EVP_SealInit.3 7.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212
  1. .\" Automatically generated by Pod::Man 4.09 (Pod::Simple 3.35)
  2. .\"
  3. .\" Standard preamble:
  4. .\" ========================================================================
  5. .de Sp \" Vertical space (when we can't use .PP)
  6. .if t .sp .5v
  7. .if n .sp
  8. ..
  9. .de Vb \" Begin verbatim text
  10. .ft CW
  11. .nf
  12. .ne \\$1
  13. ..
  14. .de Ve \" End verbatim text
  15. .ft R
  16. .fi
  17. ..
  18. .\" Set up some character translations and predefined strings. \*(-- will
  19. .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
  20. .\" double quote, and \*(R" will give a right double quote. \*(C+ will
  21. .\" give a nicer C++. Capital omega is used to do unbreakable dashes and
  22. .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
  23. .\" nothing in troff, for use with C<>.
  24. .tr \(*W-
  25. .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
  26. .ie n \{\
  27. . ds -- \(*W-
  28. . ds PI pi
  29. . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
  30. . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
  31. . ds L" ""
  32. . ds R" ""
  33. . ds C` ""
  34. . ds C' ""
  35. 'br\}
  36. .el\{\
  37. . ds -- \|\(em\|
  38. . ds PI \(*p
  39. . ds L" ``
  40. . ds R" ''
  41. . ds C`
  42. . ds C'
  43. 'br\}
  44. .\"
  45. .\" Escape single quotes in literal strings from groff's Unicode transform.
  46. .ie \n(.g .ds Aq \(aq
  47. .el .ds Aq '
  48. .\"
  49. .\" If the F register is >0, we'll generate index entries on stderr for
  50. .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
  51. .\" entries marked with X<> in POD. Of course, you'll have to process the
  52. .\" output yourself in some meaningful fashion.
  53. .\"
  54. .\" Avoid warning from groff about undefined register 'F'.
  55. .de IX
  56. ..
  57. .if !\nF .nr F 0
  58. .if \nF>0 \{\
  59. . de IX
  60. . tm Index:\\$1\t\\n%\t"\\$2"
  61. ..
  62. . if !\nF==2 \{\
  63. . nr % 0
  64. . nr F 2
  65. . \}
  66. .\}
  67. .\"
  68. .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
  69. .\" Fear. Run. Save yourself. No user-serviceable parts.
  70. . \" fudge factors for nroff and troff
  71. .if n \{\
  72. . ds #H 0
  73. . ds #V .8m
  74. . ds #F .3m
  75. . ds #[ \f1
  76. . ds #] \fP
  77. .\}
  78. .if t \{\
  79. . ds #H ((1u-(\\\\n(.fu%2u))*.13m)
  80. . ds #V .6m
  81. . ds #F 0
  82. . ds #[ \&
  83. . ds #] \&
  84. .\}
  85. . \" simple accents for nroff and troff
  86. .if n \{\
  87. . ds ' \&
  88. . ds ` \&
  89. . ds ^ \&
  90. . ds , \&
  91. . ds ~ ~
  92. . ds /
  93. .\}
  94. .if t \{\
  95. . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
  96. . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
  97. . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
  98. . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
  99. . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
  100. . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
  101. .\}
  102. . \" troff and (daisy-wheel) nroff accents
  103. .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
  104. .ds 8 \h'\*(#H'\(*b\h'-\*(#H'
  105. .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
  106. .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
  107. .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
  108. .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
  109. .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
  110. .ds ae a\h'-(\w'a'u*4/10)'e
  111. .ds Ae A\h'-(\w'A'u*4/10)'E
  112. . \" corrections for vroff
  113. .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
  114. .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
  115. . \" for low resolution devices (crt and lpr)
  116. .if \n(.H>23 .if \n(.V>19 \
  117. \{\
  118. . ds : e
  119. . ds 8 ss
  120. . ds o a
  121. . ds d- d\h'-1'\(ga
  122. . ds D- D\h'-1'\(hy
  123. . ds th \o'bp'
  124. . ds Th \o'LP'
  125. . ds ae ae
  126. . ds Ae AE
  127. .\}
  128. .rm #[ #] #H #V #F C
  129. .\" ========================================================================
  130. .\"
  131. .IX Title "EVP_SealInit 3"
  132. .TH EVP_SealInit 3 "2019-09-12" "1.0.2g" "OpenSSL"
  133. .\" For nroff, turn off justification. Always turn off hyphenation; it makes
  134. .\" way too many mistakes in technical documents.
