test_strtod.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431
  1. # Tests for the correctly-rounded string -> float conversions
  2. # introduced in Python 2.7 and 3.1.
  3. import random
  4. import struct
  5. import unittest
  6. import re
  7. import sys
  8. from test import test_support
  9. if getattr(sys, 'float_repr_style', '') != 'short':
  10. raise unittest.SkipTest('correctly-rounded string->float conversions '
  11. 'not available on this system')
  12. # Correctly rounded str -> float in pure Python, for comparison.
  13. strtod_parser = re.compile(r""" # A numeric string consists of:
  14. (?P<sign>[-+])? # an optional sign, followed by
  15. (?=\d|\.\d) # a number with at least one digit
  16. (?P<int>\d*) # having a (possibly empty) integer part
  17. (?:\.(?P<frac>\d*))? # followed by an optional fractional part
  18. (?:E(?P<exp>[-+]?\d+))? # and an optional exponent
  19. \Z
  20. """, re.VERBOSE | re.IGNORECASE).match
  21. # Pure Python version of correctly rounded string->float conversion.
  22. # Avoids any use of floating-point by returning the result as a hex string.
  23. def strtod(s, mant_dig=53, min_exp = -1021, max_exp = 1024):
  24. """Convert a finite decimal string to a hex string representing an
  25. IEEE 754 binary64 float. Return 'inf' or '-inf' on overflow.
  26. This function makes no use of floating-point arithmetic at any
  27. stage."""
  28. # parse string into a pair of integers 'a' and 'b' such that
  29. # abs(decimal value) = a/b, along with a boolean 'negative'.
  30. m = strtod_parser(s)
  31. if m is None:
  32. raise ValueError('invalid numeric string')
  33. fraction = m.group('frac') or ''
  34. intpart = int(m.group('int') + fraction)
  35. exp = int(m.group('exp') or '0') - len(fraction)
  36. negative = m.group('sign') == '-'
  37. a, b = intpart*10**max(exp, 0), 10**max(0, -exp)
  38. # quick return for zeros
  39. if not a:
  40. return '-0x0.0p+0' if negative else '0x0.0p+0'
  41. # compute exponent e for result; may be one too small in the case
  42. # that the rounded value of a/b lies in a different binade from a/b
  43. d = a.bit_length() - b.bit_length()
  44. d += (a >> d if d >= 0 else a << -d) >= b
  45. e = max(d, min_exp) - mant_dig
  46. # approximate a/b by number of the form q * 2**e; adjust e if necessary
  47. a, b = a << max(-e, 0), b << max(e, 0)
  48. q, r = divmod(a, b)
  49. if 2*r > b or 2*r == b and q & 1:
  50. q += 1
  51. if q.bit_length() == mant_dig+1:
  52. q //= 2
  53. e += 1
  54. # double check that (q, e) has the right form
  55. assert q.bit_length() <= mant_dig and e >= min_exp - mant_dig
  56. assert q.bit_length() == mant_dig or e == min_exp - mant_dig
  57. # check for overflow and underflow
  58. if e + q.bit_length() > max_exp:
  59. return '-inf' if negative else 'inf'
  60. if not q:
  61. return '-0x0.0p+0' if negative else '0x0.0p+0'
  62. # for hex representation, shift so # bits after point is a multiple of 4
  63. hexdigs = 1 + (mant_dig-2)//4
  64. shift = 3 - (mant_dig-2)%4
  65. q, e = q << shift, e - shift
  66. return '{}0x{:x}.{:0{}x}p{:+d}'.format(
  67. '-' if negative else '',
  68. q // 16**hexdigs,
  69. q % 16**hexdigs,
  70. hexdigs,
  71. e + 4*hexdigs)
  72. TEST_SIZE = 10
  73. class StrtodTests(unittest.TestCase):
  74. def check_strtod(self, s):
  75. """Compare the result of Python's builtin correctly rounded
  76. string->float conversion (using float) to a pure Python
  77. correctly rounded string->float implementation. Fail if the
  78. two methods give different results."""
  79. try:
  80. fs = float(s)
  81. except OverflowError:
  82. got = '-inf' if s[0] == '-' else 'inf'
  83. except MemoryError:
  84. got = 'memory error'
  85. else:
  86. got = fs.hex()
  87. expected = strtod(s)
  88. self.assertEqual(expected, got,
  89. "Incorrectly rounded str->float conversion for {}: "
  90. "expected {}, got {}".format(s, expected, got))
  91. def test_short_halfway_cases(self):
  92. # exact halfway cases with a small number of significant digits
  93. for k in 0, 5, 10, 15, 20:
  94. # upper = smallest integer >= 2**54/5**k
  95. upper = -(-2**54//5**k)
  96. # lower = smallest odd number >= 2**53/5**k
  97. lower = -(-2**53//5**k)
  98. if lower % 2 == 0:
  99. lower += 1
  100. for i in xrange(TEST_SIZE):
  101. # Select a random odd n in [2**53/5**k,
  102. # 2**54/5**k). Then n * 10**k gives a halfway case
  103. # with small number of significant digits.
  104. n, e = random.randrange(lower, upper, 2), k
  105. # Remove any additional powers of 5.
