/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_DNN_DNN_BLOB_INL_HPP__ #define __OPENCV_DNN_DNN_BLOB_INL_HPP__ #include "blob.hpp" namespace cv { namespace dnn { inline BlobShape::BlobShape(int ndims, int fill) : sz( (size_t)std::max(ndims, 0) ) { CV_Assert(ndims >= 0); for (int i = 0; i < ndims; i++) sz[i] = fill; } inline BlobShape::BlobShape(int ndims, const int *sizes) : sz( (size_t)std::max(ndims, 0) ) { CV_Assert(ndims >= 0); for (int i = 0; i < ndims; i++) sz[i] = sizes[i]; } inline BlobShape::BlobShape(int num, int cn, int rows, int cols) : sz(4) { sz[0] = num; sz[1] = cn; sz[2] = rows; sz[3] = cols; } inline BlobShape::BlobShape(const std::vector &sizes) : sz( sizes.size() ) { for (int i = 0; i < (int)sizes.size(); i++) sz[i] = sizes[i]; } template inline BlobShape::BlobShape(const Vec &shape) : sz(n) { for (int i = 0; i < n; i++) sz[i] = shape[i]; } inline int BlobShape::dims() const { return (int)sz.size(); } inline int BlobShape::xsize(int axis) const { if (axis < -dims() || axis >= dims()) return 1; return sz[(axis < 0) ? axis + dims() : axis]; } inline int BlobShape::size(int axis) const { CV_Assert(-dims() <= axis && axis < dims()); return sz[(axis < 0) ? axis + dims() : axis]; } inline int &BlobShape::size(int axis) { CV_Assert(-dims() <= axis && axis < dims()); return sz[(axis < 0) ? axis + dims() : axis]; } inline int BlobShape::operator[] (int axis) const { CV_Assert(-dims() <= axis && axis < dims()); return sz[(axis < 0) ? axis + dims() : axis]; } inline int &BlobShape::operator[] (int axis) { CV_Assert(-dims() <= axis && axis < dims()); return sz[(axis < 0) ? axis + dims() : axis]; } inline ptrdiff_t BlobShape::total() { if (dims() == 0) return 0; ptrdiff_t res = 1; for (int i = 0; i < dims(); i++) res *= sz[i]; return res; } inline const int *BlobShape::ptr() const { return sz; } inline bool BlobShape::equal(const BlobShape &other) const { if (this->dims() != other.dims()) return false; for (int i = 0; i < other.dims(); i++) { if (sz[i] != other.sz[i]) return false; } return true; } inline bool BlobShape::operator==(const BlobShape &r) const { return this->equal(r); } CV_EXPORTS std::ostream &operator<< (std::ostream &stream, const BlobShape &shape); ///////////////////////////////////////////////////////////////////// inline int Blob::canonicalAxis(int axis) const { CV_Assert(-dims() <= axis && axis < dims()); return (axis < 0) ? axis + dims() : axis; } inline int Blob::dims() const { return m.dims; } inline int Blob::xsize(int axis) const { if (axis < -dims() || axis >= dims()) return 1; return sizes()[(axis < 0) ? axis + dims() : axis]; } inline int Blob::size(int axis) const { CV_Assert(-dims() <= axis && axis < dims()); return sizes()[(axis < 0) ? axis + dims() : axis]; } inline size_t Blob::total(int startAxis, int endAxis) const { if (startAxis < 0) startAxis += dims(); if (endAxis == INT_MAX) endAxis = dims(); else if (endAxis < 0) endAxis += dims(); CV_Assert(0 <= startAxis && startAxis <= endAxis && endAxis <= dims()); size_t size = 1; //fix: assume that slice isn't empty for (int i = startAxis; i < endAxis; i++) size *= (size_t)sizes()[i]; return size; } template inline size_t Blob::offset(const Vec &pos) const { size_t ofs = 0; int i; for (i = 0; i < std::min(n, dims()); i++) { CV_DbgAssert(pos[i] >= 0 && pos[i] < size(i)); ofs = ofs * (size_t)size(i) + pos[i]; } for (; i < dims(); i++) ofs *= (size_t)size(i); return ofs; } inline size_t Blob::offset(int n, int cn, int row, int col) const { return offset(Vec4i(n, cn, row, col)); } inline float *Blob::ptrf(int n, int cn, int row, int col) { CV_Assert(type() == CV_32F); return (float*)m.data + offset(n, cn, row, col); } inline uchar *Blob::ptr(int n, int cn, int row, int col) { return m.data + m.elemSize() * offset(n, cn, row, col); } template inline TFloat* Blob::ptr(int n, int cn, int row, int col) { CV_Assert(type() == cv::DataDepth::value); return (TFloat*) ptr(n, cn, row, col); } inline BlobShape Blob::shape() const { return BlobShape(dims(), sizes()); } inline bool Blob::equalShape(const Blob &other) const { if (this->dims() != other.dims()) return false; for (int i = 0; i < dims(); i++) { if (this->sizes()[i] != other.sizes()[i]) return false; } return true; } inline Mat& Blob::matRef() { return m; } inline const Mat& Blob::matRefConst() const { return m; } inline UMat &Blob::umatRef() { CV_Error(Error::StsNotImplemented, ""); return *(new UMat()); } inline const UMat &Blob::umatRefConst() const { CV_Error(Error::StsNotImplemented, ""); return *(new UMat()); } inline Mat Blob::getPlane(int n, int cn) { CV_Assert(dims() > 2); return Mat(dims() - 2, sizes() + 2, type(), ptr(n, cn)); } inline int Blob::cols() const { return xsize(3); } inline int Blob::rows() const { return xsize(2); } inline int Blob::channels() const { return xsize(1); } inline int Blob::num() const { return xsize(0); } inline Size Blob::size2() const { return Size(cols(), rows()); } inline int Blob::type() const { return m.depth(); } inline const int * Blob::sizes() const { return &m.size[0]; } inline Blob &Blob::shareFrom(const Blob &blob) { this->m = blob.m; return *this; } inline Blob &Blob::reshape(const BlobShape &shape) { m = m.reshape(1, shape.dims(), shape.ptr()); return *this; } } } #endif