board.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967
  1. /*
  2. * board.c
  3. *
  4. * Board functions for TI AM43XX based boards
  5. *
  6. * Copyright (C) 2013, Texas Instruments, Incorporated - http://www.ti.com/
  7. *
  8. * SPDX-License-Identifier: GPL-2.0+
  9. */
  10. #include <common.h>
  11. #include <i2c.h>
  12. #include <linux/errno.h>
  13. #include <spl.h>
  14. #include <usb.h>
  15. #include <asm/omap_sec_common.h>
  16. #include <asm/arch/clock.h>
  17. #include <asm/arch/sys_proto.h>
  18. #include <asm/arch/mux.h>
  19. #include <asm/arch/ddr_defs.h>
  20. #include <asm/arch/gpio.h>
  21. #include <asm/emif.h>
  22. #include "../common/board_detect.h"
  23. #include "board.h"
  24. #include <power/pmic.h>
  25. #include <power/tps65218.h>
  26. #include <power/tps62362.h>
  27. #include <miiphy.h>
  28. #include <cpsw.h>
  29. #include <linux/usb/gadget.h>
  30. #include <dwc3-uboot.h>
  31. #include <dwc3-omap-uboot.h>
  32. #include <ti-usb-phy-uboot.h>
  33. DECLARE_GLOBAL_DATA_PTR;
  34. static struct ctrl_dev *cdev = (struct ctrl_dev *)CTRL_DEVICE_BASE;
  35. /*
  36. * Read header information from EEPROM into global structure.
  37. */
  38. #ifdef CONFIG_TI_I2C_BOARD_DETECT
  39. void do_board_detect(void)
  40. {
  41. if (ti_i2c_eeprom_am_get(-1, CONFIG_SYS_I2C_EEPROM_ADDR))
  42. printf("ti_i2c_eeprom_init failed\n");
  43. }
  44. #endif
  45. #ifndef CONFIG_SKIP_LOWLEVEL_INIT
  46. const struct dpll_params dpll_mpu[NUM_CRYSTAL_FREQ][NUM_OPPS] = {
  47. { /* 19.2 MHz */
  48. {125, 3, 2, -1, -1, -1, -1}, /* OPP 50 */
  49. {-1, -1, -1, -1, -1, -1, -1}, /* OPP RESERVED */
  50. {125, 3, 1, -1, -1, -1, -1}, /* OPP 100 */
  51. {150, 3, 1, -1, -1, -1, -1}, /* OPP 120 */
  52. {125, 2, 1, -1, -1, -1, -1}, /* OPP TB */
  53. {625, 11, 1, -1, -1, -1, -1} /* OPP NT */
  54. },
  55. { /* 24 MHz */
  56. {300, 23, 1, -1, -1, -1, -1}, /* OPP 50 */
  57. {-1, -1, -1, -1, -1, -1, -1}, /* OPP RESERVED */
  58. {600, 23, 1, -1, -1, -1, -1}, /* OPP 100 */
  59. {720, 23, 1, -1, -1, -1, -1}, /* OPP 120 */
  60. {800, 23, 1, -1, -1, -1, -1}, /* OPP TB */
  61. {1000, 23, 1, -1, -1, -1, -1} /* OPP NT */
  62. },
  63. { /* 25 MHz */
  64. {300, 24, 1, -1, -1, -1, -1}, /* OPP 50 */
  65. {-1, -1, -1, -1, -1, -1, -1}, /* OPP RESERVED */
  66. {600, 24, 1, -1, -1, -1, -1}, /* OPP 100 */
  67. {720, 24, 1, -1, -1, -1, -1}, /* OPP 120 */
  68. {800, 24, 1, -1, -1, -1, -1}, /* OPP TB */
  69. {1000, 24, 1, -1, -1, -1, -1} /* OPP NT */
  70. },
  71. { /* 26 MHz */
  72. {300, 25, 1, -1, -1, -1, -1}, /* OPP 50 */
  73. {-1, -1, -1, -1, -1, -1, -1}, /* OPP RESERVED */
  74. {600, 25, 1, -1, -1, -1, -1}, /* OPP 100 */
  75. {720, 25, 1, -1, -1, -1, -1}, /* OPP 120 */
  76. {800, 25, 1, -1, -1, -1, -1}, /* OPP TB */
  77. {1000, 25, 1, -1, -1, -1, -1} /* OPP NT */
  78. },
  79. };
  80. const struct dpll_params dpll_core[NUM_CRYSTAL_FREQ] = {
  81. {625, 11, -1, -1, 10, 8, 4}, /* 19.2 MHz */
  82. {1000, 23, -1, -1, 10, 8, 4}, /* 24 MHz */
  83. {1000, 24, -1, -1, 10, 8, 4}, /* 25 MHz */
  84. {1000, 25, -1, -1, 10, 8, 4} /* 26 MHz */
  85. };
  86. const struct dpll_params dpll_per[NUM_CRYSTAL_FREQ] = {
  87. {400, 7, 5, -1, -1, -1, -1}, /* 19.2 MHz */
  88. {400, 9, 5, -1, -1, -1, -1}, /* 24 MHz */
  89. {384, 9, 5, -1, -1, -1, -1}, /* 25 MHz */
  90. {480, 12, 5, -1, -1, -1, -1} /* 26 MHz */
  91. };
  92. const struct dpll_params epos_evm_dpll_ddr[NUM_CRYSTAL_FREQ] = {
  93. {665, 47, 1, -1, 4, -1, -1}, /*19.2*/
  94. {133, 11, 1, -1, 4, -1, -1}, /* 24 MHz */
