des_modes.7 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284
  1. .\" Automatically generated by Pod::Man 4.09 (Pod::Simple 3.35)
  2. .\"
  3. .\" Standard preamble:
  4. .\" ========================================================================
  5. .de Sp \" Vertical space (when we can't use .PP)
  6. .if t .sp .5v
  7. .if n .sp
  8. ..
  9. .de Vb \" Begin verbatim text
  10. .ft CW
  11. .nf
  12. .ne \\$1
  13. ..
  14. .de Ve \" End verbatim text
  15. .ft R
  16. .fi
  17. ..
  18. .\" Set up some character translations and predefined strings. \*(-- will
  19. .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
  20. .\" double quote, and \*(R" will give a right double quote. \*(C+ will
  21. .\" give a nicer C++. Capital omega is used to do unbreakable dashes and
  22. .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
  23. .\" nothing in troff, for use with C<>.
  24. .tr \(*W-
  25. .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
  26. .ie n \{\
  27. . ds -- \(*W-
  28. . ds PI pi
  29. . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
  30. . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
  31. . ds L" ""
  32. . ds R" ""
  33. . ds C` ""
  34. . ds C' ""
  35. 'br\}
  36. .el\{\
  37. . ds -- \|\(em\|
  38. . ds PI \(*p
  39. . ds L" ``
  40. . ds R" ''
  41. . ds C`
  42. . ds C'
  43. 'br\}
  44. .\"
  45. .\" Escape single quotes in literal strings from groff's Unicode transform.
  46. .ie \n(.g .ds Aq \(aq
  47. .el .ds Aq '
  48. .\"
  49. .\" If the F register is >0, we'll generate index entries on stderr for
  50. .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
  51. .\" entries marked with X<> in POD. Of course, you'll have to process the
  52. .\" output yourself in some meaningful fashion.
  53. .\"
  54. .\" Avoid warning from groff about undefined register 'F'.
  55. .de IX
  56. ..
  57. .if !\nF .nr F 0
  58. .if \nF>0 \{\
  59. . de IX
  60. . tm Index:\\$1\t\\n%\t"\\$2"
  61. ..
  62. . if !\nF==2 \{\
  63. . nr % 0
  64. . nr F 2
  65. . \}
  66. .\}
  67. .\"
  68. .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
  69. .\" Fear. Run. Save yourself. No user-serviceable parts.
  70. . \" fudge factors for nroff and troff
  71. .if n \{\
  72. . ds #H 0
  73. . ds #V .8m
  74. . ds #F .3m
  75. . ds #[ \f1
  76. . ds #] \fP
  77. .\}
  78. .if t \{\
  79. . ds #H ((1u-(\\\\n(.fu%2u))*.13m)
  80. . ds #V .6m
  81. . ds #F 0
  82. . ds #[ \&
  83. . ds #] \&
  84. .\}
  85. . \" simple accents for nroff and troff
  86. .if n \{\
  87. . ds ' \&
  88. . ds ` \&
  89. . ds ^ \&
  90. . ds , \&
  91. . ds ~ ~
  92. . ds /
  93. .\}
  94. .if t \{\
  95. . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
  96. . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
  97. . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
  98. . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
  99. . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
  100. . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
  101. .\}
  102. . \" troff and (daisy-wheel) nroff accents
  103. .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
  104. .ds 8 \h'\*(#H'\(*b\h'-\*(#H'
  105. .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
  106. .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
  107. .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
  108. .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
  109. .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
  110. .ds ae a\h'-(\w'a'u*4/10)'e
  111. .ds Ae A\h'-(\w'A'u*4/10)'E
  112. . \" corrections for vroff
  113. .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
  114. .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
  115. . \" for low resolution devices (crt and lpr)
  116. .if \n(.H>23 .if \n(.V>19 \
  117. \{\
  118. . ds : e
  119. . ds 8 ss
  120. . ds o a
  121. . ds d- d\h'-1'\(ga
  122. . ds D- D\h'-1'\(hy
  123. . ds th \o'bp'
  124. . ds Th \o'LP'
  125. . ds ae ae
  126. . ds Ae AE
  127. .\}
  128. .rm #[ #] #H #V #F C
  129. .\" ========================================================================
  130. .\"
  131. .IX Title "DES_MODES 7"
  132. .TH DES_MODES 7 "2019-09-12" "1.0.2g" "OpenSSL"
  133. .\" For nroff, turn off justification. Always turn off hyphenation; it makes
  134. .\" way too many mistakes in technical documents.
