bn_internal.3 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365
  1. .\" Automatically generated by Pod::Man 4.09 (Pod::Simple 3.35)
  2. .\"
  3. .\" Standard preamble:
  4. .\" ========================================================================
  5. .de Sp \" Vertical space (when we can't use .PP)
  6. .if t .sp .5v
  7. .if n .sp
  8. ..
  9. .de Vb \" Begin verbatim text
  10. .ft CW
  11. .nf
  12. .ne \\$1
  13. ..
  14. .de Ve \" End verbatim text
  15. .ft R
  16. .fi
  17. ..
  18. .\" Set up some character translations and predefined strings. \*(-- will
  19. .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
  20. .\" double quote, and \*(R" will give a right double quote. \*(C+ will
  21. .\" give a nicer C++. Capital omega is used to do unbreakable dashes and
  22. .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
  23. .\" nothing in troff, for use with C<>.
  24. .tr \(*W-
  25. .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
  26. .ie n \{\
  27. . ds -- \(*W-
  28. . ds PI pi
  29. . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
  30. . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
  31. . ds L" ""
  32. . ds R" ""
  33. . ds C` ""
  34. . ds C' ""
  35. 'br\}
  36. .el\{\
  37. . ds -- \|\(em\|
  38. . ds PI \(*p
  39. . ds L" ``
  40. . ds R" ''
  41. . ds C`
  42. . ds C'
  43. 'br\}
  44. .\"
  45. .\" Escape single quotes in literal strings from groff's Unicode transform.
  46. .ie \n(.g .ds Aq \(aq
  47. .el .ds Aq '
  48. .\"
  49. .\" If the F register is >0, we'll generate index entries on stderr for
  50. .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
  51. .\" entries marked with X<> in POD. Of course, you'll have to process the
  52. .\" output yourself in some meaningful fashion.
  53. .\"
  54. .\" Avoid warning from groff about undefined register 'F'.
  55. .de IX
  56. ..
  57. .if !\nF .nr F 0
  58. .if \nF>0 \{\
  59. . de IX
  60. . tm Index:\\$1\t\\n%\t"\\$2"
  61. ..
  62. . if !\nF==2 \{\
  63. . nr % 0
  64. . nr F 2
  65. . \}
  66. .\}
  67. .\"
  68. .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
  69. .\" Fear. Run. Save yourself. No user-serviceable parts.
  70. . \" fudge factors for nroff and troff
  71. .if n \{\
  72. . ds #H 0
  73. . ds #V .8m
  74. . ds #F .3m
  75. . ds #[ \f1
  76. . ds #] \fP
  77. .\}
  78. .if t \{\
  79. . ds #H ((1u-(\\\\n(.fu%2u))*.13m)
  80. . ds #V .6m
  81. . ds #F 0
  82. . ds #[ \&
  83. . ds #] \&
  84. .\}
  85. . \" simple accents for nroff and troff
  86. .if n \{\
  87. . ds ' \&
  88. . ds ` \&
  89. . ds ^ \&
  90. . ds , \&
  91. . ds ~ ~
  92. . ds /
  93. .\}
  94. .if t \{\
  95. . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
  96. . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
  97. . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
  98. . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
  99. . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
  100. . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
  101. .\}
  102. . \" troff and (daisy-wheel) nroff accents
  103. .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
  104. .ds 8 \h'\*(#H'\(*b\h'-\*(#H'
  105. .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
  106. .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
  107. .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
  108. .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
  109. .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
  110. .ds ae a\h'-(\w'a'u*4/10)'e
  111. .ds Ae A\h'-(\w'A'u*4/10)'E
  112. . \" corrections for vroff
  113. .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
  114. .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
  115. . \" for low resolution devices (crt and lpr)
  116. .if \n(.H>23 .if \n(.V>19 \
  117. \{\
  118. . ds : e
  119. . ds 8 ss
  120. . ds o a
  121. . ds d- d\h'-1'\(ga
  122. . ds D- D\h'-1'\(hy
  123. . ds th \o'bp'
  124. . ds Th \o'LP'
  125. . ds ae ae
  126. . ds Ae AE
  127. .\}
  128. .rm #[ #] #H #V #F C
  129. .\" ========================================================================
  130. .\"
  131. .IX Title "bn_internal 3"
  132. .TH bn_internal 3 "2019-09-12" "1.0.2g" "OpenSSL"
  133. .\" For nroff, turn off justification. Always turn off hyphenation; it makes
  134. .\" way too many mistakes in technical documents.
