/* * internalComm.c * * Created on: 2019年5月7日 * Author: foluswen */ #include /*標準輸入輸出定義*/ #include /*標準函數庫定義*/ #include #include #include #include #include "internalComm.h" #include "../Config.h" //------------------------------------------------------------------------------ int tranceiveRelDelayTime(int fd, uint8_t *cmd, uint8_t cmd_len, uint8_t *rx, uint16_t _delay) { int len; //sleep(2); //required to make flush work, for some reason tcflush(fd, TCIOFLUSH); if (write(fd, cmd, cmd_len) >= cmd_len) { usleep(_delay * 1000); len = read(fd, rx, 512); } else { #ifdef SystemLogMessage DEBUG_ERROR("Serial command %s response fail.\n", cmd); #endif } return len; } int tranceive(int fd, uint8_t *cmd, uint8_t cmd_len, uint8_t *rx) { int len; //sleep(2); //required to make flush work, for some reason tcflush(fd, TCIOFLUSH); if (write(fd, cmd, cmd_len) >= cmd_len) { usleep(15000); len = read(fd, rx, 512); } else { #ifdef SystemLogMessage DEBUG_ERROR("Serial command %s response fail.\n", cmd); #endif } return len; } //------------------------------------------------------------------------------ //===== Query ===== //------------------------------------------------------------------------------ int Query_FW_Ver(uint8_t fd, uint8_t targetAddr, Ver *Ret_Buf) { int result = FAIL; uint8_t tx[7] = {0xaa, 0x00, targetAddr, CMD_QUERY_FW_VER, 0x00, 0x00, 0x00}; uint8_t rx[512]; uint8_t chksum = 0x00; uint8_t len = tranceive(fd, tx, sizeof(tx), rx); // for (int i = 0; i < 7; i++) // printf("tx = %x \n", tx[i]); // for (int i = 0; i < len; i++) // printf("rx = %x \n", rx[i]); if (len > 6) { if (len < 6 + (rx[4] | rx[5] << 8)) { return result; } for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3])) { memcpy(Ret_Buf->Version_FW, (char *)rx + 6, (rx[4] | rx[5] << 8)); *(Ret_Buf->Version_FW + 8) = 0x00; result = PASS; } } return result; } int Query_HW_Ver(uint8_t fd, uint8_t targetAddr, Ver *Ret_Buf) { int result = FAIL; uint8_t tx[7] = {0xaa, 0x00, targetAddr, CMD_QUERY_HW_VER, 0x00, 0x00, 0x00}; uint8_t rx[512]; uint8_t chksum = 0x00; uint8_t len = tranceive(fd, tx, sizeof(tx), rx); if (len > 6) { if (len < 6 + (rx[4] | rx[5] << 8)) { return result; } for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3])) { memcpy(Ret_Buf->Version_HW, (char *)rx + 6, (rx[4] | rx[5] << 8)); *(Ret_Buf->Version_HW + 8) = 0x00; result = PASS; } } return result; } int Query_Present_InputVoltage(uint8_t fd, uint8_t targetAddr, PresentInputVoltage *Ret_Buf) { int result = FAIL; uint8_t tx[7] = {0xaa, 0x00, targetAddr, CMD_QUERY_PRESENT_IN_VOL, 0x00, 0x00, 0x00}; uint8_t rx[512]; uint8_t chksum = 0x00; uint8_t len = tranceive(fd, tx, sizeof(tx), rx); if (len > 13) { if (len < 6 + (rx[4] | rx[5] << 8)) { return result; } for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3]) && chksum != 0) { Ret_Buf->inputType = rx[6]; Ret_Buf->L1N_L12 = (rx[7] | (rx[8] << 8)) / 