123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212 |
- .\" Automatically generated by Pod::Man 4.09 (Pod::Simple 3.35)
- .\"
- .\" Standard preamble:
- .\" ========================================================================
- .de Sp \" Vertical space (when we can't use .PP)
- .if t .sp .5v
- .if n .sp
- ..
- .de Vb \" Begin verbatim text
- .ft CW
- .nf
- .ne \\$1
- ..
- .de Ve \" End verbatim text
- .ft R
- .fi
- ..
- .\" Set up some character translations and predefined strings. \*(-- will
- .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
- .\" double quote, and \*(R" will give a right double quote. \*(C+ will
- .\" give a nicer C++. Capital omega is used to do unbreakable dashes and
- .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
- .\" nothing in troff, for use with C<>.
- .tr \(*W-
- .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
- .ie n \{\
- . ds -- \(*W-
- . ds PI pi
- . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
- . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
- . ds L" ""
- . ds R" ""
- . ds C` ""
- . ds C' ""
- 'br\}
- .el\{\
- . ds -- \|\(em\|
- . ds PI \(*p
- . ds L" ``
- . ds R" ''
- . ds C`
- . ds C'
- 'br\}
- .\"
- .\" Escape single quotes in literal strings from groff's Unicode transform.
- .ie \n(.g .ds Aq \(aq
- .el .ds Aq '
- .\"
- .\" If the F register is >0, we'll generate index entries on stderr for
- .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
- .\" entries marked with X<> in POD. Of course, you'll have to process the
- .\" output yourself in some meaningful fashion.
- .\"
- .\" Avoid warning from groff about undefined register 'F'.
- .de IX
- ..
- .if !\nF .nr F 0
- .if \nF>0 \{\
- . de IX
- . tm Index:\\$1\t\\n%\t"\\$2"
- ..
- . if !\nF==2 \{\
- . nr % 0
- . nr F 2
- . \}
- .\}
- .\"
- .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
- .\" Fear. Run. Save yourself. No user-serviceable parts.
- . \" fudge factors for nroff and troff
- .if n \{\
- . ds #H 0
- . ds #V .8m
- . ds #F .3m
- . ds #[ \f1
- . ds #] \fP
- .\}
- .if t \{\
- . ds #H ((1u-(\\\\n(.fu%2u))*.13m)
- . ds #V .6m
- . ds #F 0
- . ds #[ \&
- . ds #] \&
- .\}
- . \" simple accents for nroff and troff
- .if n \{\
- . ds ' \&
- . ds ` \&
- . ds ^ \&
- . ds , \&
- . ds ~ ~
- . ds /
- .\}
- .if t \{\
- . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
- . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
- . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
- . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
- . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
- . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
- .\}
- . \" troff and (daisy-wheel) nroff accents
- .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
- .ds 8 \h'\*(#H'\(*b\h'-\*(#H'
- .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
- .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
- .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
- .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
- .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
- .ds ae a\h'-(\w'a'u*4/10)'e
- .ds Ae A\h'-(\w'A'u*4/10)'E
- . \" corrections for vroff
- .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
- .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
- . \" for low resolution devices (crt and lpr)
- .if \n(.H>23 .if \n(.V>19 \
- \{\
- . ds : e
- . ds 8 ss
- . ds o a
- . ds d- d\h'-1'\(ga
- . ds D- D\h'-1'\(hy
- . ds th \o'bp'
- . ds Th \o'LP'
- . ds ae ae
- . ds Ae AE
- .\}
- .rm #[ #] #H #V #F C
- .\" ========================================================================
- .\"
- .IX Title "EVP_SealInit 3"
- .TH EVP_SealInit 3 "2019-09-12" "1.0.2g" "OpenSSL"
- .\" For nroff, turn off justification. Always turn off hyphenation; it makes
- .\" way too many mistakes in technical documents.
