BN_add.3 8.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254
  1. .\" Automatically generated by Pod::Man 4.09 (Pod::Simple 3.35)
  2. .\"
  3. .\" Standard preamble:
  4. .\" ========================================================================
  5. .de Sp \" Vertical space (when we can't use .PP)
  6. .if t .sp .5v
  7. .if n .sp
  8. ..
  9. .de Vb \" Begin verbatim text
  10. .ft CW
  11. .nf
  12. .ne \\$1
  13. ..
  14. .de Ve \" End verbatim text
  15. .ft R
  16. .fi
  17. ..
  18. .\" Set up some character translations and predefined strings. \*(-- will
  19. .\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
  20. .\" double quote, and \*(R" will give a right double quote. \*(C+ will
  21. .\" give a nicer C++. Capital omega is used to do unbreakable dashes and
  22. .\" therefore won't be available. \*(C` and \*(C' expand to `' in nroff,
  23. .\" nothing in troff, for use with C<>.
  24. .tr \(*W-
  25. .ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
  26. .ie n \{\
  27. . ds -- \(*W-
  28. . ds PI pi
  29. . if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
  30. . if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
  31. . ds L" ""
  32. . ds R" ""
  33. . ds C` ""
  34. . ds C' ""
  35. 'br\}
  36. .el\{\
  37. . ds -- \|\(em\|
  38. . ds PI \(*p
  39. . ds L" ``
  40. . ds R" ''
  41. . ds C`
  42. . ds C'
  43. 'br\}
  44. .\"
  45. .\" Escape single quotes in literal strings from groff's Unicode transform.
  46. .ie \n(.g .ds Aq \(aq
  47. .el .ds Aq '
  48. .\"
  49. .\" If the F register is >0, we'll generate index entries on stderr for
  50. .\" titles (.TH), headers (.SH), subsections (.SS), items (.Ip), and index
  51. .\" entries marked with X<> in POD. Of course, you'll have to process the
  52. .\" output yourself in some meaningful fashion.
  53. .\"
  54. .\" Avoid warning from groff about undefined register 'F'.
  55. .de IX
  56. ..
  57. .if !\nF .nr F 0
  58. .if \nF>0 \{\
  59. . de IX
  60. . tm Index:\\$1\t\\n%\t"\\$2"
  61. ..
  62. . if !\nF==2 \{\
  63. . nr % 0
  64. . nr F 2
  65. . \}
  66. .\}
  67. .\"
  68. .\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
  69. .\" Fear. Run. Save yourself. No user-serviceable parts.
  70. . \" fudge factors for nroff and troff
  71. .if n \{\
  72. . ds #H 0
  73. . ds #V .8m
  74. . ds #F .3m
  75. . ds #[ \f1
  76. . ds #] \fP
  77. .\}
  78. .if t \{\
  79. . ds #H ((1u-(\\\\n(.fu%2u))*.13m)
  80. . ds #V .6m
  81. . ds #F 0
  82. . ds #[ \&
  83. . ds #] \&
  84. .\}
  85. . \" simple accents for nroff and troff
  86. .if n \{\
  87. . ds ' \&
  88. . ds ` \&
  89. . ds ^ \&
  90. . ds , \&
  91. . ds ~ ~
  92. . ds /
  93. .\}
  94. .if t \{\
  95. . ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
  96. . ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
  97. . ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
  98. . ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
  99. . ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
  100. . ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
  101. .\}
  102. . \" troff and (daisy-wheel) nroff accents
  103. .ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
  104. .ds 8 \h'\*(#H'\(*b\h'-\*(#H'
  105. .ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
  106. .ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
  107. .ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
  108. .ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
  109. .ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
  110. .ds ae a\h'-(\w'a'u*4/10)'e
  111. .ds Ae A\h'-(\w'A'u*4/10)'E
  112. . \" corrections for vroff
  113. .if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
  114. .if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
  115. . \" for low resolution devices (crt and lpr)
  116. .if \n(.H>23 .if \n(.V>19 \
  117. \{\
  118. . ds : e
  119. . ds 8 ss
  120. . ds o a
  121. . ds d- d\h'-1'\(ga
  122. . ds D- D\h'-1'\(hy
  123. . ds th \o'bp'
  124. . ds Th \o'LP'
  125. . ds ae ae
  126. . ds Ae AE
  127. .\}
  128. .rm #[ #] #H #V #F C
  129. .\" ========================================================================
  130. .\"
  131. .IX Title "BN_add 3"
  132. .TH BN_add 3 "2019-09-12" "1.0.2g" "OpenSSL"
  133. .\" For nroff, turn off justification. Always turn off hyphenation; it makes
  134. .\" way too many mistakes in technical documents.