  135. .if n .ad l
  136. .nh
  137. .SH "NAME"
  138. bn_mul_words, bn_mul_add_words, bn_sqr_words, bn_div_words,
  139. bn_add_words, bn_sub_words, bn_mul_comba4, bn_mul_comba8,
  140. bn_sqr_comba4, bn_sqr_comba8, bn_cmp_words, bn_mul_normal,
  141. bn_mul_low_normal, bn_mul_recursive, bn_mul_part_recursive,
  142. bn_mul_low_recursive, bn_mul_high, bn_sqr_normal, bn_sqr_recursive,
  143. bn_expand, bn_wexpand, bn_expand2, bn_fix_top, bn_check_top,
  144. bn_print, bn_dump, bn_set_max, bn_set_high, bn_set_low \- BIGNUM
  145. library internal functions
  146. .SH "SYNOPSIS"
  147. .IX Header "SYNOPSIS"
  148. .Vb 1
  149. \& #include <openssl/bn.h>
  150. \&
  151. \& BN_ULONG bn_mul_words(BN_ULONG *rp, BN_ULONG *ap, int num, BN_ULONG w);
  152. \& BN_ULONG bn_mul_add_words(BN_ULONG *rp, BN_ULONG *ap, int num,
  153. \& BN_ULONG w);
  154. \& void bn_sqr_words(BN_ULONG *rp, BN_ULONG *ap, int num);
  155. \& BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d);
  156. \& BN_ULONG bn_add_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,
  157. \& int num);
  158. \& BN_ULONG bn_sub_words(BN_ULONG *rp, BN_ULONG *ap, BN_ULONG *bp,
  159. \& int num);
  160. \&
  161. \& void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
  162. \& void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b);
  163. \& void bn_sqr_comba4(BN_ULONG *r, BN_ULONG *a);
  164. \& void bn_sqr_comba8(BN_ULONG *r, BN_ULONG *a);
  165. \&
  166. \& int bn_cmp_words(BN_ULONG *a, BN_ULONG *b, int n);
  167. \&
  168. \& void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b,
  169. \& int nb);
  170. \& void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n);
  171. \& void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,
  172. \& int dna,int dnb,BN_ULONG *tmp);
  173. \& void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
  174. \& int n, int tna,int tnb, BN_ULONG *tmp);
  175. \& void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b,
  176. \& int n2, BN_ULONG *tmp);
  177. \& void bn_mul_high(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, BN_ULONG *l,
  178. \& int n2, BN_ULONG *tmp);
  179. \&
  180. \& void bn_sqr_normal(BN_ULONG *r, BN_ULONG *a, int n, BN_ULONG *tmp);
  181. \& void bn_sqr_recursive(BN_ULONG *r, BN_ULONG *a, int n2, BN_ULONG *tmp);
  182. \&
  183. \& void mul(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);
  184. \& void mul_add(BN_ULONG r, BN_ULONG a, BN_ULONG w, BN_ULONG c);
  185. \& void sqr(BN_ULONG r0, BN_ULONG r1, BN_ULONG a);
  186. \&
  187. \& BIGNUM *bn_expand(BIGNUM *a, int bits);
  188. \& BIGNUM *bn_wexpand(BIGNUM *a, int n);
  189. \& BIGNUM *bn_expand2(BIGNUM *a, int n);
  190. \& void bn_fix_top(BIGNUM *a);
  191. \&
  192. \& void bn_check_top(BIGNUM *a);
  193. \& void bn_print(BIGNUM *a);
  194. \& void bn_dump(BN_ULONG *d, int n);
  195. \& void bn_set_max(BIGNUM *a);
  196. \& void bn_set_high(BIGNUM *r, BIGNUM *a, int n);
  197. \& void bn_set_low(BIGNUM *r, BIGNUM *a, int n);
  198. .Ve
  199. .SH "DESCRIPTION"
  200. .IX Header "DESCRIPTION"
  201. This page documents the internal functions used by the OpenSSL
  202. \&\fB\s-1BIGNUM\s0\fR implementation. They are described here to facilitate
  203. debugging and extending the library. They are \fInot\fR to be used by
  204. applications.