10.0; Ret_Buf->L2N_L23 = (rx[9] | (rx[10] << 8)) / 10.0; Ret_Buf->L3N_L31 = (rx[11] | (rx[12] << 8)) / 10.0; if (Ret_Buf->L1N_L12 >= 320 || Ret_Buf->L2N_L23 >= 320 || Ret_Buf->L3N_L31 >= 320) { result = FAIL; } else { result = PASS; } } } return result; } int Query_Present_OutputVoltage(uint8_t fd, uint8_t targetAddr, PresentOutputVoltage *Ret_Buf) { int result = FAIL; uint8_t tx[7] = {0xaa, 0x00, targetAddr, CMD_QUERY_PRESENT_OUT_VOL, 0x00, 0x00, 0x00}; uint8_t rx[512]; uint8_t chksum = 0x00; uint8_t len = tranceive(fd, tx, sizeof(tx), rx); if (len > 6) { if (len < 6 + (rx[4] | rx[5] << 8)) { return result; } for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3])) { Ret_Buf->behindFuse_Voltage_C1 = (rx[6] | (rx[7] << 8)); Ret_Buf->behindRelay_Voltage_C1 = (rx[8] | (rx[9] << 8)); if ((rx[4] | rx[5] << 8) > 4) { Ret_Buf->behindFuse_Voltage_C2 = (rx[10] | (rx[11] << 8)); Ret_Buf->behindRelay_Voltage_C2 = (rx[12] | (rx[13] << 8)); } result = PASS; } } return result; } int Query_Fan_Speed(uint8_t fd, uint8_t targetAddr, FanSpeed *Ret_Buf) { int result = FAIL; uint8_t tx[7] = {0xaa, 0x00, targetAddr, CMD_QUERY_FAN_SPEED, 0x00, 0x00, 0x00}; uint8_t rx[512]; uint8_t chksum = 0x00; uint8_t len = tranceive(fd, tx, sizeof(tx), rx); if (len > 6) { if (len < 6 + (rx[4] | rx[5] << 8)) { return result; } for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3])) { for (int idx = 0; idx < 4; idx++) { Ret_Buf->speed[idx] = (rx[6 + (2 * idx)] | (rx[6 + (2 * idx) + 1] << 8)); } result = PASS; } } return result; } int Query_Temperature(uint8_t fd, uint8_t targetAddr, Temperature *Ret_Buf) { int result = FAIL; uint8_t tx[7] = {0xaa, 0x00, targetAddr, CMD_QUERY_TEMPERATURE, 0x00, 0x00, 0x00}; uint8_t rx[512]; uint8_t chksum = 0x00; uint8_t len = tranceive(fd, tx, sizeof(tx), rx); if (len > 6) { if (len < 6 + (rx[4] | rx[5] << 8)) { return result; } for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3])) { for (int idx = 0; idx < 4; idx++) { Ret_Buf->temperature[idx] = rx[6 + idx] - 60; } result = PASS; } } return result; } int Query_Aux_PowerVoltage(uint8_t fd, uint8_t targetAddr, AuxPower *Ret_Buf) { int result = FAIL; uint8_t tx[7] = {0xaa, 0x00, targetAddr, CMD_QUERY_AUX_POWER_VOL, 0x00, 0x00, 0x00}; uint8_t rx[512]; uint8_t chksum = 0x00; uint8_t len = tranceive(fd, tx, sizeof(tx), rx); if (len > 6) { if (len < 6 + (rx[4] | rx[5] << 8)) { return result; } for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3])) { for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { Ret_Buf->voltage[idx] = rx[6 + idx]; } result = PASS; } } return result; } int Query_Relay_Output(uint8_t fd, uint8_t targetAddr, Relay *Ret_Buf) { int result = FAIL; uint8_t tx[7] = {0xaa, 0x00, targetAddr, CMD_QUERY_RELAY_OUTPUT, 0x00, 0x00, 0x00}; uint8_t rx[512]; uint8_t chksum = 0x00; uint8_t len = tranceive(fd, tx, sizeof(tx), rx); // for (int i = 0; i < 7; i++) // printf("tx = %x \n", tx[i]); // for (int i = 0; i < len; i++) // printf("rx = %x \n", rx[i]); if (len > 6) { if (len < 6 + (rx[4] | rx[5] << 8)) { return result; } for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3])) { Ret_Buf->relay_event.bits.AC_Contactor = (rx[6] >> 0) & 0x01; Ret_Buf->relay_event.bits.CCS_Precharge = (rx[6] >> 1) & 0x01; Ret_Buf->relay_event.bits.Gun1_N = (rx[7] >> 0) & 0x01; Ret_Buf->relay_event.bits.Gun1_P = (rx[7] >> 1) & 0x01; Ret_Buf->relay_event.bits.Gun1_Parallel_N = (rx[7] >> 2) & 0x01; Ret_Buf->relay_event.bits.Gun1_Parallel_P = (rx[7] >> 3) & 0x01; Ret_Buf->relay_event.bits.Gun2_N = (rx[8] >> 0) & 0x01; Ret_Buf->relay_event.bits.Gun2_P = (rx[8] >> 1) & 0x01; result = PASS; } } return result; } int Query_Gfd_Adc(uint8_t fd, uint8_t targetAddr, Gfd *Ret_Buf) { int result = FAIL; uint8_t tx[7] = {0xaa, 0x00, targetAddr, CMD_QUERY_GFD_ADC, 0x00, 0x00, 0x00}; uint8_t rx[512]; uint8_t chksum = 0x00; uint8_t len = tranceive(fd, tx, sizeof(tx), rx); // for(int i = 0; i < 7; i++) // printf ("tx = %d \n", tx[i]); if (len > 6) { if (len < 6 + (rx[4] | rx[5] << 8)) { //printf("Query_Gfd_Adc fail \n"); return result; } // for(int i = 0; i < len; i++) // printf ("rx = %d \n", rx[i]); for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3])) { Ret_Buf->Resister_conn1 = (rx[6] | (rx[7] << 8)); Ret_Buf->voltage_conn1 = (rx[8] | (rx[9] << 8)); Ret_Buf->result_conn1 = rx[10]; Ret_Buf->rb_step_1 = rx[11]; Ret_Buf->Resister_conn2 = (rx[12] | (rx[13] << 8)); Ret_Buf->voltage_conn2 = (rx[14] | (rx[15] << 8)); Ret_Buf->result_conn2 = rx[16]; Ret_Buf->rb_step_2 = rx[17]; result = PASS; } } return result; } int Query_Gpio_Input(uint8_t fd, uint8_t targetAddr, Gpio_in *Ret_Buf) { int result = FAIL; uint8_t tx[7] = {0xaa, 0x00, targetAddr, CMD_QUERY_GPIO_IN, 0x00, 0x00, 0x00}; uint8_t rx[512]; uint8_t chksum = 0x00; uint8_t len = tranceive(fd, tx, sizeof(tx), rx); if (len > 6) { if (len < 6 + (rx[4] | rx[5] << 8)) { return result; } for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3])) { Ret_Buf->AC_Connector = (rx[6] >> 0) & 0x01; Ret_Buf->AC_MainBreaker = (rx[6] >> 1) & 0x01; Ret_Buf->SPD = (rx[6] >> 2) & 0x01; Ret_Buf->Door_Open = ((rx[6] >> 3) & 0x01); Ret_Buf->GFD[0] = (rx[6] >> 4) & 0x01; Ret_Buf->GFD[1] = (rx[6] >> 5) & 0x01; Ret_Buf->AC_Drop = (rx[6] >> 6) & 0x01; Ret_Buf->Emergency_IO = (rx[7] >> 0) & 0x01; Ret_Buf->Button_Emergency_Press = (rx[8] >> 0) & 0x01; Ret_Buf->Button_On_Press = (rx[8] >> 1) & 0x01; Ret_Buf->Button_Off_Press = (rx[8] >> 2) & 0x01; Ret_Buf->Key_1_Press = (rx[8] >> 3) & 0x01; Ret_Buf->Key_2_Press = (rx[8] >> 4) & 0x01; Ret_Buf->Key_3_Press = (rx[8] >> 5) & 0x01; Ret_Buf->Key_4_Press = (rx[8] >> 6) & 0x01; result = PASS; } } return result; } int Query_Model_Name(uint8_t fd, uint8_t targetAddr, uint8_t *modelname) { int result = FAIL; uint8_t tx[7] = {0xaa, 0x00, targetAddr, CMD_QUERY_MODEL_NAME, 0x00, 0x00, 