- .if n .ad l
- .nh
- .SH "NAME"
- EVP_SealInit, EVP_SealUpdate, EVP_SealFinal \- EVP envelope encryption
- .SH "SYNOPSIS"
- .IX Header "SYNOPSIS"
- .Vb 1
- \& #include <openssl/evp.h>
- \&
- \& int EVP_SealInit(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *type,
- \& unsigned char **ek, int *ekl, unsigned char *iv,
- \& EVP_PKEY **pubk, int npubk);
- \& int EVP_SealUpdate(EVP_CIPHER_CTX *ctx, unsigned char *out,
- \& int *outl, unsigned char *in, int inl);
- \& int EVP_SealFinal(EVP_CIPHER_CTX *ctx, unsigned char *out,
- \& int *outl);
- .Ve
- .SH "DESCRIPTION"
- .IX Header "DESCRIPTION"
- The \s-1EVP\s0 envelope routines are a high level interface to envelope
- encryption. They generate a random key and \s-1IV\s0 (if required) then
- \&\*(L"envelope\*(R" it by using public key encryption. Data can then be
- encrypted using this key.
- .PP
- \&\fIEVP_SealInit()\fR initializes a cipher context \fBctx\fR for encryption
- with cipher \fBtype\fR using a random secret key and \s-1IV.\s0 \fBtype\fR is normally
- supplied by a function such as \fIEVP_aes_256_cbc()\fR. The secret key is encrypted
- using one or more public keys, this allows the same encrypted data to be
- decrypted using any of the corresponding private keys. \fBek\fR is an array of
- buffers where the public key encrypted secret key will be written, each buffer
- must contain enough room for the corresponding encrypted key: that is
- \&\fBek[i]\fR must have room for \fBEVP_PKEY_size(pubk[i])\fR bytes. The actual
- size of each encrypted secret key is written to the array \fBekl\fR. \fBpubk\fR is
- an array of \fBnpubk\fR public keys.
- .PP
- The \fBiv\fR parameter is a buffer where the generated \s-1IV\s0 is written to. It must
- contain enough room for the corresponding cipher's \s-1IV,\s0 as determined by (for
- example) EVP_CIPHER_iv_length(type).
- .PP
- If the cipher does not require an \s-1IV\s0 then the \fBiv\fR parameter is ignored
- and can be \fB\s-1NULL\s0\fR.
- .PP
- \&\fIEVP_SealUpdate()\fR and \fIEVP_SealFinal()\fR have exactly the same properties
- as the \fIEVP_EncryptUpdate()\fR and \fIEVP_EncryptFinal()\fR routines, as
- documented on the \fIEVP_EncryptInit\fR\|(3) manual
- page.
- .SH "RETURN VALUES"
- .IX Header "RETURN VALUES"
- \&\fIEVP_SealInit()\fR returns 0 on error or \fBnpubk\fR if successful.
- .PP
- \&\fIEVP_SealUpdate()\fR and \fIEVP_SealFinal()\fR return 1 for success and 0 for
- failure.
- .SH "NOTES"
- .IX Header "NOTES"
- Because a random secret key is generated the random number generator
- must be seeded before calling \fIEVP_SealInit()\fR.
- .PP
- The public key must be \s-1RSA\s0 because it is the only OpenSSL public key
- algorithm that supports key transport.
- .PP
- Envelope encryption is the usual method of using public key encryption
- on large amounts of data, this is because public key encryption is slow
- but symmetric encryption is fast. So symmetric encryption is used for
- bulk encryption and the small random symmetric key used is transferred
- using public key encryption.
- .PP
- It is possible to call \fIEVP_SealInit()\fR twice in the same way as
- \&\fIEVP_EncryptInit()\fR. The first call should have \fBnpubk\fR set to 0
- and (after setting any cipher parameters) it should be called again
- with \fBtype\fR set to \s-1NULL.\s0
- .SH "SEE ALSO"
- .IX Header "SEE ALSO"
- \&\fIevp\fR\|(3), \fIrand\fR\|(3),
- \&\fIEVP_EncryptInit\fR\|(3),
- \&\fIEVP_OpenInit\fR\|(3)
- .SH "HISTORY"
- .IX Header "HISTORY"
- \&\fIEVP_SealFinal()\fR did not return a value before OpenSSL 0.9.7.
|