mmc, addr, blk, cnt, key_addr);
  211. printf("%d RPMB blocks written: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  212. if (n != cnt)
  213. return CMD_RET_FAILURE;
  214. return CMD_RET_SUCCESS;
  215. }
  216. static int do_mmcrpmb_counter(cmd_tbl_t *cmdtp, int flag,
  217. int argc, char * const argv[])
  218. {
  219. unsigned long counter;
  220. struct mmc *mmc = find_mmc_device(curr_device);
  221. if (mmc_rpmb_get_counter(mmc, &counter))
  222. return CMD_RET_FAILURE;
  223. printf("RPMB Write counter= %lx\n", counter);
  224. return CMD_RET_SUCCESS;
  225. }
  226. static cmd_tbl_t cmd_rpmb[] = {
  227. U_BOOT_CMD_MKENT(key, 2, 0, do_mmcrpmb_key, "", ""),
  228. U_BOOT_CMD_MKENT(read, 5, 1, do_mmcrpmb_read, "", ""),
  229. U_BOOT_CMD_MKENT(write, 5, 0, do_mmcrpmb_write, "", ""),
  230. U_BOOT_CMD_MKENT(counter, 1, 1, do_mmcrpmb_counter, "", ""),
  231. };
  232. static int do_mmcrpmb(cmd_tbl_t *cmdtp, int flag,
  233. int argc, char * const argv[])
  234. {
  235. cmd_tbl_t *cp;
  236. struct mmc *mmc;
  237. char original_part;
  238. int ret;
  239. cp = find_cmd_tbl(argv[1], cmd_rpmb, ARRAY_SIZE(cmd_rpmb));
  240. /* Drop the rpmb subcommand */
  241. argc--;
  242. argv++;
  243. if (cp == NULL || argc > cp->maxargs)
  244. return CMD_RET_USAGE;
  245. if (flag == CMD_FLAG_REPEAT && !cp->repeatable)
  246. return CMD_RET_SUCCESS;
  247. mmc = init_mmc_device(curr_device, false);
  248. if (!mmc)
  249. return CMD_RET_FAILURE;
  250. if (!(mmc->version & MMC_VERSION_MMC)) {
  251. printf("It is not a EMMC device\n");
  252. return CMD_RET_FAILURE;
  253. }
  254. if (mmc->version < MMC_VERSION_4_41) {
  255. printf("RPMB not supported before version 4.41\n");
  256. return CMD_RET_FAILURE;
  257. }
  258. /* Switch to the RPMB partition */
  259. original_part = mmc->block_dev.hwpart;
  260. if (blk_select_hwpart_devnum(IF_TYPE_MMC, curr_device, MMC_PART_RPMB) !=
  261. 0)
  262. return CMD_RET_FAILURE;
  263. ret = cp->cmd(cmdtp, flag, argc, argv);
  264. /* Return to original partition */
  265. if (blk_select_hwpart_devnum(IF_TYPE_MMC, curr_device, original_part) !=
  266. 0)
  267. return CMD_RET_FAILURE;
  268. return ret;
  269. }
  270. #endif
  271. static int do_mmc_read(cmd_tbl_t *cmdtp, int flag,
  272. int argc, char * const argv[])
  273. {
  274. struct mmc *mmc;
  275. u32 blk, cnt, n;
  276. void *addr;
  277. if (argc != 4)
  278. return CMD_RET_USAGE;
  279. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  280. blk = simple_strtoul(argv[2], NULL, 16);
  281. cnt = simple_strtoul(argv[3], NULL, 16);
  282. mmc = init_mmc_device(curr_device, false);
  283. if (!mmc)
  284. return CMD_RET_FAILURE;
  285. printf("\nMMC read: dev # %d, block # %d, count %d ... ",
  286. curr_device, blk, cnt);
  287. n = blk_dread(mmc_get_blk_desc(mmc), blk, cnt, addr);