  95. {266, 24, 1, -1, 4, -1, -1}, /* 25 MHz */
  96. {133, 12, 1, -1, 4, -1, -1} /* 26 MHz */
  97. };
  98. const struct dpll_params gp_evm_dpll_ddr = {
  99. 50, 2, 1, -1, 2, -1, -1};
  100. static const struct dpll_params idk_dpll_ddr = {
  101. 400, 23, 1, -1, 2, -1, -1
  102. };
  103. static const u32 ext_phy_ctrl_const_base_lpddr2[] = {
  104. 0x00500050,
  105. 0x00350035,
  106. 0x00350035,
  107. 0x00350035,
  108. 0x00350035,
  109. 0x00350035,
  110. 0x00000000,
  111. 0x00000000,
  112. 0x00000000,
  113. 0x00000000,
  114. 0x00000000,
  115. 0x00000000,
  116. 0x00000000,
  117. 0x00000000,
  118. 0x00000000,
  119. 0x00000000,
  120. 0x00000000,
  121. 0x00000000,
  122. 0x40001000,
  123. 0x08102040
  124. };
  125. const struct ctrl_ioregs ioregs_lpddr2 = {
  126. .cm0ioctl = LPDDR2_ADDRCTRL_IOCTRL_VALUE,
  127. .cm1ioctl = LPDDR2_ADDRCTRL_WD0_IOCTRL_VALUE,
  128. .cm2ioctl = LPDDR2_ADDRCTRL_WD1_IOCTRL_VALUE,
  129. .dt0ioctl = LPDDR2_DATA0_IOCTRL_VALUE,
  130. .dt1ioctl = LPDDR2_DATA0_IOCTRL_VALUE,
  131. .dt2ioctrl = LPDDR2_DATA0_IOCTRL_VALUE,
  132. .dt3ioctrl = LPDDR2_DATA0_IOCTRL_VALUE,
  133. .emif_sdram_config_ext = 0x1,
  134. };
  135. const struct emif_regs emif_regs_lpddr2 = {
  136. .sdram_config = 0x808012BA,
  137. .ref_ctrl = 0x0000040D,
  138. .sdram_tim1 = 0xEA86B411,
  139. .sdram_tim2 = 0x103A094A,
  140. .sdram_tim3 = 0x0F6BA37F,
  141. .read_idle_ctrl = 0x00050000,
  142. .zq_config = 0x50074BE4,
  143. .temp_alert_config = 0x0,
  144. .emif_rd_wr_lvl_rmp_win = 0x0,
  145. .emif_rd_wr_lvl_rmp_ctl = 0x0,
  146. .emif_rd_wr_lvl_ctl = 0x0,
  147. .emif_ddr_phy_ctlr_1 = 0x0E284006,
  148. .emif_rd_wr_exec_thresh = 0x80000405,
  149. .emif_ddr_ext_phy_ctrl_1 = 0x04010040,
  150. .emif_ddr_ext_phy_ctrl_2 = 0x00500050,
  151. .emif_ddr_ext_phy_ctrl_3 = 0x00500050,
  152. .emif_ddr_ext_phy_ctrl_4 = 0x00500050,
  153. .emif_ddr_ext_phy_ctrl_5 = 0x00500050,
  154. .emif_prio_class_serv_map = 0x80000001,
  155. .emif_connect_id_serv_1_map = 0x80000094,
  156. .emif_connect_id_serv_2_map = 0x00000000,
  157. .emif_cos_config = 0x000FFFFF
  158. };
  159. const struct ctrl_ioregs ioregs_ddr3 = {
  160. .cm0ioctl = DDR3_ADDRCTRL_IOCTRL_VALUE,
  161. .cm1ioctl = DDR3_ADDRCTRL_WD0_IOCTRL_VALUE,
  162. .cm2ioctl = DDR3_ADDRCTRL_WD1_IOCTRL_VALUE,
  163. .dt0ioctl = DDR3_DATA0_IOCTRL_VALUE,
  164. .dt1ioctl = DDR3_DATA0_IOCTRL_VALUE,
  165. .dt2ioctrl = DDR3_DATA0_IOCTRL_VALUE,
  166. .dt3ioctrl = DDR3_DATA0_IOCTRL_VALUE,
  167. .emif_sdram_config_ext = 0xc163,
  168. };
  169. const struct emif_regs ddr3_emif_regs_400Mhz = {
  170. .sdram_config = 0x638413B2,
  171. .ref_ctrl = 0x00000C30,
  172. .sdram_tim1 = 0xEAAAD4DB,
  173. .sdram_tim2 = 0x266B7FDA,
  174. .sdram_tim3 = 0x107F8678,
  175. .read_idle_ctrl = 0x00050000,
  176. .zq_config = 0x50074BE4,
  177. .temp_alert_config = 0x0,
  178. .emif_ddr_phy_ctlr_1 = 0x0E004008,
  179. .emif_ddr_ext_phy_ctrl_1 = 0x08020080,
  180. .emif_ddr_ext_phy_ctrl_2 = 0x00400040,
  181. .emif_ddr_ext_phy_ctrl_3 = 0x00400040,
  182. .emif_ddr_ext_phy_ctrl_4 = 0x00400040,
  183. .emif_ddr_ext_phy_ctrl_5 = 0x00400040,
  184. .emif_rd_wr_lvl_rmp_win = 0x0,
  185. .emif_rd_wr_lvl_rmp_ctl = 0x0,
  186. .emif_rd_wr_lvl_ctl = 0x0,
  187. .emif_rd_wr_exec_thresh = 0x80000405,
  188. .emif_prio_class_serv_map = 0x80000001,
  189. .emif_connect_id_serv_1_map = 0x80000094,
  190. .emif_connect_id_serv_2_map = 0x00000000,
  191. .emif_cos_config = 0x000FFFFF
  192. };
  193. /* EMIF DDR3 Configurations are different for beta AM43X GP EVMs */
  194. const struct emif_regs ddr3_emif_regs_400Mhz_beta = {
