12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498 |
- /*
- * Copyright (c) 1988, 1989, 1990, 1991, 1993, 1994, 1995, 1996
- * The Regents of the University of California. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that: (1) source code distributions
- * retain the above copyright notice and this paragraph in its entirety, (2)
- * distributions including binary code include the above copyright notice and
- * this paragraph in its entirety in the documentation or other materials
- * provided with the distribution, and (3) all advertising materials mentioning
- * features or use of this software display the following acknowledgement:
- * ``This product includes software developed by the University of California,
- * Lawrence Berkeley Laboratory and its contributors.'' Neither the name of
- * the University nor the names of its contributors may be used to endorse
- * or promote products derived from this software without specific prior
- * written permission.
- * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
- * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF
- * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
- *
- * Optimization module for BPF code intermediate representation.
- */
- #ifdef HAVE_CONFIG_H
- #include <config.h>
- #endif
- #include <pcap-types.h>
- #include <stdio.h>
- #include <stdlib.h>
- #include <memory.h>
- #include <string.h>
- #include <errno.h>
- #include "pcap-int.h"
- #include "gencode.h"
- #include "optimize.h"
- #ifdef HAVE_OS_PROTO_H
- #include "os-proto.h"
- #endif
- #ifdef BDEBUG
- /*
- * The internal "debug printout" flag for the filter expression optimizer.
- * The code to print that stuff is present only if BDEBUG is defined, so
- * the flag, and the routine to set it, are defined only if BDEBUG is
- * defined.
- */
- static int pcap_optimizer_debug;
- /*
- * Routine to set that flag.
- *
- * This is intended for libpcap developers, not for general use.
- * If you want to set these in a program, you'll have to declare this
- * routine yourself, with the appropriate DLL import attribute on Windows;
- * it's not declared in any header file, and won't be declared in any
- * header file provided by libpcap.
- */
- PCAP_API void pcap_set_optimizer_debug(int value);
- PCAP_API_DEF void
- pcap_set_optimizer_debug(int value)
- {
- pcap_optimizer_debug = value;
- }
- /*
- * The internal "print dot graph" flag for the filter expression optimizer.
- * The code to print that stuff is present only if BDEBUG is defined, so
- * the flag, and the routine to set it, are defined only if BDEBUG is
- * defined.
- */
- static int pcap_print_dot_graph;
- /*
- * Routine to set that flag.
- *
- * This is intended for libpcap developers, not for general use.
- * If you want to set these in a program, you'll have to declare this
- * routine yourself, with the appropriate DLL import attribute on Windows;
- * it's not declared in any header file, and won't be declared in any
- * header file provided by libpcap.
- */
- PCAP_API void pcap_set_print_dot_graph(int value);
- PCAP_API_DEF void
- pcap_set_print_dot_graph(int value)
- {
- pcap_print_dot_graph = value;
- }
- #endif
- /*
- * lowest_set_bit().
- *
- * Takes a 32-bit integer as an argument.
- *
- * If handed a non-zero value, returns the index of the lowest set bit,
- * counting upwards fro zero.
- *
- * If handed zero, the results are platform- and compiler-dependent.
- * Keep it out of the light, don't give it any water, don't feed it
- * after midnight, and don't pass zero to it.
- *
- * This is the same as the count of trailing zeroes in the word.
- */
- #if PCAP_IS_AT_LEAST_GNUC_VERSION(3,4)
- /*
- * GCC 3.4 and later; we have __builtin_ctz().
- */
- #define lowest_set_bit(mask) __builtin_ctz(mask)
- #elif defined(_MSC_VER)
- /*
- * Visual Studio; we support only 2005 and later, so use
- * _BitScanForward().
- */
- #include <intrin.h>
- #ifndef __clang__
- #pragma intrinsic(_BitScanForward)
- #endif
- static __forceinline int
- lowest_set_bit(int mask)
- {
- unsigned long bit;
- /*
- * Don't sign-extend mask if long is longer than int.
- * (It's currently not, in MSVC, even on 64-bit platforms, but....)
- */
- if (_BitScanForward(&bit, (unsigned int)mask) == 0)
- return -1; /* mask is zero */
- return (int)bit;
- }
- #elif defined(MSDOS) && defined(__DJGPP__)
- /*
- * MS-DOS with DJGPP, which declares ffs() in <string.h>, which
- * we've already included.
- */
- #define lowest_set_bit(mask) (ffs((mask)) - 1)
- #elif (defined(MSDOS) && defined(__WATCOMC__)) || defined(STRINGS_H_DECLARES_FFS)
- /*
- * MS-DOS with Watcom C, which has <strings.h> and declares ffs() there,
- * or some other platform (UN*X conforming to a sufficient recent version
- * of the Single UNIX Specification).
- */
- #include <strings.h>
- #define lowest_set_bit(mask) (ffs((mask)) - 1)
- #else
- /*
- * None of the above.
- * Use a perfect-hash-function-based function.
- */
- static int
- lowest_set_bit(int mask)
- {
- unsigned int v = (unsigned int)mask;
- static const int MultiplyDeBruijnBitPosition[32] = {
- 0, 1, 28, 2, 29, 14, 24, 3, 30, 22, 20, 15, 25, 17, 4, 8,
- 31, 27, 13, 23, 21, 19, 16, 7, 26, 12, 18, 6, 11, 5, 10, 9
- };
- /*
- * We strip off all but the lowermost set bit (v & ~v),
- * and perform a minimal perfect hash on it to look up the
- * number of low-order zero bits in a table.
- *
- * See:
- *
- * http://7ooo.mooo.com/text/ComputingTrailingZerosHOWTO.pdf
- *
- * http://supertech.csail.mit.edu/papers/debruijn.pdf
- */
- return (MultiplyDeBruijnBitPosition[((v & -v) * 0x077CB531U) >> 27]);
- }
- #endif
- /*
- * Represents a deleted instruction.
- */
- #define NOP -1
- /*
- * Register numbers for use-def values.
- * 0 through BPF_MEMWORDS-1 represent the corresponding scratch memory
- * location. A_ATOM is the accumulator and X_ATOM is the index
- * register.
- */
- #define A_ATOM BPF_MEMWORDS
- #define X_ATOM (BPF_MEMWORDS+1)
- /*
- * This define is used to represent *both* the accumulator and
- * x register in use-def computations.
- * Currently, the use-def code assumes only one definition per instruction.
- */
- #define AX_ATOM N_ATOMS
- /*
- * These data structures are used in a Cocke and Shwarz style
- * value numbering scheme. Since the flowgraph is acyclic,
- * exit values can be propagated from a node's predecessors
- * provided it is uniquely defined.
- */
- struct valnode {
- int code;
- int v0, v1;
- int val;
- struct valnode *next;
- };
- /* Integer constants mapped with the load immediate opcode. */
- #define K(i) F(opt_state, BPF_LD|BPF_IMM|BPF_W, i, 0L)
- struct vmapinfo {
- int is_const;
- bpf_int32 const_val;
- };
- typedef struct {
- /*
- * A flag to indicate that further optimization is needed.
- * Iterative passes are continued until a given pass yields no
- * branch movement.
- */
- int done;
- int n_blocks;
- struct block **blocks;
- int n_edges;
- struct edge **edges;
- /*
- * A bit vector set representation of the dominators.
- * We round up the set size to the next power of two.
- */
- int nodewords;
- int edgewords;
- struct block **levels;
- bpf_u_int32 *space;
- #define BITS_PER_WORD (8*sizeof(bpf_u_int32))
- /*
- * True if a is in uset {p}
- */
- #define SET_MEMBER(p, a) \
- ((p)[(unsigned)(a) / BITS_PER_WORD] & (1 << ((unsigned)(a) % BITS_PER_WORD)))
- /*
- * Add 'a' to uset p.
- */
- #define SET_INSERT(p, a) \
- (p)[(unsigned)(a) / BITS_PER_WORD] |= (1 << ((unsigned)(a) % BITS_PER_WORD))
- /*
- * Delete 'a' from uset p.
- */
- #define SET_DELETE(p, a) \
- (p)[(unsigned)(a) / BITS_PER_WORD] &= ~(1 << ((unsigned)(a) % BITS_PER_WORD))
- /*
- * a := a intersect b
- */
- #define SET_INTERSECT(a, b, n)\
- {\
- register bpf_u_int32 *_x = a, *_y = b;\
- register int _n = n;\
- while (--_n >= 0) *_x++ &= *_y++;\
- }
- /*
- * a := a - b
- */
- #define SET_SUBTRACT(a, b, n)\
- {\
- register bpf_u_int32 *_x = a, *_y = b;\
- register int _n = n;\
- while (--_n >= 0) *_x++ &=~ *_y++;\
- }
- /*
- * a := a union b
- */
- #define SET_UNION(a, b, n)\
- {\
- register bpf_u_int32 *_x = a, *_y = b;\
- register int _n = n;\
- while (--_n >= 0) *_x++ |= *_y++;\
- }
- uset all_dom_sets;
- uset all_closure_sets;
- uset all_edge_sets;
- #define MODULUS 213
- struct valnode *hashtbl[MODULUS];
- int curval;
- int maxval;
- struct vmapinfo *vmap;
- struct valnode *vnode_base;
- struct valnode *next_vnode;
- } opt_state_t;
- typedef struct {
- /*
- * Some pointers used to convert the basic block form of the code,
- * into the array form that BPF requires. 'fstart' will point to
- * the malloc'd array while 'ftail' is used during the recursive
- * traversal.