  288. /* flush cache after read */
  289. flush_cache((ulong)addr, cnt * 512); /* FIXME */
  290. printf("%d blocks read: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  291. return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
  292. }
  293. static int do_mmc_write(cmd_tbl_t *cmdtp, int flag,
  294. int argc, char * const argv[])
  295. {
  296. struct mmc *mmc;
  297. u32 blk, cnt, n;
  298. void *addr;
  299. if (argc != 4)
  300. return CMD_RET_USAGE;
  301. addr = (void *)simple_strtoul(argv[1], NULL, 16);
  302. blk = simple_strtoul(argv[2], NULL, 16);
  303. cnt = simple_strtoul(argv[3], NULL, 16);
  304. mmc = init_mmc_device(curr_device, false);
  305. if (!mmc)
  306. return CMD_RET_FAILURE;
  307. printf("\nMMC write: dev # %d, block # %d, count %d ... ",
  308. curr_device, blk, cnt);
  309. if (mmc_getwp(mmc) == 1) {
  310. printf("Error: card is write protected!\n");
  311. return CMD_RET_FAILURE;
  312. }
  313. n = blk_dwrite(mmc_get_blk_desc(mmc), blk, cnt, addr);
  314. printf("%d blocks written: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  315. return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
  316. }
  317. static int do_mmc_erase(cmd_tbl_t *cmdtp, int flag,
  318. int argc, char * const argv[])
  319. {
  320. struct mmc *mmc;
  321. u32 blk, cnt, n;
  322. if (argc != 3)
  323. return CMD_RET_USAGE;
  324. blk = simple_strtoul(argv[1], NULL, 16);
  325. cnt = simple_strtoul(argv[2], NULL, 16);
  326. mmc = init_mmc_device(curr_device, false);
  327. if (!mmc)
  328. return CMD_RET_FAILURE;
  329. printf("\nMMC erase: dev # %d, block # %d, count %d ... ",
  330. curr_device, blk, cnt);
  331. if (mmc_getwp(mmc) == 1) {
  332. printf("Error: card is write protected!\n");
  333. return CMD_RET_FAILURE;
  334. }
  335. n = blk_derase(mmc_get_blk_desc(mmc), blk, cnt);
  336. printf("%d blocks erased: %s\n", n, (n == cnt) ? "OK" : "ERROR");
  337. return (n == cnt) ? CMD_RET_SUCCESS : CMD_RET_FAILURE;
  338. }
  339. static int do_mmc_rescan(cmd_tbl_t *cmdtp, int flag,
  340. int argc, char * const argv[])
  341. {
  342. struct mmc *mmc;
  343. mmc = init_mmc_device(curr_device, true);
  344. if (!mmc)
  345. return CMD_RET_FAILURE;
  346. return CMD_RET_SUCCESS;
  347. }
  348. static int do_mmc_part(cmd_tbl_t *cmdtp, int flag,
  349. int argc, char * const argv[])
  350. {
  351. struct blk_desc *mmc_dev;
  352. struct mmc *mmc;
  353. mmc = init_mmc_device(curr_device, false);
  354. if (!mmc)
  355. return CMD_RET_FAILURE;
  356. mmc_dev = blk_get_devnum_by_type(IF_TYPE_MMC, curr_device);
  357. if (mmc_dev != NULL && mmc_dev->type != DEV_TYPE_UNKNOWN) {
  358. part_print(mmc_dev);
  359. return CMD_RET_SUCCESS;
  360. }
  361. puts("get mmc type error!\n");
  362. return CMD_RET_FAILURE;
  363. }