  205. .SS "The \s-1BIGNUM\s0 structure"
  206. .IX Subsection "The BIGNUM structure"
  207. .Vb 1
  208. \& typedef struct bignum_st BIGNUM;
  209. \&
  210. \& struct bignum_st
  211. \& {
  212. \& BN_ULONG *d; /* Pointer to an array of \*(AqBN_BITS2\*(Aq bit chunks. */
  213. \& int top; /* Index of last used d +1. */
  214. \& /* The next are internal book keeping for bn_expand. */
  215. \& int dmax; /* Size of the d array. */
  216. \& int neg; /* one if the number is negative */
  217. \& int flags;
  218. \& };
  219. .Ve
  220. .PP
  221. The integer value is stored in \fBd\fR, a \fImalloc()\fRed array of words (\fB\s-1BN_ULONG\s0\fR),
  222. least significant word first. A \fB\s-1BN_ULONG\s0\fR can be either 16, 32 or 64 bits
  223. in size, depending on the 'number of bits' (\fB\s-1BITS2\s0\fR) specified in
  224. \&\f(CW\*(C`openssl/bn.h\*(C'\fR.
  225. .PP
  226. \&\fBdmax\fR is the size of the \fBd\fR array that has been allocated. \fBtop\fR
  227. is the number of words being used, so for a value of 4, bn.d[0]=4 and
  228. bn.top=1. \fBneg\fR is 1 if the number is negative. When a \fB\s-1BIGNUM\s0\fR is
  229. \&\fB0\fR, the \fBd\fR field can be \fB\s-1NULL\s0\fR and \fBtop\fR == \fB0\fR.
  230. .PP
  231. \&\fBflags\fR is a bit field of flags which are defined in \f(CW\*(C`openssl/bn.h\*(C'\fR. The
  232. flags begin with \fB\s-1BN_FLG_\s0\fR. The macros BN_set_flags(b,n) and
  233. BN_get_flags(b,n) exist to enable or fetch flag(s) \fBn\fR from \fB\s-1BIGNUM\s0\fR
  234. structure \fBb\fR.
  235. .PP
  236. Various routines in this library require the use of temporary
  237. \&\fB\s-1BIGNUM\s0\fR variables during their execution. Since dynamic memory
  238. allocation to create \fB\s-1BIGNUM\s0\fRs is rather expensive when used in
  239. conjunction with repeated subroutine calls, the \fB\s-1BN_CTX\s0\fR structure is
  240. used. This structure contains \fB\s-1BN_CTX_NUM\s0\fR \fB\s-1BIGNUM\s0\fRs, see
  241. \&\fIBN_CTX_start\fR\|(3).
  242. .SS "Low-level arithmetic operations"
  243. .IX Subsection "Low-level arithmetic operations"
  244. These functions are implemented in C and for several platforms in
  245. assembly language:
  246. .PP
  247. bn_mul_words(\fBrp\fR, \fBap\fR, \fBnum\fR, \fBw\fR) operates on the \fBnum\fR word
  248. arrays \fBrp\fR and \fBap\fR. It computes \fBap\fR * \fBw\fR, places the result
  249. in \fBrp\fR, and returns the high word (carry).
  250. .PP
  251. bn_mul_add_words(\fBrp\fR, \fBap\fR, \fBnum\fR, \fBw\fR) operates on the \fBnum\fR
  252. word arrays \fBrp\fR and \fBap\fR. It computes \fBap\fR * \fBw\fR + \fBrp\fR, places
  253. the result in \fBrp\fR, and returns the high word (carry).
  254. .PP
  255. bn_sqr_words(\fBrp\fR, \fBap\fR, \fBn\fR) operates on the \fBnum\fR word array
  256. \&\fBap\fR and the 2*\fBnum\fR word array \fBap\fR. It computes \fBap\fR * \fBap\fR
  257. word-wise, and places the low and high bytes of the result in \fBrp\fR.
  258. .PP
  259. bn_div_words(\fBh\fR, \fBl\fR, \fBd\fR) divides the two word number (\fBh\fR,\fBl\fR)
  260. by \fBd\fR and returns the result.
  261. .PP
  262. bn_add_words(\fBrp\fR, \fBap\fR, \fBbp\fR, \fBnum\fR) operates on the \fBnum\fR word
  263. arrays \fBap\fR, \fBbp\fR and \fBrp\fR. It computes \fBap\fR + \fBbp\fR, places the
  264. result in \fBrp\fR, and returns the high word (carry).