  195. .sdram_config = 0x638413B2,
  196. .ref_ctrl = 0x00000C30,
  197. .sdram_tim1 = 0xEAAAD4DB,
  198. .sdram_tim2 = 0x266B7FDA,
  199. .sdram_tim3 = 0x107F8678,
  200. .read_idle_ctrl = 0x00050000,
  201. .zq_config = 0x50074BE4,
  202. .temp_alert_config = 0x0,
  203. .emif_ddr_phy_ctlr_1 = 0x0E004008,
  204. .emif_ddr_ext_phy_ctrl_1 = 0x08020080,
  205. .emif_ddr_ext_phy_ctrl_2 = 0x00000065,
  206. .emif_ddr_ext_phy_ctrl_3 = 0x00000091,
  207. .emif_ddr_ext_phy_ctrl_4 = 0x000000B5,
  208. .emif_ddr_ext_phy_ctrl_5 = 0x000000E5,
  209. .emif_rd_wr_exec_thresh = 0x80000405,
  210. .emif_prio_class_serv_map = 0x80000001,
  211. .emif_connect_id_serv_1_map = 0x80000094,
  212. .emif_connect_id_serv_2_map = 0x00000000,
  213. .emif_cos_config = 0x000FFFFF
  214. };
  215. /* EMIF DDR3 Configurations are different for production AM43X GP EVMs */
  216. const struct emif_regs ddr3_emif_regs_400Mhz_production = {
  217. .sdram_config = 0x638413B2,
  218. .ref_ctrl = 0x00000C30,
  219. .sdram_tim1 = 0xEAAAD4DB,
  220. .sdram_tim2 = 0x266B7FDA,
  221. .sdram_tim3 = 0x107F8678,
  222. .read_idle_ctrl = 0x00050000,
  223. .zq_config = 0x50074BE4,
  224. .temp_alert_config = 0x0,
  225. .emif_ddr_phy_ctlr_1 = 0x0E004008,
  226. .emif_ddr_ext_phy_ctrl_1 = 0x08020080,
  227. .emif_ddr_ext_phy_ctrl_2 = 0x00000066,
  228. .emif_ddr_ext_phy_ctrl_3 = 0x00000091,
  229. .emif_ddr_ext_phy_ctrl_4 = 0x000000B9,
  230. .emif_ddr_ext_phy_ctrl_5 = 0x000000E6,
  231. .emif_rd_wr_exec_thresh = 0x80000405,
  232. .emif_prio_class_serv_map = 0x80000001,
  233. .emif_connect_id_serv_1_map = 0x80000094,
  234. .emif_connect_id_serv_2_map = 0x00000000,
  235. .emif_cos_config = 0x000FFFFF
  236. };
  237. static const struct emif_regs ddr3_sk_emif_regs_400Mhz = {
  238. .sdram_config = 0x638413b2,
  239. .sdram_config2 = 0x00000000,
  240. .ref_ctrl = 0x00000c30,
  241. .sdram_tim1 = 0xeaaad4db,
  242. .sdram_tim2 = 0x266b7fda,
  243. .sdram_tim3 = 0x107f8678,
  244. .read_idle_ctrl = 0x00050000,
  245. .zq_config = 0x50074be4,
  246. .temp_alert_config = 0x0,
  247. .emif_ddr_phy_ctlr_1 = 0x0e084008,
  248. .emif_ddr_ext_phy_ctrl_1 = 0x08020080,
  249. .emif_ddr_ext_phy_ctrl_2 = 0x89,
  250. .emif_ddr_ext_phy_ctrl_3 = 0x90,
  251. .emif_ddr_ext_phy_ctrl_4 = 0x8e,
  252. .emif_ddr_ext_phy_ctrl_5 = 0x8d,
  253. .emif_rd_wr_lvl_rmp_win = 0x0,
  254. .emif_rd_wr_lvl_rmp_ctl = 0x00000000,
  255. .emif_rd_wr_lvl_ctl = 0x00000000,
  256. .emif_rd_wr_exec_thresh = 0x80000000,
  257. .emif_prio_class_serv_map = 0x80000001,
  258. .emif_connect_id_serv_1_map = 0x80000094,
  259. .emif_connect_id_serv_2_map = 0x00000000,
  260. .emif_cos_config = 0x000FFFFF
  261. };
  262. static const struct emif_regs ddr3_idk_emif_regs_400Mhz = {
  263. .sdram_config = 0x61a11b32,
  264. .sdram_config2 = 0x00000000,
  265. .ref_ctrl = 0x00000c30,
  266. .sdram_tim1 = 0xeaaad4db,
  267. .sdram_tim2 = 0x266b7fda,
  268. .sdram_tim3 = 0x107f8678,
  269. .read_idle_ctrl = 0x00050000,
  270. .zq_config = 0x50074be4,
  271. .temp_alert_config = 0x00000000,
  272. .emif_ddr_phy_ctlr_1 = 0x00008009,
  273. .emif_ddr_ext_phy_ctrl_1 = 0x08020080,
  274. .emif_ddr_ext_phy_ctrl_2 = 0x00000040,
  275. .emif_ddr_ext_phy_ctrl_3 = 0x0000003e,
  276. .emif_ddr_ext_phy_ctrl_4 = 0x00000051,
  277. .emif_ddr_ext_phy_ctrl_5 = 0x00000051,
  278. .emif_rd_wr_lvl_rmp_win = 0x00000000,
  279. .emif_rd_wr_lvl_rmp_ctl = 0x00000000,
  280. .emif_rd_wr_lvl_ctl = 0x00000000,
  281. .emif_rd_wr_exec_thresh = 0x00000405,
  282. .emif_prio_class_serv_map = 0x00000000,