  135. .if n .ad l
  136. .nh
  137. .SH "NAME"
  138. BN_add, BN_sub, BN_mul, BN_sqr, BN_div, BN_mod, BN_nnmod, BN_mod_add,
  139. BN_mod_sub, BN_mod_mul, BN_mod_sqr, BN_exp, BN_mod_exp, BN_gcd \-
  140. arithmetic operations on BIGNUMs
  141. .SH "SYNOPSIS"
  142. .IX Header "SYNOPSIS"
  143. .Vb 1
  144. \& #include <openssl/bn.h>
  145. \&
  146. \& int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
  147. \&
  148. \& int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
  149. \&
  150. \& int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
  151. \&
  152. \& int BN_sqr(BIGNUM *r, BIGNUM *a, BN_CTX *ctx);
  153. \&
  154. \& int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *a, const BIGNUM *d,
  155. \& BN_CTX *ctx);
  156. \&
  157. \& int BN_mod(BIGNUM *rem, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
  158. \&
  159. \& int BN_nnmod(BIGNUM *r, const BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
  160. \&
  161. \& int BN_mod_add(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
  162. \& BN_CTX *ctx);
  163. \&
  164. \& int BN_mod_sub(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
  165. \& BN_CTX *ctx);
  166. \&
  167. \& int BN_mod_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, const BIGNUM *m,
  168. \& BN_CTX *ctx);
  169. \&
  170. \& int BN_mod_sqr(BIGNUM *r, BIGNUM *a, const BIGNUM *m, BN_CTX *ctx);
  171. \&
  172. \& int BN_exp(BIGNUM *r, BIGNUM *a, BIGNUM *p, BN_CTX *ctx);
  173. \&
  174. \& int BN_mod_exp(BIGNUM *r, BIGNUM *a, const BIGNUM *p,
  175. \& const BIGNUM *m, BN_CTX *ctx);
  176. \&
  177. \& int BN_gcd(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
  178. .Ve
  179. .SH "DESCRIPTION"
  180. .IX Header "DESCRIPTION"
  181. \&\fIBN_add()\fR adds \fIa\fR and \fIb\fR and places the result in \fIr\fR (\f(CW\*(C`r=a+b\*(C'\fR).
  182. \&\fIr\fR may be the same \fB\s-1BIGNUM\s0\fR as \fIa\fR or \fIb\fR.
  183. .PP
  184. \&\fIBN_sub()\fR subtracts \fIb\fR from \fIa\fR and places the result in \fIr\fR (\f(CW\*(C`r=a\-b\*(C'\fR).
  185. .PP
  186. \&\fIBN_mul()\fR multiplies \fIa\fR and \fIb\fR and places the result in \fIr\fR (\f(CW\*(C`r=a*b\*(C'\fR).
  187. \&\fIr\fR may be the same \fB\s-1BIGNUM\s0\fR as \fIa\fR or \fIb\fR.
  188. For multiplication by powers of 2, use \fIBN_lshift\fR\|(3).
  189. .PP
  190. \&\fIBN_sqr()\fR takes the square of \fIa\fR and places the result in \fIr\fR
  191. (\f(CW\*(C`r=a^2\*(C'\fR). \fIr\fR and \fIa\fR may be the same \fB\s-1BIGNUM\s0\fR.
  192. This function is faster than BN_mul(r,a,a).
  193. .PP
  194. \&\fIBN_div()\fR divides \fIa\fR by \fId\fR and places the result in \fIdv\fR and the
  195. remainder in \fIrem\fR (\f(CW\*(C`dv=a/d, rem=a%d\*(C'\fR). Either of \fIdv\fR and \fIrem\fR may
  196. be \fB\s-1NULL\s0\fR, in which case the respective value is not returned.
  197. The result is rounded towards zero; thus if \fIa\fR is negative, the
  198. remainder will be zero or negative.