- */
- struct bpf_insn *fstart;
- struct bpf_insn *ftail;
- } conv_state_t;
- static void opt_init(compiler_state_t *, opt_state_t *, struct icode *);
- static void opt_cleanup(opt_state_t *);
- static void intern_blocks(opt_state_t *, struct icode *);
- static void find_inedges(opt_state_t *, struct block *);
- #ifdef BDEBUG
- static void opt_dump(compiler_state_t *, struct icode *);
- #endif
- #ifndef MAX
- #define MAX(a,b) ((a)>(b)?(a):(b))
- #endif
- static void
- find_levels_r(opt_state_t *opt_state, struct icode *ic, struct block *b)
- {
- int level;
- if (isMarked(ic, b))
- return;
- Mark(ic, b);
- b->link = 0;
- if (JT(b)) {
- find_levels_r(opt_state, ic, JT(b));
- find_levels_r(opt_state, ic, JF(b));
- level = MAX(JT(b)->level, JF(b)->level) + 1;
- } else
- level = 0;
- b->level = level;
- b->link = opt_state->levels[level];
- opt_state->levels[level] = b;
- }
- /*
- * Level graph. The levels go from 0 at the leaves to
- * N_LEVELS at the root. The opt_state->levels[] array points to the
- * first node of the level list, whose elements are linked
- * with the 'link' field of the struct block.
- */
- static void
- find_levels(opt_state_t *opt_state, struct icode *ic)
- {
- memset((char *)opt_state->levels, 0, opt_state->n_blocks * sizeof(*opt_state->levels));
- unMarkAll(ic);
- find_levels_r(opt_state, ic, ic->root);
- }
- /*
- * Find dominator relationships.
- * Assumes graph has been leveled.
- */
- static void
- find_dom(opt_state_t *opt_state, struct block *root)
- {
- int i;
- struct block *b;
- bpf_u_int32 *x;
- /*
- * Initialize sets to contain all nodes.
- */
- x = opt_state->all_dom_sets;
- i = opt_state->n_blocks * opt_state->nodewords;
- while (--i >= 0)
- *x++ = 0xFFFFFFFFU;
- /* Root starts off empty. */
- for (i = opt_state->nodewords; --i >= 0;)
- root->dom[i] = 0;
- /* root->level is the highest level no found. */
- for (i = root->level; i >= 0; --i) {
- for (b = opt_state->levels[i]; b; b = b->link) {
- SET_INSERT(b->dom, b->id);
- if (JT(b) == 0)
- continue;
- SET_INTERSECT(JT(b)->dom, b->dom, opt_state->nodewords);
- SET_INTERSECT(JF(b)->dom, b->dom, opt_state->nodewords);
- }
- }
- }
- static void
- propedom(opt_state_t *opt_state, struct edge *ep)
- {
- SET_INSERT(ep->edom, ep->id);
- if (ep->succ) {
- SET_INTERSECT(ep->succ->et.edom, ep->edom, opt_state->edgewords);
- SET_INTERSECT(ep->succ->ef.edom, ep->edom, opt_state->edgewords);
- }
- }
- /*
- * Compute edge dominators.
- * Assumes graph has been leveled and predecessors established.
- */
- static void
- find_edom(opt_state_t *opt_state, struct block *root)
- {
- int i;
- uset x;
- struct block *b;
- x = opt_state->all_edge_sets;
- for (i = opt_state->n_edges * opt_state->edgewords; --i >= 0; )
- x[i] = 0xFFFFFFFFU;
- /* root->level is the highest level no found. */
- memset(root->et.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
- memset(root->ef.edom, 0, opt_state->edgewords * sizeof(*(uset)0));
- for (i = root->level; i >= 0; --i) {
- for (b = opt_state->levels[i]; b != 0; b = b->link) {
- propedom(opt_state, &b->et);
- propedom(opt_state, &b->ef);
- }
- }
- }
- /*
- * Find the backwards transitive closure of the flow graph. These sets
- * are backwards in the sense that we find the set of nodes that reach
- * a given node, not the set of nodes that can be reached by a node.
- *
- * Assumes graph has been leveled.
- */
- static void
- find_closure(opt_state_t *opt_state, struct block *root)
- {
- int i;
- struct block *b;
- /*
- * Initialize sets to contain no nodes.
- */
- memset((char *)opt_state->all_closure_sets, 0,
- opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->all_closure_sets));
- /* root->level is the highest level no found. */
- for (i = root->level; i >= 0; --i) {
- for (b = opt_state->levels[i]; b; b = b->link) {
- SET_INSERT(b->closure, b->id);
- if (JT(b) == 0)
- continue;
- SET_UNION(JT(b)->closure, b->closure, opt_state->nodewords);
- SET_UNION(JF(b)->closure, b->closure, opt_state->nodewords);
- }
- }
- }
- /*
- * Return the register number that is used by s. If A and X are both
- * used, return AX_ATOM. If no register is used, return -1.
- *
- * The implementation should probably change to an array access.
- */
- static int
- atomuse(struct stmt *s)
- {
- register int c = s->code;
- if (c == NOP)
- return -1;
- switch (BPF_CLASS(c)) {
- case BPF_RET:
- return (BPF_RVAL(c) == BPF_A) ? A_ATOM :
- (BPF_RVAL(c) == BPF_X) ? X_ATOM : -1;
- case BPF_LD:
- case BPF_LDX:
- return (BPF_MODE(c) == BPF_IND) ? X_ATOM :
- (BPF_MODE(c) == BPF_MEM) ? s->k : -1;
- case BPF_ST:
- return A_ATOM;
- case BPF_STX:
- return X_ATOM;
- case BPF_JMP:
- case BPF_ALU:
- if (BPF_SRC(c) == BPF_X)
- return AX_ATOM;
- return A_ATOM;
- case BPF_MISC:
- return BPF_MISCOP(c) == BPF_TXA ? X_ATOM : A_ATOM;
- }
- abort();
- /* NOTREACHED */
- }
- /*
- * Return the register number that is defined by 's'. We assume that
- * a single stmt cannot define more than one register. If no register
- * is defined, return -1.
- *
- * The implementation should probably change to an array access.
- */
- static int
- atomdef(struct stmt *s)
- {
- if (s->code == NOP)
- return -1;
- switch (BPF_CLASS(s->code)) {
- case BPF_LD:
- case BPF_ALU:
- return A_ATOM;
- case BPF_LDX:
- return X_ATOM;
- case BPF_ST:
- case BPF_STX:
- return s->k;
- case BPF_MISC:
- return BPF_MISCOP(s->code) == BPF_TAX ? X_ATOM : A_ATOM;
- }
- return -1;
- }
- /*
- * Compute the sets of registers used, defined, and killed by 'b'.
- *
- * "Used" means that a statement in 'b' uses the register before any
- * statement in 'b' defines it, i.e. it uses the value left in
- * that register by a predecessor block of this block.
- * "Defined" means that a statement in 'b' defines it.
- * "Killed" means that a statement in 'b' defines it before any
- * statement in 'b' uses it, i.e. it kills the value left in that
- * register by a predecessor block of this block.
- */
- static void
- compute_local_ud(struct block *b)
- {
- struct slist *s;
- atomset def = 0, use = 0, killed = 0;
- int atom;
- for (s = b->stmts; s; s = s->next) {
- if (s->s.code == NOP)
- continue;
- atom = atomuse(&s->s);
- if (atom >= 0) {
- if (atom == AX_ATOM) {
- if (!ATOMELEM(def, X_ATOM))
- use |= ATOMMASK(X_ATOM);
- if (!ATOMELEM(def, A_ATOM))
- use |= ATOMMASK(A_ATOM);
- }
- else if (atom < N_ATOMS) {
- if (!ATOMELEM(def, atom))
- use |= ATOMMASK(atom);
- }
- else
- abort();
- }
- atom = atomdef(&s->s);
- if (atom >= 0) {
- if (!ATOMELEM(use, atom))
- killed |= ATOMMASK(atom);
- def |= ATOMMASK(atom);
- }
- }
- if (BPF_CLASS(b->s.code) == BPF_JMP) {
- /*
- * XXX - what about RET?
- */
- atom = atomuse(&b->s);
- if (atom >= 0) {
- if (atom == AX_ATOM) {
- if (!ATOMELEM(def, X_ATOM))
- use |= ATOMMASK(X_ATOM);
- if (!ATOMELEM(def, A_ATOM))
- use |= ATOMMASK(A_ATOM);
- }
- else if (atom < N_ATOMS) {
- if (!ATOMELEM(def, atom))
- use |= ATOMMASK(atom);
- }
- else
- abort();
- }
- }
- b->def = def;
- b->kill = killed;
- b->in_use = use;
- }
- /*
- * Assume graph is already leveled.
- */
- static void
- find_ud(opt_state_t *opt_state, struct block *root)
- {
- int i, maxlevel;
- struct block *p;
- /*
- * root->level is the highest level no found;
- * count down from there.