  283. .emif_connect_id_serv_1_map = 0x00000000,
  284. .emif_connect_id_serv_2_map = 0x00000000,
  285. .emif_cos_config = 0x00ffffff
  286. };
  287. void emif_get_ext_phy_ctrl_const_regs(const u32 **regs, u32 *size)
  288. {
  289. if (board_is_eposevm()) {
  290. *regs = ext_phy_ctrl_const_base_lpddr2;
  291. *size = ARRAY_SIZE(ext_phy_ctrl_const_base_lpddr2);
  292. }
  293. return;
  294. }
  295. const struct dpll_params *get_dpll_ddr_params(void)
  296. {
  297. int ind = get_sys_clk_index();
  298. if (board_is_eposevm())
  299. return &epos_evm_dpll_ddr[ind];
  300. else if (board_is_evm() || board_is_sk())
  301. return &gp_evm_dpll_ddr;
  302. else if (board_is_idk())
  303. return &idk_dpll_ddr;
  304. printf(" Board '%s' not supported\n", board_ti_get_name());
  305. return NULL;
  306. }
  307. /*
  308. * get_opp_offset:
  309. * Returns the index for safest OPP of the device to boot.
  310. * max_off: Index of the MAX OPP in DEV ATTRIBUTE register.
  311. * min_off: Index of the MIN OPP in DEV ATTRIBUTE register.
  312. * This data is read from dev_attribute register which is e-fused.
  313. * A'1' in bit indicates OPP disabled and not available, a '0' indicates
  314. * OPP available. Lowest OPP starts with min_off. So returning the
  315. * bit with rightmost '0'.
  316. */
  317. static int get_opp_offset(int max_off, int min_off)
  318. {
  319. struct ctrl_stat *ctrl = (struct ctrl_stat *)CTRL_BASE;
  320. int opp, offset, i;
  321. /* Bits 0:11 are defined to be the MPU_MAX_FREQ */
  322. opp = readl(&ctrl->dev_attr) & ~0xFFFFF000;
  323. for (i = max_off; i >= min_off; i--) {
  324. offset = opp & (1 << i);
  325. if (!offset)
  326. return i;
  327. }
  328. return min_off;
  329. }
  330. const struct dpll_params *get_dpll_mpu_params(void)
  331. {
  332. int opp = get_opp_offset(DEV_ATTR_MAX_OFFSET, DEV_ATTR_MIN_OFFSET);
  333. u32 ind = get_sys_clk_index();
  334. return &dpll_mpu[ind][opp];
  335. }
  336. const struct dpll_params *get_dpll_core_params(void)
  337. {
  338. int ind = get_sys_clk_index();
  339. return &dpll_core[ind];
  340. }
  341. const struct dpll_params *get_dpll_per_params(void)
  342. {
  343. int ind = get_sys_clk_index();
  344. return &dpll_per[ind];
  345. }
  346. void scale_vcores_generic(u32 m)
  347. {
  348. int mpu_vdd;
  349. if (i2c_probe(TPS65218_CHIP_PM))
  350. return;
  351. switch (m) {
  352. case 1000:
  353. mpu_vdd = TPS65218_DCDC_VOLT_SEL_1330MV;
  354. break;
  355. case 800:
  356. mpu_vdd = TPS65218_DCDC_VOLT_SEL_1260MV;
  357. break;
  358. case 720:
  359. mpu_vdd = TPS65218_DCDC_VOLT_SEL_1200MV;
  360. break;
  361. case 600:
  362. mpu_vdd = TPS65218_DCDC_VOLT_SEL_1100MV;
  363. break;
  364. case 300:
  365. mpu_vdd = TPS65218_DCDC_VOLT_SEL_0950MV;
  366. break;
  367. default:
  368. puts("Unknown MPU clock, not scaling\n");
  369. return;
  370. }
  371. /* Set DCDC1 (CORE) voltage to 1.1V */
  372. if (tps65218_voltage_update(TPS65218_DCDC1,
  373. TPS65218_DCDC_VOLT_SEL_1100MV)) {
  374. printf("%s failure\n", __func__);
  375. return;
  376. }
  377. /* Set DCDC2 (MPU) voltage */
  378. if (tps65218_voltage_update(TPS65218_DCDC2, mpu_vdd)) {
  379. printf("%s failure\n", __func__);
  380. return;
  381. }
  382. /* Set DCDC3 (DDR) voltage */
  383. if (tps65218_voltage_update(TPS65218_DCDC3,
  384. TPS65218_DCDC3_VOLT_SEL_1350MV)) {
  385. printf("%s failure\n", __func__);
  386. return;
  387. }
  388. }
  389. void scale_vcores_idk(u32 m)
  390. {
  391. int mpu_vdd;
  392. if (i2c_probe(TPS62362_I2C_ADDR))