  135. .if n .ad l
  136. .nh
  137. .SH "NAME"
  138. des_modes \- the variants of DES and other crypto algorithms of OpenSSL
  139. .SH "DESCRIPTION"
  140. .IX Header "DESCRIPTION"
  141. Several crypto algorithms for OpenSSL can be used in a number of modes. Those
  142. are used for using block ciphers in a way similar to stream ciphers, among
  143. other things.
  144. .SH "OVERVIEW"
  145. .IX Header "OVERVIEW"
  146. .SS "Electronic Codebook Mode (\s-1ECB\s0)"
  147. .IX Subsection "Electronic Codebook Mode (ECB)"
  148. Normally, this is found as the function \fIalgorithm\fR\fI_ecb_encrypt()\fR.
  149. .IP "\(bu" 2
  150. 64 bits are enciphered at a time.
  151. .IP "\(bu" 2
  152. The order of the blocks can be rearranged without detection.
  153. .IP "\(bu" 2
  154. The same plaintext block always produces the same ciphertext block
  155. (for the same key) making it vulnerable to a 'dictionary attack'.
  156. .IP "\(bu" 2
  157. An error will only affect one ciphertext block.
  158. .SS "Cipher Block Chaining Mode (\s-1CBC\s0)"
  159. .IX Subsection "Cipher Block Chaining Mode (CBC)"
  160. Normally, this is found as the function \fIalgorithm\fR\fI_cbc_encrypt()\fR.
  161. Be aware that \fIdes_cbc_encrypt()\fR is not really \s-1DES CBC\s0 (it does
  162. not update the \s-1IV\s0); use \fIdes_ncbc_encrypt()\fR instead.
  163. .IP "\(bu" 2
  164. a multiple of 64 bits are enciphered at a time.
  165. .IP "\(bu" 2
  166. The \s-1CBC\s0 mode produces the same ciphertext whenever the same
  167. plaintext is encrypted using the same key and starting variable.
  168. .IP "\(bu" 2
  169. The chaining operation makes the ciphertext blocks dependent on the
  170. current and all preceding plaintext blocks and therefore blocks can not
  171. be rearranged.
  172. .IP "\(bu" 2
  173. The use of different starting variables prevents the same plaintext
  174. enciphering to the same ciphertext.
  175. .IP "\(bu" 2
  176. An error will affect the current and the following ciphertext blocks.
  177. .SS "Cipher Feedback Mode (\s-1CFB\s0)"
  178. .IX Subsection "Cipher Feedback Mode (CFB)"
  179. Normally, this is found as the function \fIalgorithm\fR\fI_cfb_encrypt()\fR.
  180. .IP "\(bu" 2
  181. a number of bits (j) <= 64 are enciphered at a time.
  182. .IP "\(bu" 2
  183. The \s-1CFB\s0 mode produces the same ciphertext whenever the same
  184. plaintext is encrypted using the same key and starting variable.
  185. .IP "\(bu" 2
  186. The chaining operation makes the ciphertext variables dependent on the
  187. current and all preceding variables and therefore j\-bit variables are
  188. chained together and can not be rearranged.
  189. .IP "\(bu" 2
  190. The use of different starting variables prevents the same plaintext
  191. enciphering to the same ciphertext.
  192. .IP "\(bu" 2
  193. The strength of the \s-1CFB\s0 mode depends on the size of k (maximal if
  194. j == k). In my implementation this is always the case.
  195. .IP "\(bu" 2
  196. Selection of a small value for j will require more cycles through
  197. the encipherment algorithm per unit of plaintext and thus cause
  198. greater processing overheads.
  199. .IP "\(bu" 2
  200. Only multiples of j bits can be enciphered.
  201. .IP "\(bu" 2
  202. An error will affect the current and the following ciphertext variables.
  203. .SS "Output Feedback Mode (\s-1OFB\s0)"
  204. .IX Subsection "Output Feedback Mode (OFB)"
  205. Normally, this is found as the function \fIalgorithm\fR\fI_ofb_encrypt()\fR.
  206. .IP "\(bu" 2
  207. a number of bits (j) <= 64 are enciphered at a time.