- */
- maxlevel = root->level;
- for (i = maxlevel; i >= 0; --i)
- for (p = opt_state->levels[i]; p; p = p->link) {
- compute_local_ud(p);
- p->out_use = 0;
- }
- for (i = 1; i <= maxlevel; ++i) {
- for (p = opt_state->levels[i]; p; p = p->link) {
- p->out_use |= JT(p)->in_use | JF(p)->in_use;
- p->in_use |= p->out_use &~ p->kill;
- }
- }
- }
- static void
- init_val(opt_state_t *opt_state)
- {
- opt_state->curval = 0;
- opt_state->next_vnode = opt_state->vnode_base;
- memset((char *)opt_state->vmap, 0, opt_state->maxval * sizeof(*opt_state->vmap));
- memset((char *)opt_state->hashtbl, 0, sizeof opt_state->hashtbl);
- }
- /* Because we really don't have an IR, this stuff is a little messy. */
- static int
- F(opt_state_t *opt_state, int code, int v0, int v1)
- {
- u_int hash;
- int val;
- struct valnode *p;
- hash = (u_int)code ^ ((u_int)v0 << 4) ^ ((u_int)v1 << 8);
- hash %= MODULUS;
- for (p = opt_state->hashtbl[hash]; p; p = p->next)
- if (p->code == code && p->v0 == v0 && p->v1 == v1)
- return p->val;
- val = ++opt_state->curval;
- if (BPF_MODE(code) == BPF_IMM &&
- (BPF_CLASS(code) == BPF_LD || BPF_CLASS(code) == BPF_LDX)) {
- opt_state->vmap[val].const_val = v0;
- opt_state->vmap[val].is_const = 1;
- }
- p = opt_state->next_vnode++;
- p->val = val;
- p->code = code;
- p->v0 = v0;
- p->v1 = v1;
- p->next = opt_state->hashtbl[hash];
- opt_state->hashtbl[hash] = p;
- return val;
- }
- static inline void
- vstore(struct stmt *s, int *valp, int newval, int alter)
- {
- if (alter && newval != VAL_UNKNOWN && *valp == newval)
- s->code = NOP;
- else
- *valp = newval;
- }
- /*
- * Do constant-folding on binary operators.
- * (Unary operators are handled elsewhere.)
- */
- static void
- fold_op(compiler_state_t *cstate, opt_state_t *opt_state,
- struct stmt *s, int v0, int v1)
- {
- bpf_u_int32 a, b;
- a = opt_state->vmap[v0].const_val;
- b = opt_state->vmap[v1].const_val;
- switch (BPF_OP(s->code)) {
- case BPF_ADD:
- a += b;
- break;
- case BPF_SUB:
- a -= b;
- break;
- case BPF_MUL:
- a *= b;
- break;
- case BPF_DIV:
- if (b == 0)
- bpf_error(cstate, "division by zero");
- a /= b;
- break;
- case BPF_MOD:
- if (b == 0)
- bpf_error(cstate, "modulus by zero");
- a %= b;
- break;
- case BPF_AND:
- a &= b;
- break;
- case BPF_OR:
- a |= b;
- break;
- case BPF_XOR:
- a ^= b;
- break;
- case BPF_LSH:
- a <<= b;
- break;
- case BPF_RSH:
- a >>= b;
- break;
- default:
- abort();
- }
- s->k = a;
- s->code = BPF_LD|BPF_IMM;
- opt_state->done = 0;
- }
- static inline struct slist *
- this_op(struct slist *s)
- {
- while (s != 0 && s->s.code == NOP)
- s = s->next;
- return s;
- }
- static void
- opt_not(struct block *b)
- {
- struct block *tmp = JT(b);
- JT(b) = JF(b);
- JF(b) = tmp;
- }
- static void
- opt_peep(opt_state_t *opt_state, struct block *b)
- {
- struct slist *s;
- struct slist *next, *last;
- int val;
- s = b->stmts;
- if (s == 0)
- return;
- last = s;
- for (/*empty*/; /*empty*/; s = next) {
- /*
- * Skip over nops.
- */
- s = this_op(s);
- if (s == 0)
- break; /* nothing left in the block */
- /*
- * Find the next real instruction after that one
- * (skipping nops).
- */
- next = this_op(s->next);
- if (next == 0)
- break; /* no next instruction */
- last = next;
- /*
- * st M[k] --> st M[k]
- * ldx M[k] tax
- */
- if (s->s.code == BPF_ST &&
- next->s.code == (BPF_LDX|BPF_MEM) &&
- s->s.k == next->s.k) {
- opt_state->done = 0;
- next->s.code = BPF_MISC|BPF_TAX;
- }
- /*
- * ld #k --> ldx #k
- * tax txa
- */
- if (s->s.code == (BPF_LD|BPF_IMM) &&
- next->s.code == (BPF_MISC|BPF_TAX)) {
- s->s.code = BPF_LDX|BPF_IMM;
- next->s.code = BPF_MISC|BPF_TXA;
- opt_state->done = 0;
- }
- /*
- * This is an ugly special case, but it happens
- * when you say tcp[k] or udp[k] where k is a constant.
- */
- if (s->s.code == (BPF_LD|BPF_IMM)) {
- struct slist *add, *tax, *ild;
- /*
- * Check that X isn't used on exit from this
- * block (which the optimizer might cause).
- * We know the code generator won't generate
- * any local dependencies.
- */
- if (ATOMELEM(b->out_use, X_ATOM))
- continue;
- /*
- * Check that the instruction following the ldi
- * is an addx, or it's an ldxms with an addx
- * following it (with 0 or more nops between the
- * ldxms and addx).
- */
- if (next->s.code != (BPF_LDX|BPF_MSH|BPF_B))
- add = next;
- else
- add = this_op(next->next);
- if (add == 0 || add->s.code != (BPF_ALU|BPF_ADD|BPF_X))
- continue;
- /*
- * Check that a tax follows that (with 0 or more
- * nops between them).
- */
- tax = this_op(add->next);
- if (tax == 0 || tax->s.code != (BPF_MISC|BPF_TAX))
- continue;
- /*
- * Check that an ild follows that (with 0 or more
- * nops between them).
- */
- ild = this_op(tax->next);
- if (ild == 0 || BPF_CLASS(ild->s.code) != BPF_LD ||
- BPF_MODE(ild->s.code) != BPF_IND)
- continue;
- /*
- * We want to turn this sequence:
- *
- * (004) ldi #0x2 {s}
- * (005) ldxms [14] {next} -- optional
- * (006) addx {add}
- * (007) tax {tax}
- * (008) ild [x+0] {ild}
- *
- * into this sequence:
- *
- * (004) nop
- * (005) ldxms [14]
- * (006) nop
- * (007) nop
- * (008) ild [x+2]
- *
- * XXX We need to check that X is not
- * subsequently used, because we want to change
- * what'll be in it after this sequence.
- *
- * We know we can eliminate the accumulator
- * modifications earlier in the sequence since
- * it is defined by the last stmt of this sequence
- * (i.e., the last statement of the sequence loads
- * a value into the accumulator, so we can eliminate
- * earlier operations on the accumulator).
- */
- ild->s.k += s->s.k;
- s->s.code = NOP;
- add->s.code = NOP;
- tax->s.code = NOP;
- opt_state->done = 0;
- }
- }
- /*
- * If the comparison at the end of a block is an equality
- * comparison against a constant, and nobody uses the value
- * we leave in the A register at the end of a block, and
- * the operation preceding the comparison is an arithmetic
- * operation, we can sometime optimize it away.
- */
- if (b->s.code == (BPF_JMP|BPF_JEQ|BPF_K) &&
- !ATOMELEM(b->out_use, A_ATOM)) {
- /*
- * We can optimize away certain subtractions of the
- * X register.
- */
- if (last->s.code == (BPF_ALU|BPF_SUB|BPF_X)) {
- val = b->val[X_ATOM];
- if (opt_state->vmap[val].is_const) {
- /*
- * If we have a subtract to do a comparison,
- * and the X register is a known constant,
- * we can merge this value into the
- * comparison:
- *
- * sub x -> nop
- * jeq #y jeq #(x+y)
- */
- b->s.k += opt_state->vmap[val].const_val;
- last->s.code = NOP;
- opt_state->done = 0;
- } else if (b->s.k == 0) {
- /*
- * If the X register isn't a constant,
- * and the comparison in the test is
- * against 0, we can compare with the
- * X register, instead:
- *
- * sub x -> nop
- * jeq #0 jeq x
- */
- last->s.code = NOP;
- b->s.code = BPF_JMP|BPF_JEQ|BPF_X;
- opt_state->done = 0;
- }
- }
- /*
- * Likewise, a constant subtract can be simplified:
- *
- * sub #x -> nop
- * jeq #y -> jeq #(x+y)
- */
- else if (last->s.code == (BPF_ALU|BPF_SUB|BPF_K)) {
- last->s.code = NOP;
- b->s.k += last->s.k;
- opt_state->done = 0;
- }
- /*
- * And, similarly, a constant AND can be simplified
- * if we're testing against 0, i.e.:
- *
- * and #k nop
- * jeq #0 -> jset #k
- */
- else if (last->s.code == (BPF_ALU|BPF_AND|BPF_K) &&
- b->s.k == 0) {
- b->s.k = last->s.k;
- b->s.code = BPF_JMP|BPF_K|BPF_JSET;
- last->s.code = NOP;
- opt_state->done = 0;
- opt_not(b);
- }
- }
- /*
- * jset #0 -> never
- * jset #ffffffff -> always
- */
- if (b->s.code == (BPF_JMP|BPF_K|BPF_JSET)) {
- if (b->s.k == 0)
- JT(b) = JF(b);
- if ((u_int)b->s.k == 0xffffffffU)
- JF(b) = JT(b);
- }
- /*
- * If we're comparing against the index register, and the index
- * register is a known constant, we can just compare against that
- * constant.