  265. .PP
  266. bn_sub_words(\fBrp\fR, \fBap\fR, \fBbp\fR, \fBnum\fR) operates on the \fBnum\fR word
  267. arrays \fBap\fR, \fBbp\fR and \fBrp\fR. It computes \fBap\fR \- \fBbp\fR, places the
  268. result in \fBrp\fR, and returns the carry (1 if \fBbp\fR > \fBap\fR, 0
  269. otherwise).
  270. .PP
  271. bn_mul_comba4(\fBr\fR, \fBa\fR, \fBb\fR) operates on the 4 word arrays \fBa\fR and
  272. \&\fBb\fR and the 8 word array \fBr\fR. It computes \fBa\fR*\fBb\fR and places the
  273. result in \fBr\fR.
  274. .PP
  275. bn_mul_comba8(\fBr\fR, \fBa\fR, \fBb\fR) operates on the 8 word arrays \fBa\fR and
  276. \&\fBb\fR and the 16 word array \fBr\fR. It computes \fBa\fR*\fBb\fR and places the
  277. result in \fBr\fR.
  278. .PP
  279. bn_sqr_comba4(\fBr\fR, \fBa\fR, \fBb\fR) operates on the 4 word arrays \fBa\fR and
  280. \&\fBb\fR and the 8 word array \fBr\fR.
  281. .PP
  282. bn_sqr_comba8(\fBr\fR, \fBa\fR, \fBb\fR) operates on the 8 word arrays \fBa\fR and
  283. \&\fBb\fR and the 16 word array \fBr\fR.
  284. .PP
  285. The following functions are implemented in C:
  286. .PP
  287. bn_cmp_words(\fBa\fR, \fBb\fR, \fBn\fR) operates on the \fBn\fR word arrays \fBa\fR
  288. and \fBb\fR. It returns 1, 0 and \-1 if \fBa\fR is greater than, equal and
  289. less than \fBb\fR.
  290. .PP
  291. bn_mul_normal(\fBr\fR, \fBa\fR, \fBna\fR, \fBb\fR, \fBnb\fR) operates on the \fBna\fR
  292. word array \fBa\fR, the \fBnb\fR word array \fBb\fR and the \fBna\fR+\fBnb\fR word
  293. array \fBr\fR. It computes \fBa\fR*\fBb\fR and places the result in \fBr\fR.
  294. .PP
  295. bn_mul_low_normal(\fBr\fR, \fBa\fR, \fBb\fR, \fBn\fR) operates on the \fBn\fR word
  296. arrays \fBr\fR, \fBa\fR and \fBb\fR. It computes the \fBn\fR low words of
  297. \&\fBa\fR*\fBb\fR and places the result in \fBr\fR.
  298. .PP
  299. bn_mul_recursive(\fBr\fR, \fBa\fR, \fBb\fR, \fBn2\fR, \fBdna\fR, \fBdnb\fR, \fBt\fR) operates
  300. on the word arrays \fBa\fR and \fBb\fR of length \fBn2\fR+\fBdna\fR and \fBn2\fR+\fBdnb\fR
  301. (\fBdna\fR and \fBdnb\fR are currently allowed to be 0 or negative) and the 2*\fBn2\fR
  302. word arrays \fBr\fR and \fBt\fR. \fBn2\fR must be a power of 2. It computes
  303. \&\fBa\fR*\fBb\fR and places the result in \fBr\fR.
  304. .PP
  305. bn_mul_part_recursive(\fBr\fR, \fBa\fR, \fBb\fR, \fBn\fR, \fBtna\fR, \fBtnb\fR, \fBtmp\fR)
  306. operates on the word arrays \fBa\fR and \fBb\fR of length \fBn\fR+\fBtna\fR and
  307. \&\fBn\fR+\fBtnb\fR and the 4*\fBn\fR word arrays \fBr\fR and \fBtmp\fR.
  308. .PP
  309. bn_mul_low_recursive(\fBr\fR, \fBa\fR, \fBb\fR, \fBn2\fR, \fBtmp\fR) operates on the
  310. \&\fBn2\fR word arrays \fBr\fR and \fBtmp\fR and the \fBn2\fR/2 word arrays \fBa\fR
  311. and \fBb\fR.