  393. return;
  394. switch (m) {
  395. case 1000:
  396. mpu_vdd = TPS62362_DCDC_VOLT_SEL_1330MV;
  397. break;
  398. case 800:
  399. mpu_vdd = TPS62362_DCDC_VOLT_SEL_1260MV;
  400. break;
  401. case 720:
  402. mpu_vdd = TPS62362_DCDC_VOLT_SEL_1200MV;
  403. break;
  404. case 600:
  405. mpu_vdd = TPS62362_DCDC_VOLT_SEL_1100MV;
  406. break;
  407. case 300:
  408. mpu_vdd = TPS62362_DCDC_VOLT_SEL_1330MV;
  409. break;
  410. default:
  411. puts("Unknown MPU clock, not scaling\n");
  412. return;
  413. }
  414. /* Set VDD_MPU voltage */
  415. if (tps62362_voltage_update(TPS62362_SET3, mpu_vdd)) {
  416. printf("%s failure\n", __func__);
  417. return;
  418. }
  419. }
  420. void gpi2c_init(void)
  421. {
  422. /* When needed to be invoked prior to BSS initialization */
  423. static bool first_time = true;
  424. if (first_time) {
  425. enable_i2c0_pin_mux();
  426. i2c_init(CONFIG_SYS_OMAP24_I2C_SPEED,
  427. CONFIG_SYS_OMAP24_I2C_SLAVE);
  428. first_time = false;
  429. }
  430. }
  431. void scale_vcores(void)
  432. {
  433. const struct dpll_params *mpu_params;
  434. /* Ensure I2C is initialized for PMIC configuration */
  435. gpi2c_init();
  436. /* Get the frequency */
  437. mpu_params = get_dpll_mpu_params();
  438. if (board_is_idk())
  439. scale_vcores_idk(mpu_params->m);
  440. else
  441. scale_vcores_generic(mpu_params->m);
  442. }
  443. void set_uart_mux_conf(void)
  444. {
  445. enable_uart0_pin_mux();
  446. }
  447. void set_mux_conf_regs(void)
  448. {
  449. enable_board_pin_mux();
  450. }
  451. static void enable_vtt_regulator(void)
  452. {
  453. u32 temp;
  454. /* enable module */
  455. writel(GPIO_CTRL_ENABLEMODULE, AM33XX_GPIO5_BASE + OMAP_GPIO_CTRL);
  456. /* enable output for GPIO5_7 */
  457. writel(GPIO_SETDATAOUT(7),
  458. AM33XX_GPIO5_BASE + OMAP_GPIO_SETDATAOUT);
  459. temp = readl(AM33XX_GPIO5_BASE + OMAP_GPIO_OE);
  460. temp = temp & ~(GPIO_OE_ENABLE(7));
  461. writel(temp, AM33XX_GPIO5_BASE + OMAP_GPIO_OE);
  462. }
  463. enum {
  464. RTC_BOARD_EPOS = 1,
  465. RTC_BOARD_EVM14,
  466. RTC_BOARD_EVM12,
  467. RTC_BOARD_GPEVM,
  468. RTC_BOARD_SK,
  469. };
  470. /*
  471. * In the rtc_only boot path we have the board type info in the rtc scratch pad
  472. * register hence we bypass the costly i2c reads to eeprom and directly program
  473. * the board name string
  474. */
  475. void rtc_only_update_board_type(u32 btype)
  476. {
  477. const char *name = "";
  478. const char *rev = "1.0";
  479. switch (btype) {
  480. case RTC_BOARD_EPOS:
  481. name = "AM43EPOS";
  482. break;
  483. case RTC_BOARD_EVM14:
  484. name = "AM43__GP";
  485. rev = "1.4";
  486. break;
  487. case RTC_BOARD_EVM12:
  488. name = "AM43__GP";
  489. rev = "1.2";
  490. break;
  491. case RTC_BOARD_GPEVM:
  492. name = "AM43__GP";
  493. break;
  494. case RTC_BOARD_SK:
  495. name = "AM43__SK";
  496. break;
  497. }
  498. ti_i2c_eeprom_am_set(name, rev);
  499. }
  500. u32 rtc_only_get_board_type(void)
  501. {
  502. if (board_is_eposevm())
  503. return RTC_BOARD_EPOS;
  504. else if (board_is_evm_14_or_later())
  505. return RTC_BOARD_EVM14;
  506. else if (board_is_evm_12_or_later())
  507. return RTC_BOARD_EVM12;
  508. else if (board_is_gpevm())
  509. return RTC_BOARD_GPEVM;
  510. else if (board_is_sk())
  511. return RTC_BOARD_SK;
  512. return 0;
  513. }
  514. void sdram_init(void)
  515. {
  516. /*
  517. * EPOS EVM has 1GB LPDDR2 connected to EMIF.
  518. * GP EMV has 1GB DDR3 connected to EMIF
  519. * along with VTT regulator.