  135. .if n .ad l
  136. .nh
  137. .SH "NAME"
  138. EVP_SealInit, EVP_SealUpdate, EVP_SealFinal \- EVP envelope encryption
  139. .SH "SYNOPSIS"
  140. .IX Header "SYNOPSIS"
  141. .Vb 1
  142. \& #include <openssl/evp.h>
  143. \&
  144. \& int EVP_SealInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
  145. \& unsigned char **ek, int *ekl, unsigned char *iv,
  146. \& EVP_PKEY **pubk, int npubk);
  147. \& int EVP_SealUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
  148. \& int *outl, unsigned char *in, int inl);
  149. \& int EVP_SealFinal(EVP_CIPHER_CTX *ctx, unsigned char *out,
  150. \& int *outl);
  151. .Ve
  152. .SH "DESCRIPTION"
  153. .IX Header "DESCRIPTION"
  154. The \s-1EVP\s0 envelope routines are a high level interface to envelope
  155. encryption. They generate a random key and \s-1IV\s0 (if required) then
  156. \&\*(L"envelope\*(R" it by using public key encryption. Data can then be
  157. encrypted using this key.
  158. .PP
  159. \&\fIEVP_SealInit()\fR initializes a cipher context \fBctx\fR for encryption
  160. with cipher \fBtype\fR using a random secret key and \s-1IV.\s0 \fBtype\fR is normally
  161. supplied by a function such as \fIEVP_aes_256_cbc()\fR. The secret key is encrypted
  162. using one or more public keys, this allows the same encrypted data to be
  163. decrypted using any of the corresponding private keys. \fBek\fR is an array of
  164. buffers where the public key encrypted secret key will be written, each buffer
  165. must contain enough room for the corresponding encrypted key: that is
  166. \&\fBek[i]\fR must have room for \fBEVP_PKEY_size(pubk[i])\fR bytes. The actual
  167. size of each encrypted secret key is written to the array \fBekl\fR. \fBpubk\fR is
  168. an array of \fBnpubk\fR public keys.
  169. .PP
  170. The \fBiv\fR parameter is a buffer where the generated \s-1IV\s0 is written to. It must
  171. contain enough room for the corresponding cipher's \s-1IV,\s0 as determined by (for
  172. example) EVP_CIPHER_iv_length(type).
  173. .PP
  174. If the cipher does not require an \s-1IV\s0 then the \fBiv\fR parameter is ignored
  175. and can be \fB\s-1NULL\s0\fR.
  176. .PP
  177. \&\fIEVP_SealUpdate()\fR and \fIEVP_SealFinal()\fR have exactly the same properties
  178. as the \fIEVP_EncryptUpdate()\fR and \fIEVP_EncryptFinal()\fR routines, as
  179. documented on the \fIEVP_EncryptInit\fR\|(3) manual
  180. page.
  181. .SH "RETURN VALUES"
  182. .IX Header "RETURN VALUES"
  183. \&\fIEVP_SealInit()\fR returns 0 on error or \fBnpubk\fR if successful.
  184. .PP
  185. \&\fIEVP_SealUpdate()\fR and \fIEVP_SealFinal()\fR return 1 for success and 0 for
  186. failure.
  187. .SH "NOTES"
  188. .IX Header "NOTES"
  189. Because a random secret key is generated the random number generator
  190. must be seeded before calling \fIEVP_SealInit()\fR.
  191. .PP
  192. The public key must be \s-1RSA\s0 because it is the only OpenSSL public key
  193. algorithm that supports key transport.
  194. .PP
  195. Envelope encryption is the usual method of using public key encryption
  196. on large amounts of data, this is because public key encryption is slow
  197. but symmetric encryption is fast. So symmetric encryption is used for
  198. bulk encryption and the small random symmetric key used is transferred
  199. using public key encryption.
  200. .PP
  201. It is possible to call \fIEVP_SealInit()\fR twice in the same way as
  202. \&\fIEVP_EncryptInit()\fR. The first call should have \fBnpubk\fR set to 0
  203. and (after setting any cipher parameters) it should be called again
  204. with \fBtype\fR set to \s-1NULL.\s0
  205. .SH "SEE ALSO"
  206. .IX Header "SEE ALSO"
  207. \&\fIevp\fR\|(3), \fIrand\fR\|(3),
  208. \&\fIEVP_EncryptInit\fR\|(3),
  209. \&\fIEVP_OpenInit\fR\|(3)
  210. .SH "HISTORY"
  211. .IX Header "HISTORY"
  212. \&\fIEVP_SealFinal()\fR did not return a value before OpenSSL 0.9.7.