- */
- val = b->val[X_ATOM];
- if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_X) {
- bpf_int32 v = opt_state->vmap[val].const_val;
- b->s.code &= ~BPF_X;
- b->s.k = v;
- }
- /*
- * If the accumulator is a known constant, we can compute the
- * comparison result.
- */
- val = b->val[A_ATOM];
- if (opt_state->vmap[val].is_const && BPF_SRC(b->s.code) == BPF_K) {
- bpf_int32 v = opt_state->vmap[val].const_val;
- switch (BPF_OP(b->s.code)) {
- case BPF_JEQ:
- v = v == b->s.k;
- break;
- case BPF_JGT:
- v = (unsigned)v > (unsigned)b->s.k;
- break;
- case BPF_JGE:
- v = (unsigned)v >= (unsigned)b->s.k;
- break;
- case BPF_JSET:
- v &= b->s.k;
- break;
- default:
- abort();
- }
- if (JF(b) != JT(b))
- opt_state->done = 0;
- if (v)
- JF(b) = JT(b);
- else
- JT(b) = JF(b);
- }
- }
- /*
- * Compute the symbolic value of expression of 's', and update
- * anything it defines in the value table 'val'. If 'alter' is true,
- * do various optimizations. This code would be cleaner if symbolic
- * evaluation and code transformations weren't folded together.
- */
- static void
- opt_stmt(compiler_state_t *cstate, opt_state_t *opt_state,
- struct stmt *s, int val[], int alter)
- {
- int op;
- int v;
- switch (s->code) {
- case BPF_LD|BPF_ABS|BPF_W:
- case BPF_LD|BPF_ABS|BPF_H:
- case BPF_LD|BPF_ABS|BPF_B:
- v = F(opt_state, s->code, s->k, 0L);
- vstore(s, &val[A_ATOM], v, alter);
- break;
- case BPF_LD|BPF_IND|BPF_W:
- case BPF_LD|BPF_IND|BPF_H:
- case BPF_LD|BPF_IND|BPF_B:
- v = val[X_ATOM];
- if (alter && opt_state->vmap[v].is_const) {
- s->code = BPF_LD|BPF_ABS|BPF_SIZE(s->code);
- s->k += opt_state->vmap[v].const_val;
- v = F(opt_state, s->code, s->k, 0L);
- opt_state->done = 0;
- }
- else
- v = F(opt_state, s->code, s->k, v);
- vstore(s, &val[A_ATOM], v, alter);
- break;
- case BPF_LD|BPF_LEN:
- v = F(opt_state, s->code, 0L, 0L);
- vstore(s, &val[A_ATOM], v, alter);
- break;
- case BPF_LD|BPF_IMM:
- v = K(s->k);
- vstore(s, &val[A_ATOM], v, alter);
- break;
- case BPF_LDX|BPF_IMM:
- v = K(s->k);
- vstore(s, &val[X_ATOM], v, alter);
- break;
- case BPF_LDX|BPF_MSH|BPF_B:
- v = F(opt_state, s->code, s->k, 0L);
- vstore(s, &val[X_ATOM], v, alter);
- break;
- case BPF_ALU|BPF_NEG:
- if (alter && opt_state->vmap[val[A_ATOM]].is_const) {
- s->code = BPF_LD|BPF_IMM;
- s->k = -opt_state->vmap[val[A_ATOM]].const_val;
- val[A_ATOM] = K(s->k);
- }
- else
- val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], 0L);
- break;
- case BPF_ALU|BPF_ADD|BPF_K:
- case BPF_ALU|BPF_SUB|BPF_K:
- case BPF_ALU|BPF_MUL|BPF_K:
- case BPF_ALU|BPF_DIV|BPF_K:
- case BPF_ALU|BPF_MOD|BPF_K:
- case BPF_ALU|BPF_AND|BPF_K:
- case BPF_ALU|BPF_OR|BPF_K:
- case BPF_ALU|BPF_XOR|BPF_K:
- case BPF_ALU|BPF_LSH|BPF_K:
- case BPF_ALU|BPF_RSH|BPF_K:
- op = BPF_OP(s->code);
- if (alter) {
- if (s->k == 0) {
- /* don't optimize away "sub #0"
- * as it may be needed later to
- * fixup the generated math code */
- if (op == BPF_ADD ||
- op == BPF_LSH || op == BPF_RSH ||
- op == BPF_OR || op == BPF_XOR) {
- s->code = NOP;
- break;
- }
- if (op == BPF_MUL || op == BPF_AND) {
- s->code = BPF_LD|BPF_IMM;
- val[A_ATOM] = K(s->k);
- break;
- }
- }
- if (opt_state->vmap[val[A_ATOM]].is_const) {
- fold_op(cstate, opt_state, s, val[A_ATOM], K(s->k));
- val[A_ATOM] = K(s->k);
- break;
- }
- }
- val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], K(s->k));
- break;
- case BPF_ALU|BPF_ADD|BPF_X:
- case BPF_ALU|BPF_SUB|BPF_X:
- case BPF_ALU|BPF_MUL|BPF_X:
- case BPF_ALU|BPF_DIV|BPF_X:
- case BPF_ALU|BPF_MOD|BPF_X:
- case BPF_ALU|BPF_AND|BPF_X:
- case BPF_ALU|BPF_OR|BPF_X:
- case BPF_ALU|BPF_XOR|BPF_X:
- case BPF_ALU|BPF_LSH|BPF_X:
- case BPF_ALU|BPF_RSH|BPF_X:
- op = BPF_OP(s->code);
- if (alter && opt_state->vmap[val[X_ATOM]].is_const) {
- if (opt_state->vmap[val[A_ATOM]].is_const) {
- fold_op(cstate, opt_state, s, val[A_ATOM], val[X_ATOM]);
- val[A_ATOM] = K(s->k);
- }
- else {
- s->code = BPF_ALU|BPF_K|op;
- s->k = opt_state->vmap[val[X_ATOM]].const_val;
- opt_state->done = 0;
- val[A_ATOM] =
- F(opt_state, s->code, val[A_ATOM], K(s->k));
- }
- break;
- }
- /*
- * Check if we're doing something to an accumulator
- * that is 0, and simplify. This may not seem like
- * much of a simplification but it could open up further
- * optimizations.
- * XXX We could also check for mul by 1, etc.
- */
- if (alter && opt_state->vmap[val[A_ATOM]].is_const
- && opt_state->vmap[val[A_ATOM]].const_val == 0) {
- if (op == BPF_ADD || op == BPF_OR || op == BPF_XOR) {
- s->code = BPF_MISC|BPF_TXA;
- vstore(s, &val[A_ATOM], val[X_ATOM], alter);
- break;
- }
- else if (op == BPF_MUL || op == BPF_DIV || op == BPF_MOD ||
- op == BPF_AND || op == BPF_LSH || op == BPF_RSH) {
- s->code = BPF_LD|BPF_IMM;
- s->k = 0;
- vstore(s, &val[A_ATOM], K(s->k), alter);
- break;
- }
- else if (op == BPF_NEG) {
- s->code = NOP;
- break;
- }
- }
- val[A_ATOM] = F(opt_state, s->code, val[A_ATOM], val[X_ATOM]);
- break;
- case BPF_MISC|BPF_TXA:
- vstore(s, &val[A_ATOM], val[X_ATOM], alter);
- break;
- case BPF_LD|BPF_MEM:
- v = val[s->k];
- if (alter && opt_state->vmap[v].is_const) {
- s->code = BPF_LD|BPF_IMM;
- s->k = opt_state->vmap[v].const_val;
- opt_state->done = 0;
- }
- vstore(s, &val[A_ATOM], v, alter);
- break;
- case BPF_MISC|BPF_TAX:
- vstore(s, &val[X_ATOM], val[A_ATOM], alter);
- break;
- case BPF_LDX|BPF_MEM:
- v = val[s->k];
- if (alter && opt_state->vmap[v].is_const) {
- s->code = BPF_LDX|BPF_IMM;
- s->k = opt_state->vmap[v].const_val;
- opt_state->done = 0;
- }
- vstore(s, &val[X_ATOM], v, alter);
- break;
- case BPF_ST:
- vstore(s, &val[s->k], val[A_ATOM], alter);
- break;
- case BPF_STX:
- vstore(s, &val[s->k], val[X_ATOM], alter);
- break;
- }
- }
- static void
- deadstmt(opt_state_t *opt_state, register struct stmt *s, register struct stmt *last[])
- {
- register int atom;
- atom = atomuse(s);
- if (atom >= 0) {
- if (atom == AX_ATOM) {
- last[X_ATOM] = 0;
- last[A_ATOM] = 0;
- }
- else
- last[atom] = 0;
- }
- atom = atomdef(s);
- if (atom >= 0) {
- if (last[atom]) {
- opt_state->done = 0;
- last[atom]->code = NOP;
- }
- last[atom] = s;
- }
- }
- static void
- opt_deadstores(opt_state_t *opt_state, register struct block *b)
- {
- register struct slist *s;
- register int atom;
- struct stmt *last[N_ATOMS];
- memset((char *)last, 0, sizeof last);
- for (s = b->stmts; s != 0; s = s->next)
- deadstmt(opt_state, &s->s, last);
- deadstmt(opt_state, &b->s, last);
- for (atom = 0; atom < N_ATOMS; ++atom)
- if (last[atom] && !ATOMELEM(b->out_use, atom)) {
- last[atom]->code = NOP;
- opt_state->done = 0;
- }
- }
- static void
- opt_blk(compiler_state_t *cstate, opt_state_t *opt_state,
- struct block *b, int do_stmts)
- {
- struct slist *s;
- struct edge *p;
- int i;
- bpf_int32 aval, xval;
- #if 0
- for (s = b->stmts; s && s->next; s = s->next)
- if (BPF_CLASS(s->s.code) == BPF_JMP) {
- do_stmts = 0;
- break;
- }
- #endif
- /*
- * Initialize the atom values.