  312. .PP
  313. bn_mul_high(\fBr\fR, \fBa\fR, \fBb\fR, \fBl\fR, \fBn2\fR, \fBtmp\fR) operates on the
  314. \&\fBn2\fR word arrays \fBr\fR, \fBa\fR, \fBb\fR and \fBl\fR (?) and the 3*\fBn2\fR word
  315. array \fBtmp\fR.
  316. .PP
  317. \&\fIBN_mul()\fR calls \fIbn_mul_normal()\fR, or an optimized implementation if the
  318. factors have the same size: \fIbn_mul_comba8()\fR is used if they are 8
  319. words long, \fIbn_mul_recursive()\fR if they are larger than
  320. \&\fB\s-1BN_MULL_SIZE_NORMAL\s0\fR and the size is an exact multiple of the word
  321. size, and \fIbn_mul_part_recursive()\fR for others that are larger than
  322. \&\fB\s-1BN_MULL_SIZE_NORMAL\s0\fR.
  323. .PP
  324. bn_sqr_normal(\fBr\fR, \fBa\fR, \fBn\fR, \fBtmp\fR) operates on the \fBn\fR word array
  325. \&\fBa\fR and the 2*\fBn\fR word arrays \fBtmp\fR and \fBr\fR.
  326. .PP
  327. The implementations use the following macros which, depending on the
  328. architecture, may use \*(L"long long\*(R" C operations or inline assembler.
  329. They are defined in \f(CW\*(C`bn_lcl.h\*(C'\fR.
  330. .PP
  331. mul(\fBr\fR, \fBa\fR, \fBw\fR, \fBc\fR) computes \fBw\fR*\fBa\fR+\fBc\fR and places the
  332. low word of the result in \fBr\fR and the high word in \fBc\fR.
  333. .PP
  334. mul_add(\fBr\fR, \fBa\fR, \fBw\fR, \fBc\fR) computes \fBw\fR*\fBa\fR+\fBr\fR+\fBc\fR and
  335. places the low word of the result in \fBr\fR and the high word in \fBc\fR.
  336. .PP
  337. sqr(\fBr0\fR, \fBr1\fR, \fBa\fR) computes \fBa\fR*\fBa\fR and places the low word
  338. of the result in \fBr0\fR and the high word in \fBr1\fR.
  339. .SS "Size changes"
  340. .IX Subsection "Size changes"
  341. \&\fIbn_expand()\fR ensures that \fBb\fR has enough space for a \fBbits\fR bit
  342. number. \fIbn_wexpand()\fR ensures that \fBb\fR has enough space for an
  343. \&\fBn\fR word number. If the number has to be expanded, both macros
  344. call \fIbn_expand2()\fR, which allocates a new \fBd\fR array and copies the
  345. data. They return \fB\s-1NULL\s0\fR on error, \fBb\fR otherwise.
  346. .PP
  347. The \fIbn_fix_top()\fR macro reduces \fBa\->top\fR to point to the most
  348. significant non-zero word plus one when \fBa\fR has shrunk.
  349. .SS "Debugging"
  350. .IX Subsection "Debugging"
  351. \&\fIbn_check_top()\fR verifies that \f(CW\*(C`((a)\->top >= 0 && (a)\->top
  352. <= (a)\->dmax)\*(C'\fR. A violation will cause the program to abort.
  353. .PP
  354. \&\fIbn_print()\fR prints \fBa\fR to stderr. \fIbn_dump()\fR prints \fBn\fR words at \fBd\fR
  355. (in reverse order, i.e. most significant word first) to stderr.
  356. .PP
  357. \&\fIbn_set_max()\fR makes \fBa\fR a static number with a \fBdmax\fR of its current size.
  358. This is used by \fIbn_set_low()\fR and \fIbn_set_high()\fR to make \fBr\fR a read-only
  359. \&\fB\s-1BIGNUM\s0\fR that contains the \fBn\fR low or high words of \fBa\fR.
  360. .PP
  361. If \fB\s-1BN_DEBUG\s0\fR is not defined, \fIbn_check_top()\fR, \fIbn_print()\fR, \fIbn_dump()\fR
  362. and \fIbn_set_max()\fR are defined as empty macros.
  363. .SH "SEE ALSO"
  364. .IX Header "SEE ALSO"
  365. \&\fIbn\fR\|(3)