  208. .IP "\(bu" 2
  209. The \s-1OFB\s0 mode produces the same ciphertext whenever the same
  210. plaintext enciphered using the same key and starting variable. More
  211. over, in the \s-1OFB\s0 mode the same key stream is produced when the same
  212. key and start variable are used. Consequently, for security reasons
  213. a specific start variable should be used only once for a given key.
  214. .IP "\(bu" 2
  215. The absence of chaining makes the \s-1OFB\s0 more vulnerable to specific attacks.
  216. .IP "\(bu" 2
  217. The use of different start variables values prevents the same
  218. plaintext enciphering to the same ciphertext, by producing different
  219. key streams.
  220. .IP "\(bu" 2
  221. Selection of a small value for j will require more cycles through
  222. the encipherment algorithm per unit of plaintext and thus cause
  223. greater processing overheads.
  224. .IP "\(bu" 2
  225. Only multiples of j bits can be enciphered.
  226. .IP "\(bu" 2
  227. \&\s-1OFB\s0 mode of operation does not extend ciphertext errors in the
  228. resultant plaintext output. Every bit error in the ciphertext causes
  229. only one bit to be in error in the deciphered plaintext.
  230. .IP "\(bu" 2
  231. \&\s-1OFB\s0 mode is not self-synchronizing. If the two operation of
  232. encipherment and decipherment get out of synchronism, the system needs
  233. to be re-initialized.
  234. .IP "\(bu" 2
  235. Each re-initialization should use a value of the start variable
  236. different from the start variable values used before with the same
  237. key. The reason for this is that an identical bit stream would be
  238. produced each time from the same parameters. This would be
  239. susceptible to a 'known plaintext' attack.
  240. .SS "Triple \s-1ECB\s0 Mode"
  241. .IX Subsection "Triple ECB Mode"
  242. Normally, this is found as the function \fIalgorithm\fR\fI_ecb3_encrypt()\fR.
  243. .IP "\(bu" 2
  244. Encrypt with key1, decrypt with key2 and encrypt with key3 again.
  245. .IP "\(bu" 2
  246. As for \s-1ECB\s0 encryption but increases the key length to 168 bits.
  247. There are theoretic attacks that can be used that make the effective
  248. key length 112 bits, but this attack also requires 2^56 blocks of
  249. memory, not very likely, even for the \s-1NSA.\s0
  250. .IP "\(bu" 2
  251. If both keys are the same it is equivalent to encrypting once with
  252. just one key.
  253. .IP "\(bu" 2
  254. If the first and last key are the same, the key length is 112 bits.
  255. There are attacks that could reduce the effective key strength
  256. to only slightly more than 56 bits, but these require a lot of memory.
  257. .IP "\(bu" 2
  258. If all 3 keys are the same, this is effectively the same as normal
  259. ecb mode.
  260. .SS "Triple \s-1CBC\s0 Mode"
  261. .IX Subsection "Triple CBC Mode"
  262. Normally, this is found as the function \fIalgorithm\fR\fI_ede3_cbc_encrypt()\fR.
  263. .IP "\(bu" 2
  264. Encrypt with key1, decrypt with key2 and then encrypt with key3.
  265. .IP "\(bu" 2
  266. As for \s-1CBC\s0 encryption but increases the key length to 168 bits with
  267. the same restrictions as for triple ecb mode.
  268. .SH "NOTES"
  269. .IX Header "NOTES"
  270. This text was been written in large parts by Eric Young in his original
  271. documentation for SSLeay, the predecessor of OpenSSL. In turn, he attributed
  272. it to:
  273. .PP
  274. .Vb 5
  275. \& AS 2805.5.2
  276. \& Australian Standard
  277. \& Electronic funds transfer \- Requirements for interfaces,
  278. \& Part 5.2: Modes of operation for an n\-bit block cipher algorithm
  279. \& Appendix A
  280. .Ve
  281. .SH "SEE ALSO"
  282. .IX Header "SEE ALSO"
  283. \&\fIblowfish\fR\|(3), \fIdes\fR\|(3), \fIidea\fR\|(3),
  284. \&\fIrc2\fR\|(3)