  364. static int do_mmc_dev(cmd_tbl_t *cmdtp, int flag,
  365. int argc, char * const argv[])
  366. {
  367. int dev, part = 0, ret;
  368. struct mmc *mmc;
  369. if (argc == 1) {
  370. dev = curr_device;
  371. } else if (argc == 2) {
  372. dev = simple_strtoul(argv[1], NULL, 10);
  373. } else if (argc == 3) {
  374. dev = (int)simple_strtoul(argv[1], NULL, 10);
  375. part = (int)simple_strtoul(argv[2], NULL, 10);
  376. if (part > PART_ACCESS_MASK) {
  377. printf("#part_num shouldn't be larger than %d\n",
  378. PART_ACCESS_MASK);
  379. return CMD_RET_FAILURE;
  380. }
  381. } else {
  382. return CMD_RET_USAGE;
  383. }
  384. mmc = init_mmc_device(dev, true);
  385. if (!mmc)
  386. return CMD_RET_FAILURE;
  387. ret = blk_select_hwpart_devnum(IF_TYPE_MMC, dev, part);
  388. printf("switch to partitions #%d, %s\n",
  389. part, (!ret) ? "OK" : "ERROR");
  390. if (ret)
  391. return 1;
  392. curr_device = dev;
  393. if (mmc->part_config == MMCPART_NOAVAILABLE)
  394. printf("mmc%d is current device\n", curr_device);
  395. else
  396. printf("mmc%d(part %d) is current device\n",
  397. curr_device, mmc_get_blk_desc(mmc)->hwpart);
  398. return CMD_RET_SUCCESS;
  399. }
  400. static int do_mmc_list(cmd_tbl_t *cmdtp, int flag,
  401. int argc, char * const argv[])
  402. {
  403. print_mmc_devices('\n');
  404. return CMD_RET_SUCCESS;
  405. }
  406. static int parse_hwpart_user(struct mmc_hwpart_conf *pconf,
  407. int argc, char * const argv[])
  408. {
  409. int i = 0;
  410. memset(&pconf->user, 0, sizeof(pconf->user));
  411. while (i < argc) {
  412. if (!strcmp(argv[i], "enh")) {
  413. if (i + 2 >= argc)
  414. return -1;
  415. pconf->user.enh_start =
  416. simple_strtoul(argv[i+1], NULL, 10);
  417. pconf->user.enh_size =
  418. simple_strtoul(argv[i+2], NULL, 10);
  419. i += 3;
  420. } else if (!strcmp(argv[i], "wrrel")) {
  421. if (i + 1 >= argc)
  422. return -1;
  423. pconf->user.wr_rel_change = 1;
  424. if (!strcmp(argv[i+1], "on"))
  425. pconf->user.wr_rel_set = 1;
  426. else if (!strcmp(argv[i+1], "off"))
  427. pconf->user.wr_rel_set = 0;
  428. else
  429. return -1;
  430. i += 2;
  431. } else {
  432. break;
  433. }
  434. }
  435. return i;
  436. }
  437. static int parse_hwpart_gp(struct mmc_hwpart_conf *pconf, int pidx,
  438. int argc, char * const argv[])
  439. {
  440. int i;
  441. memset(&pconf->gp_part[pidx], 0, sizeof(pconf->gp_part[pidx]));
  442. if (1 >= argc)
  443. return -1;
  444. pconf->gp_part[pidx].size = simple_strtoul(argv[0], NULL, 10);
  445. i = 1;
  446. while (i < argc) {
  447. if (!strcmp(argv[i], "enh")) {
  448. pconf->gp_part[pidx].enhanced = 1;
  449. i += 1;
  450. } else if (!strcmp(argv[i], "wrrel")) {
  451. if (i + 1 >= argc)
  452. return -1;
  453. pconf->gp_part[pidx].wr_rel_change = 1;