0x00}; uint8_t rx[512]; uint8_t chksum = 0x00; uint8_t len = tranceive(fd, tx, sizeof(tx), rx); if (len > 6) { if (len < 6 + (rx[4] | rx[5] << 8)) { return result; } for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3])) { strncpy((char *)modelname, (char *)(rx + 6), (rx[4] | rx[5] << 8)); result = PASS; } } return result; } int Query_Charging_Current(uint8_t fd, uint8_t targetAddr, Ac_Charging_current *Ret_Buf) { int result = FAIL; uint8_t tx[7] = {0xaa, 0x00, targetAddr, CMD_QUERY_AC_OUTPUT_CURRENT, 0x00, 0x00, 0x00}; uint8_t rx[512]; uint8_t chksum = 0x00; uint8_t len = tranceiveRelDelayTime(fd, tx, sizeof(tx), rx, 100); if (len > 6) { if (len < 6 + (rx[4] | rx[5] << 8)) { return result; } for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3])) { Ret_Buf->OuputCurrentL1 = rx[6] + (rx[7] << 8); Ret_Buf->OuputCurrentL2 = rx[8] + (rx[9] << 8); Ret_Buf->OuputCurrentL3 = rx[10] + (rx[11] << 8); result = PASS; } } return result; } int Query_AC_Status(uint8_t fd, uint8_t targetAddr, Ac_Status *Ret_Buf) { int result = FAIL; uint8_t tx[7] = {0xaa, 0x00, targetAddr, CMD_QUERY_AC_STATUS, 0x00, 0x00, 0x00}; uint8_t rx[512]; uint8_t chksum = 0x00; uint8_t len = tranceiveRelDelayTime(fd, tx, sizeof(tx), rx, 100); if (len > 6) { if (len < 6 + (rx[4] | rx[5] << 8)) { return result; } for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3])) { Ret_Buf->CpStatus = rx[6]; Ret_Buf->CurLimit = (rx[7] | (rx[8] << 8)); Ret_Buf->PilotVol_P = (rx[9] | (rx[10] << 8)); Ret_Buf->PilotVol_N = (rx[11] | (rx[12] << 8)); Ret_Buf->LockStatus = rx[13]; Ret_Buf->RelayStatus = rx[14]; Ret_Buf->ShutterStatus = rx[15]; Ret_Buf->MeterStatus = rx[16]; Ret_Buf->PpStatus = rx[17]; Ret_Buf->MaxCurrent = rx[18]; Ret_Buf->RotateSwitchStatus = rx[19]; // // Ret_Buf->AC_Connector = (rx[6] >> 0) & 0x01; // Ret_Buf->AC_MainBreaker = (rx[6] >> 1) & 0x01; // Ret_Buf->SPD = (rx[6] >> 2) & 0x01; // Ret_Buf->Door_Open = (rx[6] >> 3) & 0x01; // Ret_Buf->GFD[0] = (rx[6] >> 4) & 0x01; // Ret_Buf->GFD[1] = (rx[6] >> 5) & 0x01; // Ret_Buf->AC_Drop = (rx[6] >> 6) & 0x01; // // Ret_Buf->Emergency_IO = (rx[7] >> 0) & 0x01; // // Ret_Buf->Button_Emergency_Press = (rx[8] >> 0) & 0x01; // Ret_Buf->Button_On_Press = (rx[8] >> 1) & 0x01; // Ret_Buf->Button_Off_Press = (rx[8] >> 2) & 0x01; // Ret_Buf->Key_1_Press = (rx[8] >> 3) & 0x01; // Ret_Buf->Key_2_Press = (rx[8] >> 4) & 0x01; // Ret_Buf->Key_3_Press = (rx[8] >> 5) & 0x01; // Ret_Buf->Key_4_Press = (rx[8] >> 6) & 0x01; result = PASS; } } return result; } int Query_AC_Alarm_Code(uint8_t fd, uint8_t targetAddr, Ac_Alarm_code *Ret_Buf) { int result = FAIL; uint8_t tx[7] = {0xaa, 0x00, targetAddr, CMD_QUERY_AC_ALARM_CODE, 0x00, 0x00}; uint8_t rx[512]; uint8_t chksum = 0x00; uint8_t len = tranceiveRelDelayTime(fd, tx, sizeof(tx), rx, 100); if (len > 6) { if (len < 6 + (rx[4] | rx[5] << 8)) { return result; } for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3])) { Ret_Buf->AcAlarmCode = rx[6] + (rx[7] << 8) + (rx[8] << 16) + (rx[9] << 24); result = PASS; } } return result; } int Query_Charging_Energy(uint8_t fd, uint8_t targetAddr, Ac_Charging_energy *Ret_Buf) { int result = FAIL; uint8_t tx[7] = {0xaa, 0x00, targetAddr, CMD_QUERY_AC_OUTPUT_ENERGY, 0x00, 0x00, 0x00}; uint8_t rx[512]; uint8_t chksum = 0x00; uint8_t len = tranceiveRelDelayTime(fd, tx, sizeof(tx), rx, 100); if (len > 6) { if (len < 6 + (rx[4] | rx[5] << 8)) { return result; } for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3])) { Ret_Buf->Energy = rx[6] + (rx[7] << 8) + (rx[8] << 16) + (rx[9] << 24); result = PASS; } } return result; } //------------------------------------------------------------------------------ //===== Configure ===== //------------------------------------------------------------------------------ int Config_Fan_Speed(uint8_t fd, uint8_t targetAddr, FanSpeed *Set_Buf) { int result = FAIL; uint8_t tx[15] = {0xaa, 0x00, targetAddr, CMD_CONFIG_FAN_SPEED, 0x08, 0x00, Set_Buf->speed[0] & 0xff, (Set_Buf->speed[0] >> 8) & 0xff, Set_Buf->speed[1] & 0xff, (Set_Buf->speed[1] >> 8) & 0xff, Set_Buf->speed[2] & 0xff, (Set_Buf->speed[2] >> 8) & 0xff, Set_Buf->speed[3] & 0xff, (Set_Buf->speed[3] >> 8) & 0xff, 0x00}; uint8_t rx[512]; uint8_t chksum = 0x00; for (int idx = 0; idx < (tx[4] | tx[5] << 8); idx++) { chksum ^= tx[6 + idx]; } tx[14] = chksum; uint8_t len = tranceive(fd, tx, sizeof(tx), rx); if (len > 6) { if (len < 6 + (rx[4] | rx[5] << 8)) { return result; } chksum = 0x00; for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3]) && rx[6] == PASS) { result = PASS; } } return result; } int Config_Model_Name(uint8_t fd, uint8_t targetAddr, uint8_t *modelname) { int result = FAIL; uint8_t tx[21] = {0xaa, 0x00, targetAddr, CMD_CONFIG_MODEL_NAME, 0x0E, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; uint8_t rx[512]; uint8_t chksum = 0x00; memcpy(tx + 6, modelname, 14); for (int idx = 0; idx < (tx[4] | tx[5] << 8); idx++) { chksum ^= tx[6 + idx]; } tx[20] = chksum; // for(int i = 0; i < 21; i++) // printf ("tx = %x \n", tx[i]); uint8_t len = tranceive(fd, tx, sizeof(tx), rx); // for(int i = 0; i < len; i++) // printf ("rx = %x \n", rx[i]); if (len > 6) { if (len < 6 + (rx[4] | rx[5] << 8)) { return result; } chksum = 0x00; for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3]) && rx[6] == PASS) { result = PASS; } } return result; } int Config_Relay_Output(uint8_t fd, uint8_t targetAddr, Relay *Set_Buf) { int result = FAIL; uint8_t tx[10] = {0xaa, 0x00, targetAddr, CMD_CONFIG_RELAY_OUTPUT, 0x03, 0x00, Set_Buf->relay_event.relay_status[0], Set_Buf->relay_event.relay_status[1], Set_Buf->relay_event.relay_status[2]}; uint8_t rx[512]; uint8_t chksum = 0x00; for (int idx = 0; idx < (tx[4] | tx[5] << 8); idx++) { chksum ^= tx[6 + idx]; } tx[9] = chksum; // for (int i = 0; i < 10; i++) // printf("set