/* Copyright 2005-2013 Intel Corporation. All Rights Reserved. This file is part of Threading Building Blocks. Threading Building Blocks is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 2 as published by the Free Software Foundation. Threading Building Blocks is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with Threading Building Blocks; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA As a special exception, you may use this file as part of a free software library without restriction. Specifically, if other files instantiate templates or use macros or inline functions from this file, or you compile this file and link it with other files to produce an executable, this file does not by itself cause the resulting executable to be covered by the GNU General Public License. This exception does not however invalidate any other reasons why the executable file might be covered by the GNU General Public License. */ #ifndef __TBB_enumerable_thread_specific_H #define __TBB_enumerable_thread_specific_H #include "concurrent_vector.h" #include "tbb_thread.h" #include "tbb_allocator.h" #include "cache_aligned_allocator.h" #include "aligned_space.h" #include // for memcpy #if _WIN32||_WIN64 #include "machine/windows_api.h" #else #include #endif namespace tbb { //! enum for selecting between single key and key-per-instance versions enum ets_key_usage_type { ets_key_per_instance, ets_no_key }; namespace interface6 { //! @cond namespace internal { template class ets_base: tbb::internal::no_copy { protected: #if _WIN32||_WIN64 typedef DWORD key_type; #else typedef pthread_t key_type; #endif #if __TBB_PROTECTED_NESTED_CLASS_BROKEN public: #endif struct slot; struct array { array* next; size_t lg_size; slot& at( size_t k ) { return ((slot*)(void*)(this+1))[k]; } size_t size() const {return (size_t)1<>(8*sizeof(size_t)-lg_size); } }; struct slot { key_type key; void* ptr; bool empty() const {return !key;} bool match( key_type k ) const {return key==k;} bool claim( key_type k ) { __TBB_ASSERT(sizeof(tbb::atomic)==sizeof(key_type), NULL); return tbb::internal::punned_cast*>(&key)->compare_and_swap(k,0)==0; } }; #if __TBB_PROTECTED_NESTED_CLASS_BROKEN protected: #endif static key_type key_of_current_thread() { tbb::tbb_thread::id id = tbb::this_tbb_thread::get_id(); key_type k; memcpy( &k, &id, sizeof(k) ); return k; } //! Root of linked list of arrays of decreasing size. /** NULL if and only if my_count==0. Each array in the list is half the size of its predecessor. */ atomic my_root; atomic my_count; virtual void* create_local() = 0; virtual void* create_array(size_t _size) = 0; // _size in bytes virtual void free_array(void* ptr, size_t _size) = 0; // _size in bytes array* allocate( size_t lg_size ) { size_t n = 1<(create_array( sizeof(array)+n*sizeof(slot) )); a->lg_size = lg_size; std::memset( a+1, 0, n*sizeof(slot) ); return a; } void free(array* a) { size_t n = 1<<(a->lg_size); free_array( (void *)a, size_t(sizeof(array)+n*sizeof(slot)) ); } static size_t hash( key_type k ) { // Multiplicative hashing. Client should use *upper* bits. // casts required for Mac gcc4.* compiler return uintptr_t(k)*tbb::internal::select_size_t_constant<0x9E3779B9,0x9E3779B97F4A7C15ULL>::value; } ets_base() {my_root=NULL; my_count=0;} virtual ~ets_base(); // g++ complains if this is not virtual... void* table_lookup( bool& exists ); void table_clear(); slot& table_find( key_type k ) { size_t h = hash(k); array* r = my_root; size_t mask = r->mask(); for(size_t i = r->start(h);;i=(i+1)&mask) { slot& s = r->at(i); if( s.empty() || s.match(k) ) return s; } } void table_reserve_for_copy( const ets_base& other ) { __TBB_ASSERT(!my_root,NULL); __TBB_ASSERT(!my_count,NULL); if( other.my_root ) { array* a = allocate(other.my_root->lg_size); a->next = NULL; my_root = a; my_count = other.my_count; } } }; template ets_base::~ets_base() { __TBB_ASSERT(!my_root, NULL); } template void ets_base::table_clear() { while( array* r = my_root ) { my_root = r->next; free(r); } my_count = 0; } template void* ets_base::table_lookup( bool& exists ) { const key_type k = key_of_current_thread(); __TBB_ASSERT(k!