- */
- p = b->in_edges;
- if (p == 0) {
- /*
- * We have no predecessors, so everything is undefined
- * upon entry to this block.
- */
- memset((char *)b->val, 0, sizeof(b->val));
- } else {
- /*
- * Inherit values from our predecessors.
- *
- * First, get the values from the predecessor along the
- * first edge leading to this node.
- */
- memcpy((char *)b->val, (char *)p->pred->val, sizeof(b->val));
- /*
- * Now look at all the other nodes leading to this node.
- * If, for the predecessor along that edge, a register
- * has a different value from the one we have (i.e.,
- * control paths are merging, and the merging paths
- * assign different values to that register), give the
- * register the undefined value of 0.
- */
- while ((p = p->next) != NULL) {
- for (i = 0; i < N_ATOMS; ++i)
- if (b->val[i] != p->pred->val[i])
- b->val[i] = 0;
- }
- }
- aval = b->val[A_ATOM];
- xval = b->val[X_ATOM];
- for (s = b->stmts; s; s = s->next)
- opt_stmt(cstate, opt_state, &s->s, b->val, do_stmts);
- /*
- * This is a special case: if we don't use anything from this
- * block, and we load the accumulator or index register with a
- * value that is already there, or if this block is a return,
- * eliminate all the statements.
- *
- * XXX - what if it does a store?
- *
- * XXX - why does it matter whether we use anything from this
- * block? If the accumulator or index register doesn't change
- * its value, isn't that OK even if we use that value?
- *
- * XXX - if we load the accumulator with a different value,
- * and the block ends with a conditional branch, we obviously
- * can't eliminate it, as the branch depends on that value.
- * For the index register, the conditional branch only depends
- * on the index register value if the test is against the index
- * register value rather than a constant; if nothing uses the
- * value we put into the index register, and we're not testing
- * against the index register's value, and there aren't any
- * other problems that would keep us from eliminating this
- * block, can we eliminate it?
- */
- if (do_stmts &&
- ((b->out_use == 0 &&
- aval != VAL_UNKNOWN && b->val[A_ATOM] == aval &&
- xval != VAL_UNKNOWN && b->val[X_ATOM] == xval) ||
- BPF_CLASS(b->s.code) == BPF_RET)) {
- if (b->stmts != 0) {
- b->stmts = 0;
- opt_state->done = 0;
- }
- } else {
- opt_peep(opt_state, b);
- opt_deadstores(opt_state, b);
- }
- /*
- * Set up values for branch optimizer.
- */
- if (BPF_SRC(b->s.code) == BPF_K)
- b->oval = K(b->s.k);
- else
- b->oval = b->val[X_ATOM];
- b->et.code = b->s.code;
- b->ef.code = -b->s.code;
- }
- /*
- * Return true if any register that is used on exit from 'succ', has
- * an exit value that is different from the corresponding exit value
- * from 'b'.
- */
- static int
- use_conflict(struct block *b, struct block *succ)
- {
- int atom;
- atomset use = succ->out_use;
- if (use == 0)
- return 0;
- for (atom = 0; atom < N_ATOMS; ++atom)
- if (ATOMELEM(use, atom))
- if (b->val[atom] != succ->val[atom])
- return 1;
- return 0;
- }
- static struct block *
- fold_edge(struct block *child, struct edge *ep)
- {
- int sense;
- int aval0, aval1, oval0, oval1;
- int code = ep->code;
- if (code < 0) {
- code = -code;
- sense = 0;
- } else
- sense = 1;
- if (child->s.code != code)
- return 0;
- aval0 = child->val[A_ATOM];
- oval0 = child->oval;
- aval1 = ep->pred->val[A_ATOM];
- oval1 = ep->pred->oval;
- if (aval0 != aval1)
- return 0;
- if (oval0 == oval1)
- /*
- * The operands of the branch instructions are
- * identical, so the result is true if a true
- * branch was taken to get here, otherwise false.
- */
- return sense ? JT(child) : JF(child);
- if (sense && code == (BPF_JMP|BPF_JEQ|BPF_K))
- /*
- * At this point, we only know the comparison if we
- * came down the true branch, and it was an equality
- * comparison with a constant.
- *
- * I.e., if we came down the true branch, and the branch
- * was an equality comparison with a constant, we know the
- * accumulator contains that constant. If we came down
- * the false branch, or the comparison wasn't with a
- * constant, we don't know what was in the accumulator.
- *
- * We rely on the fact that distinct constants have distinct
- * value numbers.
- */
- return JF(child);
- return 0;
- }
- static void
- opt_j(opt_state_t *opt_state, struct edge *ep)
- {
- register int i, k;
- register struct block *target;
- if (JT(ep->succ) == 0)
- return;
- if (JT(ep->succ) == JF(ep->succ)) {
- /*
- * Common branch targets can be eliminated, provided
- * there is no data dependency.
- */
- if (!use_conflict(ep->pred, ep->succ->et.succ)) {
- opt_state->done = 0;
- ep->succ = JT(ep->succ);
- }
- }
- /*
- * For each edge dominator that matches the successor of this
- * edge, promote the edge successor to the its grandchild.
- *
- * XXX We violate the set abstraction here in favor a reasonably
- * efficient loop.
- */
- top:
- for (i = 0; i < opt_state->edgewords; ++i) {
- register bpf_u_int32 x = ep->edom[i];
- while (x != 0) {
- k = lowest_set_bit(x);
- x &=~ (1 << k);
- k += i * BITS_PER_WORD;
- target = fold_edge(ep->succ, opt_state->edges[k]);
- /*
- * Check that there is no data dependency between
- * nodes that will be violated if we move the edge.
- */
- if (target != 0 && !use_conflict(ep->pred, target)) {
- opt_state->done = 0;
- ep->succ = target;
- if (JT(target) != 0)
- /*
- * Start over unless we hit a leaf.
- */
- goto top;
- return;
- }
- }
- }
- }
- static void
- or_pullup(opt_state_t *opt_state, struct block *b)
- {
- int val, at_top;
- struct block *pull;
- struct block **diffp, **samep;
- struct edge *ep;
- ep = b->in_edges;
- if (ep == 0)
- return;
- /*
- * Make sure each predecessor loads the same value.
- * XXX why?
- */
- val = ep->pred->val[A_ATOM];
- for (ep = ep->next; ep != 0; ep = ep->next)
- if (val != ep->pred->val[A_ATOM])
- return;
- if (JT(b->in_edges->pred) == b)
- diffp = &JT(b->in_edges->pred);
- else
- diffp = &JF(b->in_edges->pred);
- at_top = 1;
- for (;;) {
- if (*diffp == 0)
- return;
- if (JT(*diffp) != JT(b))
- return;
- if (!SET_MEMBER((*diffp)->dom, b->id))
- return;
- if ((*diffp)->val[A_ATOM] != val)
- break;
- diffp = &JF(*diffp);
- at_top = 0;
- }
- samep = &JF(*diffp);
- for (;;) {
- if (*samep == 0)
- return;
- if (JT(*samep) != JT(b))
- return;
- if (!SET_MEMBER((*samep)->dom, b->id))
- return;
- if ((*samep)->val[A_ATOM] == val)
- break;
- /* XXX Need to check that there are no data dependencies
- between dp0 and dp1. Currently, the code generator
- will not produce such dependencies. */
- samep = &JF(*samep);
- }
- #ifdef notdef
- /* XXX This doesn't cover everything. */
- for (i = 0; i < N_ATOMS; ++i)
- if ((*samep)->val[i] != pred->val[i])
- return;
- #endif
- /* Pull up the node. */
- pull = *samep;
- *samep = JF(pull);
- JF(pull) = *diffp;
- /*
- * At the top of the chain, each predecessor needs to point at the
- * pulled up node. Inside the chain, there is only one predecessor
- * to worry about.
- */
- if (at_top) {
- for (ep = b->in_edges; ep != 0; ep = ep->next) {
- if (JT(ep->pred) == b)
- JT(ep->pred) = pull;
- else
- JF(ep->pred) = pull;
- }
- }
- else
- *diffp = pull;
- opt_state->done = 0;
- }
- static void
- and_pullup(opt_state_t *opt_state, struct block *b)
- {
- int val, at_top;
- struct block *pull;
- struct block **diffp, **samep;
- struct edge *ep;
- ep = b->in_edges;
- if (ep == 0)
- return;
- /*
- * Make sure each predecessor loads the same value.