  199. For division by powers of 2, use \fIBN_rshift\fR\|(3).
  200. .PP
  201. \&\fIBN_mod()\fR corresponds to \fIBN_div()\fR with \fIdv\fR set to \fB\s-1NULL\s0\fR.
  202. .PP
  203. \&\fIBN_nnmod()\fR reduces \fIa\fR modulo \fIm\fR and places the non-negative
  204. remainder in \fIr\fR.
  205. .PP
  206. \&\fIBN_mod_add()\fR adds \fIa\fR to \fIb\fR modulo \fIm\fR and places the non-negative
  207. result in \fIr\fR.
  208. .PP
  209. \&\fIBN_mod_sub()\fR subtracts \fIb\fR from \fIa\fR modulo \fIm\fR and places the
  210. non-negative result in \fIr\fR.
  211. .PP
  212. \&\fIBN_mod_mul()\fR multiplies \fIa\fR by \fIb\fR and finds the non-negative
  213. remainder respective to modulus \fIm\fR (\f(CW\*(C`r=(a*b) mod m\*(C'\fR). \fIr\fR may be
  214. the same \fB\s-1BIGNUM\s0\fR as \fIa\fR or \fIb\fR. For more efficient algorithms for
  215. repeated computations using the same modulus, see
  216. \&\fIBN_mod_mul_montgomery\fR\|(3) and
  217. \&\fIBN_mod_mul_reciprocal\fR\|(3).
  218. .PP
  219. \&\fIBN_mod_sqr()\fR takes the square of \fIa\fR modulo \fBm\fR and places the
  220. result in \fIr\fR.
  221. .PP
  222. \&\fIBN_exp()\fR raises \fIa\fR to the \fIp\fR\-th power and places the result in \fIr\fR
  223. (\f(CW\*(C`r=a^p\*(C'\fR). This function is faster than repeated applications of
  224. \&\fIBN_mul()\fR.
  225. .PP
  226. \&\fIBN_mod_exp()\fR computes \fIa\fR to the \fIp\fR\-th power modulo \fIm\fR (\f(CW\*(C`r=a^p %
  227. m\*(C'\fR). This function uses less time and space than \fIBN_exp()\fR.
  228. .PP
  229. \&\fIBN_gcd()\fR computes the greatest common divisor of \fIa\fR and \fIb\fR and
  230. places the result in \fIr\fR. \fIr\fR may be the same \fB\s-1BIGNUM\s0\fR as \fIa\fR or
  231. \&\fIb\fR.
  232. .PP
  233. For all functions, \fIctx\fR is a previously allocated \fB\s-1BN_CTX\s0\fR used for
  234. temporary variables; see \fIBN_CTX_new\fR\|(3).
  235. .PP
  236. Unless noted otherwise, the result \fB\s-1BIGNUM\s0\fR must be different from
  237. the arguments.
  238. .SH "RETURN VALUES"
  239. .IX Header "RETURN VALUES"
  240. For all functions, 1 is returned for success, 0 on error. The return
  241. value should always be checked (e.g., \f(CW\*(C`if (!BN_add(r,a,b)) goto err;\*(C'\fR).
  242. The error codes can be obtained by \fIERR_get_error\fR\|(3).
  243. .SH "SEE ALSO"
  244. .IX Header "SEE ALSO"
  245. \&\fIbn\fR\|(3), \fIERR_get_error\fR\|(3), \fIBN_CTX_new\fR\|(3),
  246. \&\fIBN_add_word\fR\|(3), \fIBN_set_bit\fR\|(3)
  247. .SH "HISTORY"
  248. .IX Header "HISTORY"
  249. \&\fIBN_add()\fR, \fIBN_sub()\fR, \fIBN_sqr()\fR, \fIBN_div()\fR, \fIBN_mod()\fR, \fIBN_mod_mul()\fR,
  250. \&\fIBN_mod_exp()\fR and \fIBN_gcd()\fR are available in all versions of SSLeay and
  251. OpenSSL. The \fIctx\fR argument to \fIBN_mul()\fR was added in SSLeay
  252. 0.9.1b. \fIBN_exp()\fR appeared in SSLeay 0.9.0.
  253. \&\fIBN_nnmod()\fR, \fIBN_mod_add()\fR, \fIBN_mod_sub()\fR, and \fIBN_mod_sqr()\fR were added in
  254. OpenSSL 0.9.7.