=0,NULL); void* found; size_t h = hash(k); for( array* r=my_root; r; r=r->next ) { size_t mask=r->mask(); for(size_t i = r->start(h); ;i=(i+1)&mask) { slot& s = r->at(i); if( s.empty() ) break; if( s.match(k) ) { if( r==my_root ) { // Success at top level exists = true; return s.ptr; } else { // Success at some other level. Need to insert at top level. exists = true; found = s.ptr; goto insert; } } } } // Key does not yet exist exists = false; found = create_local(); { size_t c = ++my_count; array* r = my_root; if( !r || c>r->size()/2 ) { size_t s = r ? r->lg_size : 2; while( c>size_t(1)<<(s-1) ) ++s; array* a = allocate(s); for(;;) { a->next = my_root; array* new_r = my_root.compare_and_swap(a,r); if( new_r==r ) break; if( new_r->lg_size>=s ) { // Another thread inserted an equal or bigger array, so our array is superfluous. free(a); break; } r = new_r; } } } insert: // Guaranteed to be room for it, and it is not present, so search for empty slot and grab it. array* ir = my_root; size_t mask = ir->mask(); for(size_t i = ir->start(h);;i=(i+1)&mask) { slot& s = ir->at(i); if( s.empty() ) { if( s.claim(k) ) { s.ptr = found; return found; } } } } //! Specialization that exploits native TLS template <> class ets_base: protected ets_base { typedef ets_base super; #if _WIN32||_WIN64 #if __TBB_WIN8UI_SUPPORT typedef DWORD tls_key_t; void create_key() { my_key = FlsAlloc(NULL); } void destroy_key() { FlsFree(my_key); } void set_tls(void * value) { FlsSetValue(my_key, (LPVOID)value); } void* get_tls() { return (void *)FlsGetValue(my_key); } #else typedef DWORD tls_key_t; void create_key() { my_key = TlsAlloc(); } void destroy_key() { TlsFree(my_key); } void set_tls(void * value) { TlsSetValue(my_key, (LPVOID)value); } void* get_tls() { return (void *)TlsGetValue(my_key); } #endif #else typedef pthread_key_t tls_key_t; void create_key() { pthread_key_create(&my_key, NULL); } void destroy_key() { pthread_key_delete(my_key); } void set_tls( void * value ) const { pthread_setspecific(my_key, value); } void* get_tls() const { return pthread_getspecific(my_key); } #endif tls_key_t my_key; virtual void* create_local() = 0; virtual void* create_array(size_t _size) = 0; // _size in bytes virtual void free_array(void* ptr, size_t _size) = 0; // size in bytes public: ets_base() {create_key();} ~ets_base() {destroy_key();} void* table_lookup( bool& exists ) { void* found = get_tls(); if( found ) { exists=true; } else { found = super::table_lookup(exists); set_tls(found); } return found; } void table_clear() { destroy_key(); create_key(); super::table_clear(); } }; //! Random access iterator for traversing the thread local copies. template< typename Container, typename Value > class enumerable_thread_specific_iterator #if defined(_WIN64) && defined(_MSC_VER) // Ensure that Microsoft's internal template function _Val_type works correctly. : public std::iterator #endif /* defined(_WIN64) && defined(_MSC_VER) */ { //! current position in the concurrent_vector Container *my_container; typename Container::size_type my_index; mutable Value *my_value; template friend enumerable_thread_specific_iterator operator+( ptrdiff_t offset, const enumerable_thread_specific_iterator& v ); template friend bool operator==( const enumerable_thread_specific_iterator& i, const enumerable_thread_specific_iterator& j ); template friend bool operator<( const enumerable_thread_specific_iterator& i, const enumerable_thread_specific_iterator& j ); template friend ptrdiff_t operator-( const enumerable_thread_specific_iterator& i, const enumerable_thread_specific_iterator& j ); template friend class enumerable_thread_specific_iterator; public: enumerable_thread_specific_iterator( const Container &container, typename