- */
- val = ep->pred->val[A_ATOM];
- for (ep = ep->next; ep != 0; ep = ep->next)
- if (val != ep->pred->val[A_ATOM])
- return;
- if (JT(b->in_edges->pred) == b)
- diffp = &JT(b->in_edges->pred);
- else
- diffp = &JF(b->in_edges->pred);
- at_top = 1;
- for (;;) {
- if (*diffp == 0)
- return;
- if (JF(*diffp) != JF(b))
- return;
- if (!SET_MEMBER((*diffp)->dom, b->id))
- return;
- if ((*diffp)->val[A_ATOM] != val)
- break;
- diffp = &JT(*diffp);
- at_top = 0;
- }
- samep = &JT(*diffp);
- for (;;) {
- if (*samep == 0)
- return;
- if (JF(*samep) != JF(b))
- return;
- if (!SET_MEMBER((*samep)->dom, b->id))
- return;
- if ((*samep)->val[A_ATOM] == val)
- break;
- /* XXX Need to check that there are no data dependencies
- between diffp and samep. Currently, the code generator
- will not produce such dependencies. */
- samep = &JT(*samep);
- }
- #ifdef notdef
- /* XXX This doesn't cover everything. */
- for (i = 0; i < N_ATOMS; ++i)
- if ((*samep)->val[i] != pred->val[i])
- return;
- #endif
- /* Pull up the node. */
- pull = *samep;
- *samep = JT(pull);
- JT(pull) = *diffp;
- /*
- * At the top of the chain, each predecessor needs to point at the
- * pulled up node. Inside the chain, there is only one predecessor
- * to worry about.
- */
- if (at_top) {
- for (ep = b->in_edges; ep != 0; ep = ep->next) {
- if (JT(ep->pred) == b)
- JT(ep->pred) = pull;
- else
- JF(ep->pred) = pull;
- }
- }
- else
- *diffp = pull;
- opt_state->done = 0;
- }
- static void
- opt_blks(compiler_state_t *cstate, opt_state_t *opt_state, struct icode *ic,
- int do_stmts)
- {
- int i, maxlevel;
- struct block *p;
- init_val(opt_state);
- maxlevel = ic->root->level;
- find_inedges(opt_state, ic->root);
- for (i = maxlevel; i >= 0; --i)
- for (p = opt_state->levels[i]; p; p = p->link)
- opt_blk(cstate, opt_state, p, do_stmts);
- if (do_stmts)
- /*
- * No point trying to move branches; it can't possibly
- * make a difference at this point.
- */
- return;
- for (i = 1; i <= maxlevel; ++i) {
- for (p = opt_state->levels[i]; p; p = p->link) {
- opt_j(opt_state, &p->et);
- opt_j(opt_state, &p->ef);
- }
- }
- find_inedges(opt_state, ic->root);
- for (i = 1; i <= maxlevel; ++i) {
- for (p = opt_state->levels[i]; p; p = p->link) {
- or_pullup(opt_state, p);
- and_pullup(opt_state, p);
- }
- }
- }
- static inline void
- link_inedge(struct edge *parent, struct block *child)
- {
- parent->next = child->in_edges;
- child->in_edges = parent;
- }
- static void
- find_inedges(opt_state_t *opt_state, struct block *root)
- {
- int i;
- struct block *b;
- for (i = 0; i < opt_state->n_blocks; ++i)
- opt_state->blocks[i]->in_edges = 0;
- /*
- * Traverse the graph, adding each edge to the predecessor
- * list of its successors. Skip the leaves (i.e. level 0).
- */
- for (i = root->level; i > 0; --i) {
- for (b = opt_state->levels[i]; b != 0; b = b->link) {
- link_inedge(&b->et, JT(b));
- link_inedge(&b->ef, JF(b));
- }
- }
- }
- static void
- opt_root(struct block **b)
- {
- struct slist *tmp, *s;
- s = (*b)->stmts;
- (*b)->stmts = 0;
- while (BPF_CLASS((*b)->s.code) == BPF_JMP && JT(*b) == JF(*b))
- *b = JT(*b);
- tmp = (*b)->stmts;
- if (tmp != 0)
- sappend(s, tmp);
- (*b)->stmts = s;
- /*
- * If the root node is a return, then there is no
- * point executing any statements (since the bpf machine
- * has no side effects).
- */
- if (BPF_CLASS((*b)->s.code) == BPF_RET)
- (*b)->stmts = 0;
- }
- static void
- opt_loop(compiler_state_t *cstate, opt_state_t *opt_state, struct icode *ic,
- int do_stmts)
- {
- #ifdef BDEBUG
- if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
- printf("opt_loop(root, %d) begin\n", do_stmts);
- opt_dump(cstate, ic);
- }
- #endif
- do {
- opt_state->done = 1;
- find_levels(opt_state, ic);
- find_dom(opt_state, ic->root);
- find_closure(opt_state, ic->root);
- find_ud(opt_state, ic->root);
- find_edom(opt_state, ic->root);
- opt_blks(cstate, opt_state, ic, do_stmts);
- #ifdef BDEBUG
- if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
- printf("opt_loop(root, %d) bottom, done=%d\n", do_stmts, opt_state->done);
- opt_dump(cstate, ic);
- }
- #endif
- } while (!opt_state->done);
- }
- /*
- * Optimize the filter code in its dag representation.
- */
- void
- bpf_optimize(compiler_state_t *cstate, struct icode *ic)
- {
- opt_state_t opt_state;
- opt_init(cstate, &opt_state, ic);
- opt_loop(cstate, &opt_state, ic, 0);
- opt_loop(cstate, &opt_state, ic, 1);
- intern_blocks(&opt_state, ic);
- #ifdef BDEBUG
- if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
- printf("after intern_blocks()\n");
- opt_dump(cstate, ic);
- }
- #endif
- opt_root(&ic->root);
- #ifdef BDEBUG
- if (pcap_optimizer_debug > 1 || pcap_print_dot_graph) {
- printf("after opt_root()\n");
- opt_dump(cstate, ic);
- }
- #endif
- opt_cleanup(&opt_state);
- }
- static void
- make_marks(struct icode *ic, struct block *p)
- {
- if (!isMarked(ic, p)) {
- Mark(ic, p);
- if (BPF_CLASS(p->s.code) != BPF_RET) {
- make_marks(ic, JT(p));
- make_marks(ic, JF(p));
- }
- }
- }
- /*
- * Mark code array such that isMarked(ic->cur_mark, i) is true
- * only for nodes that are alive.
- */
- static void
- mark_code(struct icode *ic)
- {
- ic->cur_mark += 1;
- make_marks(ic, ic->root);
- }
- /*
- * True iff the two stmt lists load the same value from the packet into
- * the accumulator.
- */
- static int
- eq_slist(struct slist *x, struct slist *y)
- {
- for (;;) {
- while (x && x->s.code == NOP)
- x = x->next;
- while (y && y->s.code == NOP)
- y = y->next;
- if (x == 0)
- return y == 0;
- if (y == 0)
- return x == 0;
- if (x->s.code != y->s.code || x->s.k != y->s.k)
- return 0;
- x = x->next;
- y = y->next;
- }
- }
- static inline int
- eq_blk(struct block *b0, struct block *b1)
- {
- if (b0->s.code == b1->s.code &&
- b0->s.k == b1->s.k &&
- b0->et.succ == b1->et.succ &&
- b0->ef.succ == b1->ef.succ)
- return eq_slist(b0->stmts, b1->stmts);
- return 0;
- }
- static void
- intern_blocks(opt_state_t *opt_state, struct icode *ic)
- {
- struct block *p;
- int i, j;
- int done1; /* don't shadow global */
- top:
- done1 = 1;
- for (i = 0; i < opt_state->n_blocks; ++i)
- opt_state->blocks[i]->link = 0;
- mark_code(ic);
- for (i = opt_state->n_blocks - 1; --i >= 0; ) {
- if (!isMarked(ic, opt_state->blocks[i]))
- continue;
- for (j = i + 1; j < opt_state->n_blocks; ++j) {
- if (!isMarked(ic, opt_state->blocks[j]))
- continue;
- if (eq_blk(opt_state->blocks[i], opt_state->blocks[j])) {
- opt_state->blocks[i]->link = opt_state->blocks[j]->link ?
- opt_state->blocks[j]->link : opt_state->blocks[j];
- break;
- }
- }
- }
- for (i = 0; i < opt_state->n_blocks; ++i) {
- p = opt_state->blocks[i];
- if (JT(p) == 0)
- continue;
- if (JT(p)->link) {
- done1 = 0;
- JT(p) = JT(p)->link;
- }
- if (JF(p)->link) {
- done1 = 0;
- JF(p) = JF(p)->link;
- }
- }
- if (!done1)
- goto top;
- }
- static void
- opt_cleanup(opt_state_t *opt_state)
- {
- free((void *)opt_state->vnode_base);
- free((void *)opt_state->vmap);
- free((void *)opt_state->edges);
- free((void *)opt_state->space);
- free((void *)opt_state->levels);
- free((void *)opt_state->blocks);
- }
- /*
- * Return the number of stmts in 's'.