  454. if (!strcmp(argv[i+1], "on"))
  455. pconf->gp_part[pidx].wr_rel_set = 1;
  456. else if (!strcmp(argv[i+1], "off"))
  457. pconf->gp_part[pidx].wr_rel_set = 0;
  458. else
  459. return -1;
  460. i += 2;
  461. } else {
  462. break;
  463. }
  464. }
  465. return i;
  466. }
  467. static int do_mmc_hwpartition(cmd_tbl_t *cmdtp, int flag,
  468. int argc, char * const argv[])
  469. {
  470. struct mmc *mmc;
  471. struct mmc_hwpart_conf pconf = { };
  472. enum mmc_hwpart_conf_mode mode = MMC_HWPART_CONF_CHECK;
  473. int i, r, pidx;
  474. mmc = init_mmc_device(curr_device, false);
  475. if (!mmc)
  476. return CMD_RET_FAILURE;
  477. if (argc < 1)
  478. return CMD_RET_USAGE;
  479. i = 1;
  480. while (i < argc) {
  481. if (!strcmp(argv[i], "user")) {
  482. i++;
  483. r = parse_hwpart_user(&pconf, argc-i, &argv[i]);
  484. if (r < 0)
  485. return CMD_RET_USAGE;
  486. i += r;
  487. } else if (!strncmp(argv[i], "gp", 2) &&
  488. strlen(argv[i]) == 3 &&
  489. argv[i][2] >= '1' && argv[i][2] <= '4') {
  490. pidx = argv[i][2] - '1';
  491. i++;
  492. r = parse_hwpart_gp(&pconf, pidx, argc-i, &argv[i]);
  493. if (r < 0)
  494. return CMD_RET_USAGE;
  495. i += r;
  496. } else if (!strcmp(argv[i], "check")) {
  497. mode = MMC_HWPART_CONF_CHECK;
  498. i++;
  499. } else if (!strcmp(argv[i], "set")) {
  500. mode = MMC_HWPART_CONF_SET;
  501. i++;
  502. } else if (!strcmp(argv[i], "complete")) {
  503. mode = MMC_HWPART_CONF_COMPLETE;
  504. i++;
  505. } else {
  506. return CMD_RET_USAGE;
  507. }
  508. }
  509. puts("Partition configuration:\n");
  510. if (pconf.user.enh_size) {
  511. puts("\tUser Enhanced Start: ");
  512. print_size(((u64)pconf.user.enh_start) << 9, "\n");
  513. puts("\tUser Enhanced Size: ");
  514. print_size(((u64)pconf.user.enh_size) << 9, "\n");
  515. } else {
  516. puts("\tNo enhanced user data area\n");
  517. }
  518. if (pconf.user.wr_rel_change)
  519. printf("\tUser partition write reliability: %s\n",
  520. pconf.user.wr_rel_set ? "on" : "off");
  521. for (pidx = 0; pidx < 4; pidx++) {
  522. if (pconf.gp_part[pidx].size) {
  523. printf("\tGP%i Capacity: ", pidx+1);
  524. print_size(((u64)pconf.gp_part[pidx].size) << 9,
  525. pconf.gp_part[pidx].enhanced ?
  526. " ENH\n" : "\n");
  527. } else {
  528. printf("\tNo GP%i partition\n", pidx+1);
  529. }
  530. if (pconf.gp_part[pidx].wr_rel_change)
  531. printf("\tGP%i write reliability: %s\n", pidx+1,
  532. pconf.gp_part[pidx].wr_rel_set ? "on" : "off");
  533. }
  534. if (!mmc_hwpart_config(mmc, &pconf, mode)) {
  535. if (mode == MMC_HWPART_CONF_COMPLETE)
  536. puts("Partitioning successful, "
  537. "power-cycle to make effective\n");
  538. return CMD_RET_SUCCESS;
  539. } else {
  540. puts("Failed!\n");
  541. return CMD_RET_FAILURE;
  542. }
  543. }