  520. */
  521. if (board_is_eposevm()) {
  522. config_ddr(0, &ioregs_lpddr2, NULL, NULL, &emif_regs_lpddr2, 0);
  523. } else if (board_is_evm_14_or_later()) {
  524. enable_vtt_regulator();
  525. config_ddr(0, &ioregs_ddr3, NULL, NULL,
  526. &ddr3_emif_regs_400Mhz_production, 0);
  527. } else if (board_is_evm_12_or_later()) {
  528. enable_vtt_regulator();
  529. config_ddr(0, &ioregs_ddr3, NULL, NULL,
  530. &ddr3_emif_regs_400Mhz_beta, 0);
  531. } else if (board_is_evm()) {
  532. enable_vtt_regulator();
  533. config_ddr(0, &ioregs_ddr3, NULL, NULL,
  534. &ddr3_emif_regs_400Mhz, 0);
  535. } else if (board_is_sk()) {
  536. config_ddr(400, &ioregs_ddr3, NULL, NULL,
  537. &ddr3_sk_emif_regs_400Mhz, 0);
  538. } else if (board_is_idk()) {
  539. config_ddr(400, &ioregs_ddr3, NULL, NULL,
  540. &ddr3_idk_emif_regs_400Mhz, 0);
  541. }
  542. }
  543. #endif
  544. /* setup board specific PMIC */
  545. int power_init_board(void)
  546. {
  547. struct pmic *p;
  548. if (board_is_idk()) {
  549. power_tps62362_init(I2C_PMIC);
  550. p = pmic_get("TPS62362");
  551. if (p && !pmic_probe(p))
  552. puts("PMIC: TPS62362\n");
  553. } else {
  554. power_tps65218_init(I2C_PMIC);
  555. p = pmic_get("TPS65218_PMIC");
  556. if (p && !pmic_probe(p))
  557. puts("PMIC: TPS65218\n");
  558. }
  559. return 0;
  560. }
  561. int board_init(void)
  562. {
  563. struct l3f_cfg_bwlimiter *bwlimiter = (struct l3f_cfg_bwlimiter *)L3F_CFG_BWLIMITER;
  564. u32 mreqprio_0, mreqprio_1, modena_init0_bw_fractional,
  565. modena_init0_bw_integer, modena_init0_watermark_0;
  566. gd->bd->bi_boot_params = CONFIG_SYS_SDRAM_BASE + 0x100;
  567. gpmc_init();
  568. /* Clear all important bits for DSS errata that may need to be tweaked*/
  569. mreqprio_0 = readl(&cdev->mreqprio_0) & MREQPRIO_0_SAB_INIT1_MASK &
  570. MREQPRIO_0_SAB_INIT0_MASK;
  571. mreqprio_1 = readl(&cdev->mreqprio_1) & MREQPRIO_1_DSS_MASK;
  572. modena_init0_bw_fractional = readl(&bwlimiter->modena_init0_bw_fractional) &
  573. BW_LIMITER_BW_FRAC_MASK;
  574. modena_init0_bw_integer = readl(&bwlimiter->modena_init0_bw_integer) &
  575. BW_LIMITER_BW_INT_MASK;
  576. modena_init0_watermark_0 = readl(&bwlimiter->modena_init0_watermark_0) &
  577. BW_LIMITER_BW_WATERMARK_MASK;
  578. /* Setting MReq Priority of the DSS*/
  579. mreqprio_0 |= 0x77;
  580. /*
  581. * Set L3 Fast Configuration Register
  582. * Limiting bandwith for ARM core to 700 MBPS
  583. */
  584. modena_init0_bw_fractional |= 0x10;
  585. modena_init0_bw_integer |= 0x3;
  586. writel(mreqprio_0, &cdev->mreqprio_0);
  587. writel(mreqprio_1, &cdev->mreqprio_1);
  588. writel(modena_init0_bw_fractional, &bwlimiter->modena_init0_bw_fractional);
  589. writel(modena_init0_bw_integer, &bwlimiter->modena_init0_bw_integer);
  590. writel(modena_init0_watermark_0, &bwlimiter->modena_init0_watermark_0);
  591. return 0;
  592. }
  593. #ifdef CONFIG_BOARD_LATE_INIT
  594. int board_late_init(void)
  595. {
  596. #ifdef CONFIG_ENV_VARS_UBOOT_RUNTIME_CONFIG
  597. set_board_info_env(NULL);
  598. /*
  599. * Default FIT boot on HS devices. Non FIT images are not allowed
  600. * on HS devices.