Container::size_type index ) : my_container(&const_cast(container)), my_index(index), my_value(NULL) {} //! Default constructor enumerable_thread_specific_iterator() : my_container(NULL), my_index(0), my_value(NULL) {} template enumerable_thread_specific_iterator( const enumerable_thread_specific_iterator& other ) : my_container( other.my_container ), my_index( other.my_index), my_value( const_cast(other.my_value) ) {} enumerable_thread_specific_iterator operator+( ptrdiff_t offset ) const { return enumerable_thread_specific_iterator(*my_container, my_index + offset); } enumerable_thread_specific_iterator &operator+=( ptrdiff_t offset ) { my_index += offset; my_value = NULL; return *this; } enumerable_thread_specific_iterator operator-( ptrdiff_t offset ) const { return enumerable_thread_specific_iterator( *my_container, my_index-offset ); } enumerable_thread_specific_iterator &operator-=( ptrdiff_t offset ) { my_index -= offset; my_value = NULL; return *this; } Value& operator*() const { Value* value = my_value; if( !value ) { value = my_value = reinterpret_cast(&(*my_container)[my_index].value); } __TBB_ASSERT( value==reinterpret_cast(&(*my_container)[my_index].value), "corrupt cache" ); return *value; } Value& operator[]( ptrdiff_t k ) const { return (*my_container)[my_index + k].value; } Value* operator->() const {return &operator*();} enumerable_thread_specific_iterator& operator++() { ++my_index; my_value = NULL; return *this; } enumerable_thread_specific_iterator& operator--() { --my_index; my_value = NULL; return *this; } //! Post increment enumerable_thread_specific_iterator operator++(int) { enumerable_thread_specific_iterator result = *this; ++my_index; my_value = NULL; return result; } //! Post decrement enumerable_thread_specific_iterator operator--(int) { enumerable_thread_specific_iterator result = *this; --my_index; my_value = NULL; return result; } // STL support typedef ptrdiff_t difference_type; typedef Value value_type; typedef Value* pointer; typedef Value& reference; typedef std::random_access_iterator_tag iterator_category; }; template enumerable_thread_specific_iterator operator+( ptrdiff_t offset, const enumerable_thread_specific_iterator& v ) { return enumerable_thread_specific_iterator( v.my_container, v.my_index + offset ); } template bool operator==( const enumerable_thread_specific_iterator& i, const enumerable_thread_specific_iterator& j ) { return i.my_index==j.my_index && i.my_container == j.my_container; } template bool operator!=( const enumerable_thread_specific_iterator& i, const enumerable_thread_specific_iterator& j ) { return !(i==j); } template bool operator<( const enumerable_thread_specific_iterator& i, const enumerable_thread_specific_iterator& j ) { return i.my_index bool operator>( const enumerable_thread_specific_iterator& i, const enumerable_thread_specific_iterator& j ) { return j bool operator>=( const enumerable_thread_specific_iterator& i, const enumerable_thread_specific_iterator& j ) { return !(i bool operator<=( const enumerable_thread_specific_iterator& i, const enumerable_thread_specific_iterator& j ) { return !(j ptrdiff_t operator-( const enumerable_thread_specific_iterator& i, const enumerable_thread_specific_iterator& j ) { return i.my_index-j.my_index; } template class segmented_iterator #if defined(_WIN64) && defined(_MSC_VER) : public std::iterator #endif { template friend bool operator==(const segmented_iterator& i, const segmented_iterator& j); template friend bool operator!