- */
- static u_int
- slength(struct slist *s)
- {
- u_int n = 0;
- for (; s; s = s->next)
- if (s->s.code != NOP)
- ++n;
- return n;
- }
- /*
- * Return the number of nodes reachable by 'p'.
- * All nodes should be initially unmarked.
- */
- static int
- count_blocks(struct icode *ic, struct block *p)
- {
- if (p == 0 || isMarked(ic, p))
- return 0;
- Mark(ic, p);
- return count_blocks(ic, JT(p)) + count_blocks(ic, JF(p)) + 1;
- }
- /*
- * Do a depth first search on the flow graph, numbering the
- * the basic blocks, and entering them into the 'blocks' array.`
- */
- static void
- number_blks_r(opt_state_t *opt_state, struct icode *ic, struct block *p)
- {
- int n;
- if (p == 0 || isMarked(ic, p))
- return;
- Mark(ic, p);
- n = opt_state->n_blocks++;
- p->id = n;
- opt_state->blocks[n] = p;
- number_blks_r(opt_state, ic, JT(p));
- number_blks_r(opt_state, ic, JF(p));
- }
- /*
- * Return the number of stmts in the flowgraph reachable by 'p'.
- * The nodes should be unmarked before calling.
- *
- * Note that "stmts" means "instructions", and that this includes
- *
- * side-effect statements in 'p' (slength(p->stmts));
- *
- * statements in the true branch from 'p' (count_stmts(JT(p)));
- *
- * statements in the false branch from 'p' (count_stmts(JF(p)));
- *
- * the conditional jump itself (1);
- *
- * an extra long jump if the true branch requires it (p->longjt);
- *
- * an extra long jump if the false branch requires it (p->longjf).
- */
- static u_int
- count_stmts(struct icode *ic, struct block *p)
- {
- u_int n;
- if (p == 0 || isMarked(ic, p))
- return 0;
- Mark(ic, p);
- n = count_stmts(ic, JT(p)) + count_stmts(ic, JF(p));
- return slength(p->stmts) + n + 1 + p->longjt + p->longjf;
- }
- /*
- * Allocate memory. All allocation is done before optimization
- * is begun. A linear bound on the size of all data structures is computed
- * from the total number of blocks and/or statements.
- */
- static void
- opt_init(compiler_state_t *cstate, opt_state_t *opt_state, struct icode *ic)
- {
- bpf_u_int32 *p;
- int i, n, max_stmts;
- /*
- * First, count the blocks, so we can malloc an array to map
- * block number to block. Then, put the blocks into the array.
- */
- unMarkAll(ic);
- n = count_blocks(ic, ic->root);
- opt_state->blocks = (struct block **)calloc(n, sizeof(*opt_state->blocks));
- if (opt_state->blocks == NULL)
- bpf_error(cstate, "malloc");
- unMarkAll(ic);
- opt_state->n_blocks = 0;
- number_blks_r(opt_state, ic, ic->root);
- opt_state->n_edges = 2 * opt_state->n_blocks;
- opt_state->edges = (struct edge **)calloc(opt_state->n_edges, sizeof(*opt_state->edges));
- if (opt_state->edges == NULL)
- bpf_error(cstate, "malloc");
- /*
- * The number of levels is bounded by the number of nodes.
- */
- opt_state->levels = (struct block **)calloc(opt_state->n_blocks, sizeof(*opt_state->levels));
- if (opt_state->levels == NULL)
- bpf_error(cstate, "malloc");
- opt_state->edgewords = opt_state->n_edges / (8 * sizeof(bpf_u_int32)) + 1;
- opt_state->nodewords = opt_state->n_blocks / (8 * sizeof(bpf_u_int32)) + 1;
- /* XXX */
- opt_state->space = (bpf_u_int32 *)malloc(2 * opt_state->n_blocks * opt_state->nodewords * sizeof(*opt_state->space)
- + opt_state->n_edges * opt_state->edgewords * sizeof(*opt_state->space));
- if (opt_state->space == NULL)
- bpf_error(cstate, "malloc");
- p = opt_state->space;
- opt_state->all_dom_sets = p;
- for (i = 0; i < n; ++i) {
- opt_state->blocks[i]->dom = p;
- p += opt_state->nodewords;
- }
- opt_state->all_closure_sets = p;
- for (i = 0; i < n; ++i) {
- opt_state->blocks[i]->closure = p;
- p += opt_state->nodewords;
- }
- opt_state->all_edge_sets = p;
- for (i = 0; i < n; ++i) {
- register struct block *b = opt_state->blocks[i];
- b->et.edom = p;
- p += opt_state->edgewords;
- b->ef.edom = p;
- p += opt_state->edgewords;
- b->et.id = i;
- opt_state->edges[i] = &b->et;
- b->ef.id = opt_state->n_blocks + i;
- opt_state->edges[opt_state->n_blocks + i] = &b->ef;
- b->et.pred = b;
- b->ef.pred = b;
- }
- max_stmts = 0;
- for (i = 0; i < n; ++i)
- max_stmts += slength(opt_state->blocks[i]->stmts) + 1;
- /*
- * We allocate at most 3 value numbers per statement,
- * so this is an upper bound on the number of valnodes
- * we'll need.
- */
- opt_state->maxval = 3 * max_stmts;
- opt_state->vmap = (struct vmapinfo *)calloc(opt_state->maxval, sizeof(*opt_state->vmap));
- opt_state->vnode_base = (struct valnode *)calloc(opt_state->maxval, sizeof(*opt_state->vnode_base));
- if (opt_state->vmap == NULL || opt_state->vnode_base == NULL)
- bpf_error(cstate, "malloc");
- }
- /*
- * This is only used when supporting optimizer debugging. It is
- * global state, so do *not* do more than one compile in parallel
- * and expect it to provide meaningful information.
- */
- #ifdef BDEBUG
- int bids[NBIDS];
- #endif
- /*
- * Returns true if successful. Returns false if a branch has
- * an offset that is too large. If so, we have marked that
- * branch so that on a subsequent iteration, it will be treated
- * properly.
- */
- static int
- convert_code_r(compiler_state_t *cstate, conv_state_t *conv_state,
- struct icode *ic, struct block *p)
- {
- struct bpf_insn *dst;
- struct slist *src;
- u_int slen;
- u_int off;
- u_int extrajmps; /* number of extra jumps inserted */
- struct slist **offset = NULL;
- if (p == 0 || isMarked(ic, p))
- return (1);
- Mark(ic, p);
- if (convert_code_r(cstate, conv_state, ic, JF(p)) == 0)
- return (0);
- if (convert_code_r(cstate, conv_state, ic, JT(p)) == 0)
- return (0);
- slen = slength(p->stmts);
- dst = conv_state->ftail -= (slen + 1 + p->longjt + p->longjf);
- /* inflate length by any extra jumps */
- p->offset = (int)(dst - conv_state->fstart);
- /* generate offset[] for convenience */
- if (slen) {
- offset = (struct slist **)calloc(slen, sizeof(struct slist *));
- if (!offset) {
- bpf_error(cstate, "not enough core");
- /*NOTREACHED*/
- }
- }
- src = p->stmts;
- for (off = 0; off < slen && src; off++) {
- #if 0
- printf("off=%d src=%x\n", off, src);
- #endif
- offset[off] = src;
- src = src->next;
- }
- off = 0;
- for (src = p->stmts; src; src = src->next) {
- if (src->s.code == NOP)
- continue;
- dst->code = (u_short)src->s.code;
- dst->k = src->s.k;
- /* fill block-local relative jump */
- if (BPF_CLASS(src->s.code) != BPF_JMP || src->s.code == (BPF_JMP|BPF_JA)) {
- #if 0
- if (src->s.jt || src->s.jf) {
- bpf_error(cstate, "illegal jmp destination");
- /*NOTREACHED*/
- }
- #endif
- goto filled;
- }
- if (off == slen - 2) /*???*/
- goto filled;
- {
- u_int i;
- int jt, jf;
- const char ljerr[] = "%s for block-local relative jump: off=%d";
- #if 0
- printf("code=%x off=%d %x %x\n", src->s.code,
- off, src->s.jt, src->s.jf);
- #endif
- if (!src->s.jt || !src->s.jf) {
- bpf_error(cstate, ljerr, "no jmp destination", off);
- /*NOTREACHED*/
- }
- jt = jf = 0;
- for (i = 0; i < slen; i++) {
- if (offset[i] == src->s.jt) {
- if (jt) {
- bpf_error(cstate, ljerr, "multiple matches", off);
- /*NOTREACHED*/
- }
- if (i - off - 1 >= 256) {
- bpf_error(cstate, ljerr, "out-of-range jump", off);
- /*NOTREACHED*/
- }
- dst->jt = (u_char)(i - off - 1);
- jt++;
- }
- if (offset[i] == src->s.jf) {
- if (jf) {
- bpf_error(cstate, ljerr, "multiple matches", off);
- /*NOTREACHED*/
- }
- if (i - off - 1 >= 256) {
- bpf_error(cstate, ljerr, "out-of-range jump", off);
- /*NOTREACHED*/
- }
- dst->jf = (u_char)(i - off - 1);
- jf++;
- }
- }
- if (!jt || !jf) {
- bpf_error(cstate, ljerr, "no destination found", off);
- /*NOTREACHED*/
- }
- }
- filled:
- ++dst;
- ++off;
- }
- if (offset)
- free(offset);
- #ifdef BDEBUG
- if (dst - conv_state->fstart < NBIDS)
- bids[dst - conv_state->fstart] = p->id + 1;
- #endif
- dst->code = (u_short)p->s.code;
- dst->k = p->s.k;
- if (JT(p)) {
- extrajmps = 0;
- off = JT(p)->offset - (p->offset + slen) - 1;
- if (off >= 256) {
- /* offset too large for branch, must add a jump */
- if (p->longjt == 0) {
- /* mark this instruction and retry */
- p->longjt++;
- return(0);
- }
- /* branch if T to following jump */
- if (extrajmps >= 256) {
- bpf_error(cstate, "too many extra jumps");
- /*NOTREACHED*/
- }
- dst->jt = (u_char)extrajmps;
- extrajmps++;
- dst[extrajmps].code = BPF_JMP|BPF_JA;
- dst[extrajmps].k = off - extrajmps;
- }
- else
- dst->jt = (u_char)off;
- off = JF(p)->offset - (p->offset + slen) - 1;
- if (off >= 256) {
- /* offset too large for branch, must add a jump */
- if (p->longjf == 0) {
- /* mark this instruction and retry */
- p->longjf++;
- return(0);
- }
- /* branch if F to following jump */
- /* if two jumps are inserted, F goes to second one */
- if (extrajmps >= 256) {
- bpf_error(cstate, "too many extra jumps");
- /*NOTREACHED*/
- }
- dst->jf = (u_char)extrajmps;
- extrajmps++;
- dst[extrajmps].code = BPF_JMP|BPF_JA;
- dst[extrajmps].k = off - extrajmps;
- }
- else
- dst->jf = (u_char)off;
- }
- return (1);
- }
- /*
- * Convert flowgraph intermediate representation to the
- * BPF array representation. Set *lenp to the number of instructions.