  601. */
  602. if (get_device_type() == HS_DEVICE)
  603. setenv("boot_fit", "1");
  604. #endif
  605. return 0;
  606. }
  607. #endif
  608. #ifdef CONFIG_USB_DWC3
  609. static struct dwc3_device usb_otg_ss1 = {
  610. .maximum_speed = USB_SPEED_HIGH,
  611. .base = USB_OTG_SS1_BASE,
  612. .tx_fifo_resize = false,
  613. .index = 0,
  614. };
  615. static struct dwc3_omap_device usb_otg_ss1_glue = {
  616. .base = (void *)USB_OTG_SS1_GLUE_BASE,
  617. .utmi_mode = DWC3_OMAP_UTMI_MODE_SW,
  618. .index = 0,
  619. };
  620. static struct ti_usb_phy_device usb_phy1_device = {
  621. .usb2_phy_power = (void *)USB2_PHY1_POWER,
  622. .index = 0,
  623. };
  624. static struct dwc3_device usb_otg_ss2 = {
  625. .maximum_speed = USB_SPEED_HIGH,
  626. .base = USB_OTG_SS2_BASE,
  627. .tx_fifo_resize = false,
  628. .index = 1,
  629. };
  630. static struct dwc3_omap_device usb_otg_ss2_glue = {
  631. .base = (void *)USB_OTG_SS2_GLUE_BASE,
  632. .utmi_mode = DWC3_OMAP_UTMI_MODE_SW,
  633. .index = 1,
  634. };
  635. static struct ti_usb_phy_device usb_phy2_device = {
  636. .usb2_phy_power = (void *)USB2_PHY2_POWER,
  637. .index = 1,
  638. };
  639. int usb_gadget_handle_interrupts(int index)
  640. {
  641. u32 status;
  642. status = dwc3_omap_uboot_interrupt_status(index);
  643. if (status)
  644. dwc3_uboot_handle_interrupt(index);
  645. return 0;
  646. }
  647. #endif /* CONFIG_USB_DWC3 */
  648. #if defined(CONFIG_USB_DWC3) || defined(CONFIG_USB_XHCI_OMAP)
  649. int board_usb_init(int index, enum usb_init_type init)
  650. {
  651. enable_usb_clocks(index);
  652. #ifdef CONFIG_USB_DWC3
  653. switch (index) {
  654. case 0:
  655. if (init == USB_INIT_DEVICE) {
  656. usb_otg_ss1.dr_mode = USB_DR_MODE_PERIPHERAL;
  657. usb_otg_ss1_glue.vbus_id_status = OMAP_DWC3_VBUS_VALID;
  658. dwc3_omap_uboot_init(&usb_otg_ss1_glue);
  659. ti_usb_phy_uboot_init(&usb_phy1_device);
  660. dwc3_uboot_init(&usb_otg_ss1);
  661. }
  662. break;
  663. case 1:
  664. if (init == USB_INIT_DEVICE) {
  665. usb_otg_ss2.dr_mode = USB_DR_MODE_PERIPHERAL;
  666. usb_otg_ss2_glue.vbus_id_status = OMAP_DWC3_VBUS_VALID;
  667. ti_usb_phy_uboot_init(&usb_phy2_device);
  668. dwc3_omap_uboot_init(&usb_otg_ss2_glue);
  669. dwc3_uboot_init(&usb_otg_ss2);
  670. }
  671. break;
  672. default:
  673. printf("Invalid Controller Index\n");
  674. }
  675. #endif
  676. return 0;
  677. }
  678. int board_usb_cleanup(int index, enum usb_init_type init)
  679. {
  680. #ifdef CONFIG_USB_DWC3
  681. switch (index) {
  682. case 0:
  683. case 1:
  684. if (init == USB_INIT_DEVICE) {
  685. ti_usb_phy_uboot_exit(index);
  686. dwc3_uboot_exit(index);
  687. dwc3_omap_uboot_exit(index);
  688. }
  689. break;
  690. default:
  691. printf("Invalid Controller Index\n");
  692. }
  693. #endif
  694. disable_usb_clocks(index);
  695. return 0;
  696. }
  697. #endif /* defined(CONFIG_USB_DWC3) || defined(CONFIG_USB_XHCI_OMAP) */
  698. #ifndef CONFIG_DM_ETH
  699. #if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \
  700. (defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
  701. static void cpsw_control(int enabled)
  702. {
  703. /* Additional controls can be added here */
  704. return;
  705. }
  706. static struct cpsw_slave_data cpsw_slaves[] = {
  707. {
  708. .slave_reg_ofs = 0x208,
  709. .sliver_reg_ofs = 0xd80,
  710. .phy_addr = 16,
  711. },
  712. {
  713. .slave_reg_ofs = 0x308,
  714. .sliver_reg_ofs = 0xdc0,
  715. .phy_addr = 1,
  716. },
  717. };
  718. static struct cpsw_platform_data cpsw_data = {
  719. .mdio_base = CPSW_MDIO_BASE,
  720. .cpsw_base = CPSW_BASE,
  721. .mdio_div = 0xff,
  722. .channels = 8,
  723. .cpdma_reg_ofs = 0x800,
  724. .slaves = 1,
  725. .slave_data = cpsw_slaves,
  726. .ale_reg_ofs = 0xd00,
  727. .ale_entries = 1024,
  728. .host_port_reg_ofs = 0x108,
  729. .hw_stats_reg_ofs = 0x900,
  730. .bd_ram_ofs = 0x2000,
  731. .mac_control = (1 << 5),
  732. .control = cpsw_control,
  733. .host_port_num = 0,
  734. .version = CPSW_CTRL_VERSION_2,
  735. };
  736. #endif
  737. /*
  738. * This function will:
  739. * Read the eFuse for MAC addresses, and set ethaddr/eth1addr/usbnet_devaddr
  740. * in the environment
  741. * Perform fixups to the PHY present on certain boards. We only need this
  742. * function in:
  743. * - SPL with either CPSW or USB ethernet support
  744. * - Full U-Boot, with either CPSW or USB ethernet
  745. * Build in only these cases to avoid warnings about unused variables
  746. * when we build an SPL that has neither option but full U-Boot will.