=(const segmented_iterator& i, const segmented_iterator& j); template friend class segmented_iterator; public: segmented_iterator() {my_segcont = NULL;} segmented_iterator( const SegmentedContainer& _segmented_container ) : my_segcont(const_cast(&_segmented_container)), outer_iter(my_segcont->end()) { } ~segmented_iterator() {} typedef typename SegmentedContainer::iterator outer_iterator; typedef typename SegmentedContainer::value_type InnerContainer; typedef typename InnerContainer::iterator inner_iterator; // STL support typedef ptrdiff_t difference_type; typedef Value value_type; typedef typename SegmentedContainer::size_type size_type; typedef Value* pointer; typedef Value& reference; typedef std::input_iterator_tag iterator_category; // Copy Constructor template segmented_iterator(const segmented_iterator& other) : my_segcont(other.my_segcont), outer_iter(other.outer_iter), // can we assign a default-constructed iterator to inner if we're at the end? inner_iter(other.inner_iter) {} // assignment template segmented_iterator& operator=( const segmented_iterator& other) { if(this != &other) { my_segcont = other.my_segcont; outer_iter = other.outer_iter; if(outer_iter != my_segcont->end()) inner_iter = other.inner_iter; } return *this; } // allow assignment of outer iterator to segmented iterator. Once it is // assigned, move forward until a non-empty inner container is found or // the end of the outer container is reached. segmented_iterator& operator=(const outer_iterator& new_outer_iter) { __TBB_ASSERT(my_segcont != NULL, NULL); // check that this iterator points to something inside the segmented container for(outer_iter = new_outer_iter ;outer_iter!=my_segcont->end(); ++outer_iter) { if( !outer_iter->empty() ) { inner_iter = outer_iter->begin(); break; } } return *this; } // pre-increment segmented_iterator& operator++() { advance_me(); return *this; } // post-increment segmented_iterator operator++(int) { segmented_iterator tmp = *this; operator++(); return tmp; } bool operator==(const outer_iterator& other_outer) const { __TBB_ASSERT(my_segcont != NULL, NULL); return (outer_iter == other_outer && (outer_iter == my_segcont->end() || inner_iter == outer_iter->begin())); } bool operator!=(const outer_iterator& other_outer) const { return !operator==(other_outer); } // (i)* RHS reference operator*() const { __TBB_ASSERT(my_segcont != NULL, NULL); __TBB_ASSERT(outer_iter != my_segcont->end(), "Dereferencing a pointer at end of container"); __TBB_ASSERT(inner_iter != outer_iter->end(), NULL); // should never happen return *inner_iter; } // i-> pointer operator->() const { return &operator*();} private: SegmentedContainer* my_segcont; outer_iterator outer_iter; inner_iterator inner_iter; void advance_me() { __TBB_ASSERT(my_segcont != NULL, NULL); __TBB_ASSERT(outer_iter != my_segcont->end(), NULL); // not true if there are no inner containers __TBB_ASSERT(inner_iter != outer_iter->end(), NULL); // not true if the inner containers are all empty. ++inner_iter; while(inner_iter == outer_iter->end() && ++outer_iter != my_segcont->end()) { inner_iter = outer_iter->begin(); } } }; // segmented_iterator template bool operator==( const segmented_iterator& i, const segmented_iterator& j ) { if(i.my_segcont != j.my_segcont) return false; if(i.my_segcont == NULL) return true; if(i.outer_iter != j.outer_iter) return false; if(i.outer_iter == i.my_segcont->end()) return true; return i.inner_iter == j.inner_iter; } // != template bool operator!=( const segmented_iterator& i, const segmented_iterator& j ) { return !(i==j); } template struct destruct_only: tbb::internal::no_copy { tbb::aligned_space value; ~destruct_only() {value.begin()[0].~T();} }; template struct construct_by_default: tbb::internal::no_assign { void construct(void*where) {new(where) T();} // C++ note: the () in T() ensure zero initialization. construct_by_default( int ) {} }; template struct construct_by_exemplar: tbb::internal::no_assign { const T exemplar; void construct(void*where) {new(where) T(exemplar);} construct_by_exemplar( const T& t ) : exemplar(t) {} }; template struct construct_by_finit: tbb::internal::no_assign { Finit f; void construct(void* where) {new(where) T(f());} construct_by_finit( const Finit& f_ ) : f(f_) {} }; // storage for initialization function pointer template class callback_base { public: // Clone *this virtual