relay cmd : tx = %x \n", tx[i]); uint8_t len = tranceive(fd, tx, sizeof(tx), rx); if (len > 6) { if (len < 6 + (rx[4] | rx[5] << 8)) { return result; } // for (int i = 0; i < len; i++) // printf("set relay cmd : rx = %x \n", rx[i]); chksum = 0x00; for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3]) && rx[6] == PASS) { result = PASS; } } return result; } int Config_Gpio_Output(uint8_t fd, uint8_t targetAddr, Gpio_out *Set_Buf) { int result = FAIL; uint8_t tx[9] = {0xaa, 0x00, targetAddr, CMD_CONFIG_GPIO_OUTPUT, 0x01, 0x00, 0x00, 0x00}; uint8_t rx[512]; uint8_t chksum = 0x00; tx[6] |= (Set_Buf->AC_Connector ? 0x01 : 0x00); for (int idx = 0; idx < 2; idx++) { tx[6] |= (Set_Buf->Button_LED[idx] ? 0x01 : 0x00) << (1 + idx); } for (int idx = 0; idx < 4; idx++) { tx[6] |= (Set_Buf->System_LED[idx] ? 0x01 : 0x00) << (3 + idx); } for (int idx = 0; idx < (tx[4] | tx[5] << 8); idx++) { chksum ^= tx[6 + idx]; } tx[14] = chksum; uint8_t len = tranceive(fd, tx, sizeof(tx), rx); if (len > 6) { if (len < 6 + (rx[4] | rx[5] << 8)) { return result; } chksum = 0x00; for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3])) { result = PASS; } } return result; } int Config_Rtc_Data(uint8_t fd, uint8_t targetAddr, Rtc *Set_Buf) { int result = FAIL; uint8_t tx[21] = { 0xaa, 0x00, targetAddr, CMD_CONFIG_RTC_DATA, 0x0E, 0x00, Set_Buf->RtcData[0], Set_Buf->RtcData[1], Set_Buf->RtcData[2], Set_Buf->RtcData[3], Set_Buf->RtcData[4], Set_Buf->RtcData[5], Set_Buf->RtcData[6], Set_Buf->RtcData[7], Set_Buf->RtcData[8], Set_Buf->RtcData[9], Set_Buf->RtcData[10], Set_Buf->RtcData[11], Set_Buf->RtcData[12], Set_Buf->RtcData[13] }; uint8_t rx[512]; uint8_t chksum = 0x00; for (int idx = 0; idx < (tx[4] | tx[5] << 8); idx++) { chksum ^= tx[6 + idx]; } tx[20] = chksum; if (tranceive(fd, tx, sizeof(tx), rx) > 0) { chksum = 0x00; for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3]) && rx[6] == PASS) { result = PASS; } } return result; } int Config_LED_Status(uint8_t fd, uint8_t targetAddr, Ac_Led_Status *Ret_Buf) { int result = FAIL; uint8_t tx[12] = {0xaa, 0x00, targetAddr, CMD_CONFIG_AC_LED_STATUS, 0x05, 0x00, Ret_Buf->ActionMode, (Ret_Buf->AcAlarmCode >> 0) & 0xFF, (Ret_Buf->AcAlarmCode >> 8) & 0xFF, (Ret_Buf->AcAlarmCode >> 16) & 0xFF, (Ret_Buf->AcAlarmCode >> 24) & 0xFF }; uint8_t rx[512]; uint8_t chksum = 0x00; for (int idx = 0; idx < (tx[4] | tx[5] << 8); idx++) { chksum ^= tx[6 + idx]; } tx[11] = chksum; if (tranceiveRelDelayTime(fd, tx, sizeof(tx), rx, 100) > 0) { chksum = 0x00; for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3]) && rx[6] == PASS) { result = PASS; } } return result; } int Config_Ac_Duty(uint8_t fd, uint8_t targetAddr, uint8_t _value) { int result = FAIL; uint8_t tx[8] = {0xaa, 0x00, targetAddr, CMD_CONFIG_AC_DUTY, 0x01, 0x00, _value}; uint8_t rx[512]; uint8_t chksum = 0x00; for (int idx = 0; idx < (tx[4] | tx[5] << 8); idx++) { chksum ^= tx[6 + idx]; } tx[7] = chksum; if (tranceiveRelDelayTime(fd, tx, sizeof(tx), rx, 100) > 0) { chksum = 0x00; for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3]) && rx[6] == PASS) { result = PASS; } } return result; } int Config_Legacy_Req(uint8_t fd, uint8_t targetAddr, uint8_t _switch) { int result = FAIL; uint8_t tx[9] = {0xaa, 0x00, targetAddr, CMD_CONFIG_LEGACY_REQ, 0x02, 0x00, _switch, 0x00}; uint8_t rx[512]; uint8_t chksum = 0x00; for (int idx = 0; idx < (tx[4] | tx[5] << 8); idx++) { chksum ^= tx[6 + idx]; } tx[8] = chksum; if (tranceiveRelDelayTime(fd, tx, sizeof(tx), rx, 100) > 0) { chksum = 0x00; for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3]) && rx[6] == PASS) { result = PASS; } } return result; } int Config_Reset_MCU(uint8_t fd, uint8_t targetAddr) { int result = FAIL; uint8_t tx[9] = {0xaa, 0x00, targetAddr, CMD_CONFIG_RESET_MCU, 0x02, 0x00, 0x01, 0x00}; uint8_t rx[512]; uint8_t chksum = 0x00; for (int idx = 0; idx < (tx[4] | tx[5] << 8); idx++) { chksum ^= tx[6 + idx]; } tx[7] = chksum; if (tranceiveRelDelayTime(fd, tx, sizeof(tx), rx, 100) > 0) { chksum = 0x00; for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3]) && rx[6] == PASS) { result = PASS; } } return result; } int Config_Gfd_Value(uint8_t fd, uint8_t targetAddr, Gfd_config *Set_Buf) { int result = FAIL; uint8_t tx[9] = {0xaa, 0x00, targetAddr, CMD_CONFIG_GDF_VALUE, 0x02, 0x00, 0x00, 0x00, 0x00}; uint8_t rx[512]; uint8_t chksum = 0x00; tx[6] = Set_Buf->index; tx[7] = Set_Buf->state; for (int idx = 0; idx < (tx[4] | tx[5] << 8); idx++) { chksum ^= tx[6 + idx]; } tx[8] = chksum; uint8_t len = tranceive(fd, tx, sizeof(tx), rx); if (len > 6) { if (len < 6 + (rx[4] | rx[5] << 8)) { return result; } chksum = 0x00; for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3])) { result = PASS; } } return result; } int Config_CSU_Mode(uint8_t fd, uint8_t targetAddr) { int result = FAIL; uint8_t tx[9] = {0xaa, 0x00, targetAddr, CMD_CONFIG_CSU_MODE, 0x02, 0x00, 0x01, 0x00}; uint8_t rx[512]; uint8_t chksum = 0x00; for (int idx = 0; idx < (tx[4] | tx[5] << 8); idx++) { chksum ^= tx[6 + idx]; } tx[7] = chksum; if (tranceiveRelDelayTime(fd, tx, sizeof(tx), rx, 100) > 0) { chksum = 0x00; for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3]) && rx[6] == PASS) { result = PASS; } } return result; } int Config_Led_Color(uint8_t fd, uint8_t targetAddr, Led_Color *Ret_Buf) { int result = FAIL; uint8_t tx[13] = {0xaa, 0x00, targetAddr, CMD_CONFIG_LEN_COLOR, 0x06, 0x00, Ret_Buf->Connect_1_Red, Ret_Buf->Connect_1_Green, Ret_Buf->Connect_1_Blue, Ret_Buf->Connect_2_Red, Ret_Buf->Connect_2_Green, Ret_Buf->Connect_2_Blue }; uint8_t rx[512]; uint8_t chksum = 0x00; for (int idx = 0; idx < (tx[4] | tx[5] << 8); idx++) { chksum ^= tx[6 + idx]; } tx[12] = chksum; // for(int i = 0; i < 13; i++) // printf ("tx = %x \n", tx[i]); uint8_t len = tranceive(fd, tx, sizeof(tx), rx); // for(int