- *
- * This routine does *NOT* leak the memory pointed to by fp. It *must
- * not* do free(fp) before returning fp; doing so would make no sense,
- * as the BPF array pointed to by the return value of icode_to_fcode()
- * must be valid - it's being returned for use in a bpf_program structure.
- *
- * If it appears that icode_to_fcode() is leaking, the problem is that
- * the program using pcap_compile() is failing to free the memory in
- * the BPF program when it's done - the leak is in the program, not in
- * the routine that happens to be allocating the memory. (By analogy, if
- * a program calls fopen() without ever calling fclose() on the FILE *,
- * it will leak the FILE structure; the leak is not in fopen(), it's in
- * the program.) Change the program to use pcap_freecode() when it's
- * done with the filter program. See the pcap man page.
- */
- struct bpf_insn *
- icode_to_fcode(compiler_state_t *cstate, struct icode *ic,
- struct block *root, u_int *lenp)
- {
- u_int n;
- struct bpf_insn *fp;
- conv_state_t conv_state;
- /*
- * Loop doing convert_code_r() until no branches remain
- * with too-large offsets.
- */
- for (;;) {
- unMarkAll(ic);
- n = *lenp = count_stmts(ic, root);
- fp = (struct bpf_insn *)malloc(sizeof(*fp) * n);
- if (fp == NULL)
- bpf_error(cstate, "malloc");
- memset((char *)fp, 0, sizeof(*fp) * n);
- conv_state.fstart = fp;
- conv_state.ftail = fp + n;
- unMarkAll(ic);
- if (convert_code_r(cstate, &conv_state, ic, root))
- break;
- free(fp);
- }
- return fp;
- }
- /*
- * Make a copy of a BPF program and put it in the "fcode" member of
- * a "pcap_t".
- *
- * If we fail to allocate memory for the copy, fill in the "errbuf"
- * member of the "pcap_t" with an error message, and return -1;
- * otherwise, return 0.
- */
- int
- install_bpf_program(pcap_t *p, struct bpf_program *fp)
- {
- size_t prog_size;
- /*
- * Validate the program.
- */
- if (!bpf_validate(fp->bf_insns, fp->bf_len)) {
- pcap_snprintf(p->errbuf, sizeof(p->errbuf),
- "BPF program is not valid");
- return (-1);
- }
- /*
- * Free up any already installed program.
- */
- pcap_freecode(&p->fcode);
- prog_size = sizeof(*fp->bf_insns) * fp->bf_len;
- p->fcode.bf_len = fp->bf_len;
- p->fcode.bf_insns = (struct bpf_insn *)malloc(prog_size);
- if (p->fcode.bf_insns == NULL) {
- pcap_fmt_errmsg_for_errno(p->errbuf, sizeof(p->errbuf),
- errno, "malloc");
- return (-1);
- }
- memcpy(p->fcode.bf_insns, fp->bf_insns, prog_size);
- return (0);
- }
- #ifdef BDEBUG
- static void
- dot_dump_node(struct icode *ic, struct block *block, struct bpf_program *prog,
- FILE *out)
- {
- int icount, noffset;
- int i;
- if (block == NULL || isMarked(ic, block))
- return;
- Mark(ic, block);
- icount = slength(block->stmts) + 1 + block->longjt + block->longjf;
- noffset = min(block->offset + icount, (int)prog->bf_len);
- fprintf(out, "\tblock%d [shape=ellipse, id=\"block-%d\" label=\"BLOCK%d\\n", block->id, block->id, block->id);
- for (i = block->offset; i < noffset; i++) {
- fprintf(out, "\\n%s", bpf_image(prog->bf_insns + i, i));
- }
- fprintf(out, "\" tooltip=\"");
- for (i = 0; i < BPF_MEMWORDS; i++)
- if (block->val[i] != VAL_UNKNOWN)
- fprintf(out, "val[%d]=%d ", i, block->val[i]);
- fprintf(out, "val[A]=%d ", block->val[A_ATOM]);
- fprintf(out, "val[X]=%d", block->val[X_ATOM]);
- fprintf(out, "\"");
- if (JT(block) == NULL)
- fprintf(out, ", peripheries=2");
- fprintf(out, "];\n");
- dot_dump_node(ic, JT(block), prog, out);
- dot_dump_node(ic, JF(block), prog, out);
- }
- static void
- dot_dump_edge(struct icode *ic, struct block *block, FILE *out)
- {
- if (block == NULL || isMarked(ic, block))
- return;
- Mark(ic, block);
- if (JT(block)) {
- fprintf(out, "\t\"block%d\":se -> \"block%d\":n [label=\"T\"]; \n",
- block->id, JT(block)->id);
- fprintf(out, "\t\"block%d\":sw -> \"block%d\":n [label=\"F\"]; \n",
- block->id, JF(block)->id);
- }
- dot_dump_edge(ic, JT(block), out);
- dot_dump_edge(ic, JF(block), out);
- }
- /* Output the block CFG using graphviz/DOT language
- * In the CFG, block's code, value index for each registers at EXIT,
- * and the jump relationship is show.
- *
- * example DOT for BPF `ip src host 1.1.1.1' is:
- digraph BPF {
- block0 [shape=ellipse, id="block-0" label="BLOCK0\n\n(000) ldh [12]\n(001) jeq #0x800 jt 2 jf 5" tooltip="val[A]=0 val[X]=0"];
- block1 [shape=ellipse, id="block-1" label="BLOCK1\n\n(002) ld [26]\n(003) jeq #0x1010101 jt 4 jf 5" tooltip="val[A]=0 val[X]=0"];
- block2 [shape=ellipse, id="block-2" label="BLOCK2\n\n(004) ret #68" tooltip="val[A]=0 val[X]=0", peripheries=2];
- block3 [shape=ellipse, id="block-3" label="BLOCK3\n\n(005) ret #0" tooltip="val[A]=0 val[X]=0", peripheries=2];
- "block0":se -> "block1":n [label="T"];
- "block0":sw -> "block3":n [label="F"];
- "block1":se -> "block2":n [label="T"];
- "block1":sw -> "block3":n [label="F"];
- }
- *
- * After install graphviz on http://www.graphviz.org/, save it as bpf.dot
- * and run `dot -Tpng -O bpf.dot' to draw the graph.
- */
- static void
- dot_dump(compiler_state_t *cstate, struct icode *ic)
- {
- struct bpf_program f;
- FILE *out = stdout;
- memset(bids, 0, sizeof bids);
- f.bf_insns = icode_to_fcode(cstate, ic, ic->root, &f.bf_len);
- fprintf(out, "digraph BPF {\n");
- unMarkAll(ic);
- dot_dump_node(ic, ic->root, &f, out);
- unMarkAll(ic);
- dot_dump_edge(ic, ic->root, out);
- fprintf(out, "}\n");
- free((char *)f.bf_insns);
- }
- static void
- plain_dump(compiler_state_t *cstate, struct icode *ic)
- {
- struct bpf_program f;
- memset(bids, 0, sizeof bids);
- f.bf_insns = icode_to_fcode(cstate, ic, ic->root, &f.bf_len);
- bpf_dump(&f, 1);
- putchar('\n');
- free((char *)f.bf_insns);
- }
- static void
- opt_dump(compiler_state_t *cstate, struct icode *ic)
- {
- /*
- * If the CFG, in DOT format, is requested, output it rather than
- * the code that would be generated from that graph.
- */
- if (pcap_print_dot_graph)
- dot_dump(cstate, ic);
- else
- plain_dump(cstate, ic);
- }
- #endif
|