  747. */
  748. #if ((defined(CONFIG_SPL_ETH_SUPPORT) || \
  749. defined(CONFIG_SPL_USBETH_SUPPORT)) && \
  750. defined(CONFIG_SPL_BUILD)) || \
  751. ((defined(CONFIG_DRIVER_TI_CPSW) || \
  752. defined(CONFIG_USB_ETHER)) && !defined(CONFIG_SPL_BUILD))
  753. int board_eth_init(bd_t *bis)
  754. {
  755. int rv;
  756. uint8_t mac_addr[6];
  757. uint32_t mac_hi, mac_lo;
  758. /* try reading mac address from efuse */
  759. mac_lo = readl(&cdev->macid0l);
  760. mac_hi = readl(&cdev->macid0h);
  761. mac_addr[0] = mac_hi & 0xFF;
  762. mac_addr[1] = (mac_hi & 0xFF00) >> 8;
  763. mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
  764. mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
  765. mac_addr[4] = mac_lo & 0xFF;
  766. mac_addr[5] = (mac_lo & 0xFF00) >> 8;
  767. #if (defined(CONFIG_DRIVER_TI_CPSW) && !defined(CONFIG_SPL_BUILD)) || \
  768. (defined(CONFIG_SPL_ETH_SUPPORT) && defined(CONFIG_SPL_BUILD))
  769. if (!getenv("ethaddr")) {
  770. puts("<ethaddr> not set. Validating first E-fuse MAC\n");
  771. if (is_valid_ethaddr(mac_addr))
  772. eth_setenv_enetaddr("ethaddr", mac_addr);
  773. }
  774. #ifndef CONFIG_SPL_BUILD
  775. mac_lo = readl(&cdev->macid1l);
  776. mac_hi = readl(&cdev->macid1h);
  777. mac_addr[0] = mac_hi & 0xFF;
  778. mac_addr[1] = (mac_hi & 0xFF00) >> 8;
  779. mac_addr[2] = (mac_hi & 0xFF0000) >> 16;
  780. mac_addr[3] = (mac_hi & 0xFF000000) >> 24;
  781. mac_addr[4] = mac_lo & 0xFF;
  782. mac_addr[5] = (mac_lo & 0xFF00) >> 8;
  783. if (!getenv("eth1addr")) {
  784. if (is_valid_ethaddr(mac_addr))
  785. eth_setenv_enetaddr("eth1addr", mac_addr);
  786. }
  787. #endif
  788. if (board_is_eposevm()) {
  789. writel(RMII_MODE_ENABLE | RMII_CHIPCKL_ENABLE, &cdev->miisel);
  790. cpsw_slaves[0].phy_if = PHY_INTERFACE_MODE_RMII;
  791. cpsw_slaves[0].phy_addr = 16;
  792. } else if (board_is_sk()) {
  793. writel(RGMII_MODE_ENABLE, &cdev->miisel);
  794. cpsw_slaves[0].phy_if = PHY_INTERFACE_MODE_RGMII;
  795. cpsw_slaves[0].phy_addr = 4;
  796. cpsw_slaves[1].phy_addr = 5;
  797. } else if (board_is_idk()) {
  798. writel(RGMII_MODE_ENABLE, &cdev->miisel);
  799. cpsw_slaves[0].phy_if = PHY_INTERFACE_MODE_RGMII;
  800. cpsw_slaves[0].phy_addr = 0;
  801. } else {
  802. writel(RGMII_MODE_ENABLE, &cdev->miisel);
  803. cpsw_slaves[0].phy_if = PHY_INTERFACE_MODE_RGMII;
  804. cpsw_slaves[0].phy_addr = 0;
  805. }
  806. rv = cpsw_register(&cpsw_data);
  807. if (rv < 0) {
  808. printf("Error %d registering CPSW switch\n", rv);
  809. return rv;
  810. }
  811. #endif
  812. #if defined(CONFIG_USB_ETHER) && \
  813. (!defined(CONFIG_SPL_BUILD) || defined(CONFIG_SPL_USBETH_SUPPORT))
  814. if (is_valid_ethaddr(mac_addr))
  815. eth_setenv_enetaddr("usbnet_devaddr", mac_addr);
  816. rv = usb_eth_initialize(bis);
  817. if (rv < 0)
  818. printf("Error %d registering USB_ETHER\n", rv);
  819. #endif
  820. return rv;
  821. }
  822. #endif
  823. #endif
  824. #if defined(CONFIG_OF_LIBFDT) && defined(CONFIG_OF_BOARD_SETUP)
  825. int ft_board_setup(void *blob, bd_t *bd)
  826. {
  827. ft_cpu_setup(blob, bd);
  828. return 0;
  829. }
  830. #endif
  831. #ifdef CONFIG_SPL_LOAD_FIT
  832. int board_fit_config_name_match(const char *name)
  833. {
  834. if (board_is_evm() && !strcmp(name, "am437x-gp-evm"))
  835. return 0;
  836. else if (board_is_sk() && !strcmp(name, "am437x-sk-evm"))
  837. return 0;
  838. else if (board_is_eposevm() && !strcmp(name, "am43x-epos-evm"))
  839. return 0;
  840. else if (board_is_idk() && !strcmp(name, "am437x-idk-evm"))
  841. return 0;
  842. else
  843. return -1;
  844. }
  845. #endif
  846. #ifdef CONFIG_TI_SECURE_DEVICE
  847. void board_fit_image_post_process(void **p_image, size_t *p_size)
  848. {
  849. secure_boot_verify_image(p_image, p_size);
  850. }
  851. void board_tee_image_process(ulong tee_image, size_t tee_size)
  852. {
  853. secure_tee_install((u32)tee_image);
  854. }
  855. U_BOOT_FIT_LOADABLE_HANDLER(IH_TYPE_TEE, board_tee_image_process);
  856. #endif