  544. #ifdef CONFIG_SUPPORT_EMMC_BOOT
  545. static int do_mmc_bootbus(cmd_tbl_t *cmdtp, int flag,
  546. int argc, char * const argv[])
  547. {
  548. int dev;
  549. struct mmc *mmc;
  550. u8 width, reset, mode;
  551. if (argc != 5)
  552. return CMD_RET_USAGE;
  553. dev = simple_strtoul(argv[1], NULL, 10);
  554. width = simple_strtoul(argv[2], NULL, 10);
  555. reset = simple_strtoul(argv[3], NULL, 10);
  556. mode = simple_strtoul(argv[4], NULL, 10);
  557. mmc = init_mmc_device(dev, false);
  558. if (!mmc)
  559. return CMD_RET_FAILURE;
  560. if (IS_SD(mmc)) {
  561. puts("BOOT_BUS_WIDTH only exists on eMMC\n");
  562. return CMD_RET_FAILURE;
  563. }
  564. /* acknowledge to be sent during boot operation */
  565. return mmc_set_boot_bus_width(mmc, width, reset, mode);
  566. }
  567. static int do_mmc_boot_resize(cmd_tbl_t *cmdtp, int flag,
  568. int argc, char * const argv[])
  569. {
  570. int dev;
  571. struct mmc *mmc;
  572. u32 bootsize, rpmbsize;
  573. if (argc != 4)
  574. return CMD_RET_USAGE;
  575. dev = simple_strtoul(argv[1], NULL, 10);
  576. bootsize = simple_strtoul(argv[2], NULL, 10);
  577. rpmbsize = simple_strtoul(argv[3], NULL, 10);
  578. mmc = init_mmc_device(dev, false);
  579. if (!mmc)
  580. return CMD_RET_FAILURE;
  581. if (IS_SD(mmc)) {
  582. printf("It is not a EMMC device\n");
  583. return CMD_RET_FAILURE;
  584. }
  585. if (mmc_boot_partition_size_change(mmc, bootsize, rpmbsize)) {
  586. printf("EMMC boot partition Size change Failed.\n");
  587. return CMD_RET_FAILURE;
  588. }
  589. printf("EMMC boot partition Size %d MB\n", bootsize);
  590. printf("EMMC RPMB partition Size %d MB\n", rpmbsize);
  591. return CMD_RET_SUCCESS;
  592. }
  593. static int do_mmc_partconf(cmd_tbl_t *cmdtp, int flag,
  594. int argc, char * const argv[])
  595. {
  596. int dev;
  597. struct mmc *mmc;
  598. u8 ack, part_num, access;
  599. if (argc != 5)
  600. return CMD_RET_USAGE;
  601. dev = simple_strtoul(argv[1], NULL, 10);
  602. ack = simple_strtoul(argv[2], NULL, 10);
  603. part_num = simple_strtoul(argv[3], NULL, 10);
  604. access = simple_strtoul(argv[4], NULL, 10);
  605. mmc = init_mmc_device(dev, false);
  606. if (!mmc)
  607. return CMD_RET_FAILURE;
  608. if (IS_SD(mmc)) {
  609. puts("PARTITION_CONFIG only exists on eMMC\n");
  610. return CMD_RET_FAILURE;
  611. }
  612. /* acknowledge to be sent during boot operation */
  613. return mmc_set_part_conf(mmc, ack, part_num, access);
  614. }
  615. static int do_mmc_rst_func(cmd_tbl_t *cmdtp, int flag,
  616. int argc, char * const argv[])
  617. {
  618. int dev;
  619. struct mmc *mmc;
  620. u8 enable;
  621. /*
  622. * Set the RST_n_ENABLE bit of RST_n_FUNCTION
  623. * The only valid values are 0x0, 0x1 and 0x2 and writing
  624. * a value of 0x1 or 0x2 sets the value permanently.