callback_base* clone() = 0; // Destruct and free *this virtual void destroy() = 0; // Need virtual destructor to satisfy GCC compiler warning virtual ~callback_base() { } // Construct T at where virtual void construct(void* where) = 0; }; template class callback_leaf: public callback_base, Constructor { template callback_leaf( const X& x ) : Constructor(x) {} typedef typename tbb::tbb_allocator my_allocator_type; /*override*/ callback_base* clone() { void* where = my_allocator_type().allocate(1); return new(where) callback_leaf(*this); } /*override*/ void destroy() { my_allocator_type().destroy(this); my_allocator_type().deallocate(this,1); } /*override*/ void construct(void* where) { Constructor::construct(where); } public: template static callback_base* make( const X& x ) { void* where = my_allocator_type().allocate(1); return new(where) callback_leaf(x); } }; //! Template for adding padding in order to avoid false sharing /** ModularSize should be sizeof(U) modulo the cache line size. All maintenance of the space will be done explicitly on push_back, and all thread local copies must be destroyed before the concurrent vector is deleted. */ template struct ets_element { char value[ModularSize==0 ? sizeof(U) : sizeof(U)+(tbb::internal::NFS_MaxLineSize-ModularSize)]; void unconstruct() { tbb::internal::punned_cast(&value)->~U(); } }; } // namespace internal //! @endcond //! The enumerable_thread_specific container /** enumerable_thread_specific has the following properties: - thread-local copies are lazily created, with default, exemplar or function initialization. - thread-local copies do not move (during lifetime, and excepting clear()) so the address of a copy is invariant. - the contained objects need not have operator=() defined if combine is not used. - enumerable_thread_specific containers may be copy-constructed or assigned. - thread-local copies can be managed by hash-table, or can be accessed via TLS storage for speed. - outside of parallel contexts, the contents of all thread-local copies are accessible by iterator or using combine or combine_each methods @par Segmented iterator When the thread-local objects are containers with input_iterators defined, a segmented iterator may be used to iterate over all the elements of all thread-local copies. @par combine and combine_each - Both methods are defined for enumerable_thread_specific. - combine() requires the the type T have operator=() defined. - neither method modifies the contents of the object (though there is no guarantee that the applied methods do not modify the object.) - Both are evaluated in serial context (the methods are assumed to be non-benign.) @ingroup containers */ template , ets_key_usage_type ETS_key_type=ets_no_key > class enumerable_thread_specific: internal::ets_base { template friend class enumerable_thread_specific; typedef internal::ets_element padded_element; //! A generic range, used to create range objects from the iterators template class generic_range_type: public blocked_range { public: typedef T value_type; typedef T& reference; typedef const T& const_reference; typedef I iterator; typedef ptrdiff_t difference_type; generic_range_type( I begin_, I end_, size_t grainsize_ = 1) : blocked_range(begin_,end_,grainsize_) {} template generic_range_type( const generic_range_type& r) : blocked_range(r.begin(),r.end(),r.grainsize()) {} generic_range_type( generic_range_type& r, split ) : blocked_range(r,split()) {} }; typedef typename Allocator::template rebind< padded_element >::other padded_allocator_type; typedef tbb::concurrent_vector< padded_element, padded_allocator_type > internal_collection_type; internal::callback_base *my_construct_callback; internal_collection_type my_locals; /*override*/ void* create_local() { #if TBB_DEPRECATED void* lref = &my_locals[my_locals.push_back(padded_element())]; #else void* lref = &*my_locals.push_back(padded_element()); #endif my_construct_callback->construct(lref); return