i = 0; i < len; i++) // printf ("rx = %x \n", rx[i]); if (len > 6) { if (len < 6 + (rx[4] | rx[5] << 8)) { return result; } for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3]) && (rx[6] == PASS)) { result = PASS; } } return result; } //------------------------------------------------------------------------------ //===== Update ===== //------------------------------------------------------------------------------ int Update_Start(uint8_t fd, uint8_t targetAddr, uint32_t crc32) { int result = FAIL; uint8_t tx[11] = {0xaa, 0x00, targetAddr, CMD_UPDATE_START, 0x04, 0x00, (crc32 >> 0) & 0xff, (crc32 >> 8) & 0xff, (crc32 >> 16) & 0xff, (crc32 >> 24) & 0xff, 0x00}; uint8_t rx[512]; uint8_t chksum = 0x00; for (int idx = 0; idx < (tx[4] | tx[5] << 8); idx++) { chksum ^= tx[6 + idx]; } tx[10] = chksum; uint8_t len = tranceive(fd, tx, sizeof(tx), rx); if (len > 6) { if (len < 6 + (rx[4] | rx[5] << 8)) { return result; } chksum = 0x00; for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3]) && (rx[6] == 0x00)) { result = PASS; } } return result; } int Update_Abord(uint8_t fd, uint8_t targetAddr) { int result = FAIL; uint8_t tx[7] = {0xaa, 0x00, targetAddr, CMD_UPDATE_ABORT, 0x04, 0x00, 0x00}; uint8_t rx[512]; uint8_t chksum = 0x00; uint8_t len = tranceive(fd, tx, sizeof(tx), rx); if (len > 6) { if (len < 6 + (rx[4] | rx[5] << 8)) { return result; } for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3]) && (rx[6] == 0x00)) { result = PASS; } } return result; } int Update_Transfer(uint8_t fd, uint8_t targetAddr, uint32_t startAddr, uint8_t *data, uint16_t length) { int result = FAIL; uint8_t tx[11 + length]; uint8_t rx[512]; uint8_t chksum = 0x00; tx[0] = 0xaa; tx[1] = 0x00; tx[2] = targetAddr; tx[3] = CMD_UPDATE_TRANSFER; tx[4] = (4 + length) & 0xff; tx[5] = ((4 + length) >> 8) & 0xff; tx[6] = (startAddr >> 0) & 0xff; tx[7] = (startAddr >> 8) & 0xff; tx[8] = (startAddr >> 16) & 0xff; tx[9] = (startAddr >> 24) & 0xff; memcpy(tx + 10, data, length); for (int idx = 0; idx < (tx[4] | tx[5] << 8); idx++) { chksum ^= tx[6 + idx]; } tx[sizeof(tx) - 1] = chksum; uint8_t len = tranceive(fd, tx, sizeof(tx), rx); if (len > 6) { if (len < 6 + (rx[4] | rx[5] << 8)) { return result; } for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3]) && (rx[6] == 0x00)) { result = PASS; } } return result; } int Update_Finish(uint8_t fd, uint8_t targetAddr) { int result = FAIL; uint8_t tx[7] = {0xaa, 0x00, targetAddr, CMD_UPDATE_FINISH, 0x04, 0x00, 0x00}; uint8_t rx[512]; uint8_t chksum = 0x00; uint8_t len = tranceive(fd, tx, sizeof(tx), rx); if (len > 6) { if (len < 6 + (rx[4] | rx[5] << 8)) { return result; } for (int idx = 0; idx < (rx[4] | rx[5] << 8); idx++) { chksum ^= rx[6 + idx]; } if ((chksum == rx[6 + (rx[4] | rx[5] << 8)]) && (rx[2] == tx[1]) && (rx[1] == tx[2]) && (rx[3] == tx[3]) && (rx[6] == 0x00)) { result = PASS; } } return result; }