  625. */
  626. if (argc != 3)
  627. return CMD_RET_USAGE;
  628. dev = simple_strtoul(argv[1], NULL, 10);
  629. enable = simple_strtoul(argv[2], NULL, 10);
  630. if (enable > 2) {
  631. puts("Invalid RST_n_ENABLE value\n");
  632. return CMD_RET_USAGE;
  633. }
  634. mmc = init_mmc_device(dev, false);
  635. if (!mmc)
  636. return CMD_RET_FAILURE;
  637. if (IS_SD(mmc)) {
  638. puts("RST_n_FUNCTION only exists on eMMC\n");
  639. return CMD_RET_FAILURE;
  640. }
  641. return mmc_set_rst_n_function(mmc, enable);
  642. }
  643. #endif
  644. static int do_mmc_setdsr(cmd_tbl_t *cmdtp, int flag,
  645. int argc, char * const argv[])
  646. {
  647. struct mmc *mmc;
  648. u32 val;
  649. int ret;
  650. if (argc != 2)
  651. return CMD_RET_USAGE;
  652. val = simple_strtoul(argv[2], NULL, 16);
  653. mmc = find_mmc_device(curr_device);
  654. if (!mmc) {
  655. printf("no mmc device at slot %x\n", curr_device);
  656. return CMD_RET_FAILURE;
  657. }
  658. ret = mmc_set_dsr(mmc, val);
  659. printf("set dsr %s\n", (!ret) ? "OK, force rescan" : "ERROR");
  660. if (!ret) {
  661. mmc->has_init = 0;
  662. if (mmc_init(mmc))
  663. return CMD_RET_FAILURE;
  664. else
  665. return CMD_RET_SUCCESS;
  666. }
  667. return ret;
  668. }
  669. #ifdef CONFIG_CMD_BKOPS_ENABLE
  670. static int do_mmc_bkops_enable(cmd_tbl_t *cmdtp, int flag,
  671. int argc, char * const argv[])
  672. {
  673. int dev;
  674. struct mmc *mmc;
  675. if (argc != 2)
  676. return CMD_RET_USAGE;
  677. dev = simple_strtoul(argv[1], NULL, 10);
  678. mmc = init_mmc_device(dev, false);
  679. if (!mmc)
  680. return CMD_RET_FAILURE;
  681. if (IS_SD(mmc)) {
  682. puts("BKOPS_EN only exists on eMMC\n");
  683. return CMD_RET_FAILURE;
  684. }
  685. return mmc_set_bkops_enable(mmc);
  686. }
  687. #endif
  688. static cmd_tbl_t cmd_mmc[] = {
  689. U_BOOT_CMD_MKENT(info, 1, 0, do_mmcinfo, "", ""),
  690. U_BOOT_CMD_MKENT(read, 4, 1, do_mmc_read, "", ""),
  691. U_BOOT_CMD_MKENT(write, 4, 0, do_mmc_write, "", ""),
  692. U_BOOT_CMD_MKENT(erase, 3, 0, do_mmc_erase, "", ""),
  693. U_BOOT_CMD_MKENT(rescan, 1, 1, do_mmc_rescan, "", ""),
  694. U_BOOT_CMD_MKENT(part, 1, 1, do_mmc_part, "", ""),
  695. U_BOOT_CMD_MKENT(dev, 3, 0, do_mmc_dev, "", ""),
  696. U_BOOT_CMD_MKENT(list, 1, 1, do_mmc_list, "", ""),
  697. U_BOOT_CMD_MKENT(hwpartition, 28, 0, do_mmc_hwpartition, "", ""),
  698. #ifdef CONFIG_SUPPORT_EMMC_BOOT
  699. U_BOOT_CMD_MKENT(bootbus, 5, 0, do_mmc_bootbus, "", ""),
  700. U_BOOT_CMD_MKENT(bootpart-resize, 4, 0, do_mmc_boot_resize, "", ""),
  701. U_BOOT_CMD_MKENT(partconf, 5, 0, do_mmc_partconf, "", ""),
  702. U_BOOT_CMD_MKENT(rst-function, 3, 0, do_mmc_rst_func, "", ""),
  703. #endif
  704. #ifdef CONFIG_SUPPORT_EMMC_RPMB
  705. U_BOOT_CMD_MKENT(rpmb, CONFIG_SYS_MAXARGS, 1, do_mmcrpmb, "", ""),
  706. #endif
  707. U_BOOT_CMD_MKENT(setdsr, 2, 0, do_mmc_setdsr, "", ""),
  708. #ifdef CONFIG_CMD_BKOPS_ENABLE
  709. U_BOOT_CMD_MKENT(bkops-enable, 2, 0, do_mmc_bkops_enable, "", ""),
  710. #endif
  711. };
  712. static int do_mmcops(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])