lref; } void unconstruct_locals() { for(typename internal_collection_type::iterator cvi = my_locals.begin(); cvi != my_locals.end(); ++cvi) { cvi->unconstruct(); } } typedef typename Allocator::template rebind< uintptr_t >::other array_allocator_type; // _size is in bytes /*override*/ void* create_array(size_t _size) { size_t nelements = (_size + sizeof(uintptr_t) -1) / sizeof(uintptr_t); return array_allocator_type().allocate(nelements); } /*override*/ void free_array( void* _ptr, size_t _size) { size_t nelements = (_size + sizeof(uintptr_t) -1) / sizeof(uintptr_t); array_allocator_type().deallocate( reinterpret_cast(_ptr),nelements); } public: //! Basic types typedef Allocator allocator_type; typedef T value_type; typedef T& reference; typedef const T& const_reference; typedef T* pointer; typedef const T* const_pointer; typedef typename internal_collection_type::size_type size_type; typedef typename internal_collection_type::difference_type difference_type; // Iterator types typedef typename internal::enumerable_thread_specific_iterator< internal_collection_type, value_type > iterator; typedef typename internal::enumerable_thread_specific_iterator< internal_collection_type, const value_type > const_iterator; // Parallel range types typedef generic_range_type< iterator > range_type; typedef generic_range_type< const_iterator > const_range_type; //! Default constructor. Each local instance of T is default constructed. enumerable_thread_specific() : my_construct_callback( internal::callback_leaf >::make(/*dummy argument*/0) ) {} //! Constructor with initializer functor. Each local instance of T is constructed by T(finit()). template enumerable_thread_specific( Finit finit ) : my_construct_callback( internal::callback_leaf >::make( finit ) ) {} //! Constuctor with exemplar. Each local instance of T is copied-constructed from the exemplar. enumerable_thread_specific(const T& exemplar) : my_construct_callback( internal::callback_leaf >::make( exemplar ) ) {} //! Destructor ~enumerable_thread_specific() { my_construct_callback->destroy(); this->clear(); // deallocation before the derived class is finished destructing // So free(array *) is still accessible } //! returns reference to local, discarding exists reference local() { bool exists; return local(exists); } //! Returns reference to calling thread's local copy, creating one if necessary reference local(bool& exists) { void* ptr = this->table_lookup(exists); return *(T*)ptr; } //! Get the number of local copies size_type size() const { return my_locals.size(); } //! true if there have been no local copies created bool empty() const { return my_locals.empty(); } //! begin iterator iterator begin() { return iterator( my_locals, 0 ); } //! end iterator iterator end() { return iterator(my_locals, my_locals.size() ); } //! begin const iterator const_iterator begin() const { return const_iterator(my_locals, 0); } //! end const iterator const_iterator end() const { return const_iterator(my_locals, my_locals.size()); } //! Get range for parallel algorithms range_type range( size_t grainsize=1 ) { return range_type( begin(), end(), grainsize ); } //! Get const range for parallel algorithms const_range_type range( size_t grainsize=1 ) const { return const_range_type( begin(), end(), grainsize ); } //! Destroys local copies void clear() { unconstruct_locals(); my_locals.clear(); this->table_clear(); // callback is not destroyed // exemplar is not destroyed } private: template void internal_copy( const enumerable_thread_specific& other); public: template enumerable_thread_specific( const enumerable_thread_specific& other ) : internal::ets_base () { internal_copy(other); } enumerable_thread_specific( const enumerable_thread_specific& other ) : internal::ets_base () { internal_copy(other); } private: template enumerable_thread_specific & internal_assign(const enumerable_thread_specific& other) { if(static_cast( this ) != static_cast( &other )) { this->clear(); my_construct_callback->destroy(); my_construct_callback = 0; internal_copy( other ); } return *this; } public: // assignment enumerable_thread_specific& operator=(const enumerable_thread_specific& other) { return internal_assign(other); } template enumerable_thread_specific& operator=(const enumerable_thread_specific& other) { return internal_assign(other); } // combine_func_t has signature T(T,T) or T(const T&, const T&) template T combine(combine_func_t f_combine) { if(begin() == end()) { internal::destruct_only location; my_construct_callback->construct(location.value.begin()); return *location.value.begin(); } const_iterator ci = begin(); T my_result = *ci; while(++ci != end()) my_result = f_combine( my_result, *ci ); return my_result; } // combine_func_t has signature void(T) or void(const T&) template void combine_each(combine_func_t f_combine) { for(const_iterator ci = begin(); ci != end(); ++ci) { f_combine( *ci ); } } }; // enumerable_thread_specific template template void enumerable_thread_specific::internal_copy( const enumerable_thread_specific& other) { // Initialize my_construct_callback first, so that it is valid even if rest of this routine throws an exception. my_construct_callback = other.my_construct_callback->clone(); typedef internal::ets_base base; __TBB_ASSERT(my_locals.size()==0,NULL); this->table_reserve_for_copy( other ); for( base::array* r=other.my_root; r; r=r->next ) { for( size_t i=0; isize(); ++i ) { base::slot& s1 = r->at(i); if( !s1.empty() ) { base::slot& s2 = this->table_find(s1.key); if( s2.empty() ) { #if TBB_DEPRECATED void* lref = &my_locals[my_locals.push_back(padded_element())]; #else void* lref = &*my_locals.push_back(padded_element()); #endif s2.ptr = new(lref) T(*(U*)s1.ptr); s2.key = s1.key; } else { // Skip the duplicate } } } } } template< typename Container > class flattened2d { // This intermediate typedef is to address issues with VC7.1 compilers typedef typename Container::value_type conval_type; public: //! Basic types typedef typename conval_type::size_type size_type; typedef typename conval_type::difference_type difference_type; typedef typename conval_type::allocator_type allocator_type; typedef typename conval_type::value_type value_type; typedef typename conval_type::reference reference; typedef typename conval_type::const_reference const_reference; typedef typename conval_type::pointer pointer; typedef typename conval_type::const_pointer const_pointer; typedef typename internal::segmented_iterator iterator; typedef typename internal::segmented_iterator const_iterator; flattened2d( const Container &c, typename Container::const_iterator b, typename Container::const_iterator e ) : my_container(const_cast(&c)), my_begin(b), my_end(e) { } flattened2d( const Container &c ) : my_container(const_cast(&c)), my_begin(c.begin()), my_end(c.end()) { } iterator begin() { return iterator(*my_container) = my_begin; } iterator end() { return iterator(*my_container) = my_end; } const_iterator begin() const { return const_iterator(*my_container) = my_begin; } const_iterator end() const { return const_iterator(*my_container) = my_end; } size_type size() const { size_type tot_size = 0; for(typename Container::const_iterator i = my_begin; i != my_end; ++i) { tot_size += i->size(); } return tot_size; } private: Container *my_container; typename Container::const_iterator my_begin; typename Container::const_iterator my_end; }; template flattened2d flatten2d(const Container &c, const typename Container::const_iterator b, const typename Container::const_iterator e) { return flattened2d(c, b, e); } template flattened2d flatten2d(const Container &c) { return flattened2d(c); } } // interface6 namespace internal { using interface6::internal::segmented_iterator; } using interface6::enumerable_thread_specific; using interface6::flattened2d; using interface6::flatten2d; } // namespace tbb #endif