  713. {
  714. cmd_tbl_t *cp;
  715. cp = find_cmd_tbl(argv[1], cmd_mmc, ARRAY_SIZE(cmd_mmc));
  716. /* Drop the mmc command */
  717. argc--;
  718. argv++;
  719. if (cp == NULL || argc > cp->maxargs)
  720. return CMD_RET_USAGE;
  721. if (flag == CMD_FLAG_REPEAT && !cp->repeatable)
  722. return CMD_RET_SUCCESS;
  723. if (curr_device < 0) {
  724. if (get_mmc_num() > 0) {
  725. curr_device = 0;
  726. } else {
  727. puts("No MMC device available\n");
  728. return CMD_RET_FAILURE;
  729. }
  730. }
  731. return cp->cmd(cmdtp, flag, argc, argv);
  732. }
  733. U_BOOT_CMD(
  734. mmc, 29, 1, do_mmcops,
  735. "MMC sub system",
  736. "info - display info of the current MMC device\n"
  737. "mmc read addr blk# cnt\n"
  738. "mmc write addr blk# cnt\n"
  739. "mmc erase blk# cnt\n"
  740. "mmc rescan\n"
  741. "mmc part - lists available partition on current mmc device\n"
  742. "mmc dev [dev] [part] - show or set current mmc device [partition]\n"
  743. "mmc list - lists available devices\n"
  744. "mmc hwpartition [args...] - does hardware partitioning\n"
  745. " arguments (sizes in 512-byte blocks):\n"
  746. " [user [enh start cnt] [wrrel {on|off}]] - sets user data area attributes\n"
  747. " [gp1|gp2|gp3|gp4 cnt [enh] [wrrel {on|off}]] - general purpose partition\n"
  748. " [check|set|complete] - mode, complete set partitioning completed\n"
  749. " WARNING: Partitioning is a write-once setting once it is set to complete.\n"
  750. " Power cycling is required to initialize partitions after set to complete.\n"
  751. #ifdef CONFIG_SUPPORT_EMMC_BOOT
  752. "mmc bootbus dev boot_bus_width reset_boot_bus_width boot_mode\n"
  753. " - Set the BOOT_BUS_WIDTH field of the specified device\n"
  754. "mmc bootpart-resize <dev> <boot part size MB> <RPMB part size MB>\n"
  755. " - Change sizes of boot and RPMB partitions of specified device\n"
  756. "mmc partconf dev boot_ack boot_partition partition_access\n"
  757. " - Change the bits of the PARTITION_CONFIG field of the specified device\n"
  758. "mmc rst-function dev value\n"
  759. " - Change the RST_n_FUNCTION field of the specified device\n"
  760. " WARNING: This is a write-once field and 0 / 1 / 2 are the only valid values.\n"
  761. #endif
  762. #ifdef CONFIG_SUPPORT_EMMC_RPMB
  763. "mmc rpmb read addr blk# cnt [address of auth-key] - block size is 256 bytes\n"
  764. "mmc rpmb write addr blk# cnt <address of auth-key> - block size is 256 bytes\n"
  765. "mmc rpmb key <address of auth-key> - program the RPMB authentication key.\n"
  766. "mmc rpmb counter - read the value of the write counter\n"
  767. #endif
  768. "mmc setdsr <value> - set DSR register value\n"
  769. #ifdef CONFIG_CMD_BKOPS_ENABLE
  770. "mmc bkops-enable <dev> - enable background operations handshake on device\n"
  771. " WARNING: This is a write-once setting.\n"
  772. #endif
  773. );
  774. /* Old command kept for compatibility. Same as 'mmc info' */
  775. U_BOOT_CMD(
  776. mmcinfo, 1, 0, do_mmcinfo,
  777. "display MMC info",
  778. "- display info of the current MMC device"
  779. );