  106. while n % 5 == 0:
  107. n, e = n // 5, e + 1
  108. assert n % 10 in (1, 3, 7, 9)
  109. # Try numbers of the form n * 2**p2 * 10**e, p2 >= 0,
  110. # until n * 2**p2 has more than 20 significant digits.
  111. digits, exponent = n, e
  112. while digits < 10**20:
  113. s = '{}e{}'.format(digits, exponent)
  114. self.check_strtod(s)
  115. # Same again, but with extra trailing zeros.
  116. s = '{}e{}'.format(digits * 10**40, exponent - 40)
  117. self.check_strtod(s)
  118. digits *= 2
  119. # Try numbers of the form n * 5**p2 * 10**(e - p5), p5
  120. # >= 0, with n * 5**p5 < 10**20.
  121. digits, exponent = n, e
  122. while digits < 10**20:
  123. s = '{}e{}'.format(digits, exponent)
  124. self.check_strtod(s)
  125. # Same again, but with extra trailing zeros.
  126. s = '{}e{}'.format(digits * 10**40, exponent - 40)
  127. self.check_strtod(s)
  128. digits *= 5
  129. exponent -= 1
  130. def test_halfway_cases(self):
  131. # test halfway cases for the round-half-to-even rule
  132. for i in xrange(100 * TEST_SIZE):
  133. # bit pattern for a random finite positive (or +0.0) float
  134. bits = random.randrange(2047*2**52)
  135. # convert bit pattern to a number of the form m * 2**e
  136. e, m = divmod(bits, 2**52)
  137. if e:
  138. m, e = m + 2**52, e - 1
  139. e -= 1074
  140. # add 0.5 ulps
  141. m, e = 2*m + 1, e - 1
  142. # convert to a decimal string
  143. if e >= 0:
  144. digits = m << e
  145. exponent = 0
  146. else:
  147. # m * 2**e = (m * 5**-e) * 10**e
  148. digits = m * 5**-e
  149. exponent = e
  150. s = '{}e{}'.format(digits, exponent)
  151. self.check_strtod(s)
  152. def test_boundaries(self):
  153. # boundaries expressed as triples (n, e, u), where
  154. # n*10**e is an approximation to the boundary value and
  155. # u*10**e is 1ulp
  156. boundaries = [
  157. (10000000000000000000, -19, 1110), # a power of 2 boundary (1.0)
  158. (17976931348623159077, 289, 1995), # overflow boundary (2.**1024)
  159. (22250738585072013831, -327, 4941), # normal/subnormal (2.**-1022)
  160. (0, -327, 4941), # zero
  161. ]
  162. for n, e, u in boundaries:
  163. for j in xrange(1000):
  164. digits = n + random.randrange(-3*u, 3*u)
  165. exponent = e
  166. s = '{}e{}'.format(digits, exponent)
  167. self.check_strtod(s)
  168. n *= 10
  169. u *= 10
  170. e -= 1
  171. def test_underflow_boundary(self):
  172. # test values close to 2**-1075, the underflow boundary; similar
  173. # to boundary_tests, except that the random error doesn't scale
  174. # with n
  175. for exponent in xrange(-400, -320):
  176. base = 10**-exponent // 2**1075
  177. for j in xrange(TEST_SIZE):
  178. digits = base + random.randrange(-1000, 1000)
  179. s = '{}e{}'.format(digits, exponent)
  180. self.check_strtod(s)
  181. def test_bigcomp(self):
  182. for ndigs in 5, 10, 14, 15, 16, 17, 18, 19, 20, 40, 41, 50:
  183. dig10 = 10**ndigs
  184. for i in xrange(10 * TEST_SIZE):
  185. digits = random.randrange(dig10)
  186. exponent = random.randrange(-400, 400)
  187. s = '{}e{}'.format(digits, exponent)
  188. self.check_strtod(s)
  189. def test_parsing(self):
  190. # make '0' more likely to be chosen than other digits
  191. digits = '000000123456789'
  192. signs = ('+', '-', '')
  193. # put together random short valid strings
  194. # \d*[.\d*]?e
  195. for i in xrange(1000):
  196. for j in xrange(TEST_SIZE):
  197. s = random.choice(signs)
  198. intpart_len = random.randrange(5)
  199. s += ''.join(random.choice(digits) for _ in xrange(intpart_len))
  200. if random.choice([True, False]):
  201. s += '.'
  202. fracpart_len = random.randrange(5)
  203. s += ''.join(random.choice(digits)
  204. for _ in xrange(fracpart_len))
  205. else:
  206. fracpart_len = 0
  207. if random.choice([True, False]):
  208. s += random.choice(['e', 'E'])
  209. s += random.choice(signs)
  210. exponent_len = random.randrange(1, 4)
  211. s += ''.join(random.choice(digits)
  212. for _ in xrange(exponent_len))
  213. if intpart_len + fracpart_len:
  214. self.check_strtod(s)
  215. else:
  216. try:
  217. float(s)
  218. except ValueError:
  219. pass
  220. else:
  221. assert False, "expected ValueError"
  222. @test_support.precisionbigmemtest(size=test_support._2G, memuse=3,
  223. dry_run=False)
  224. def test_oversized_digit_strings(self, maxsize):
  225. # Input string whose length doesn't fit in an INT.
  226. s = "1." + "1" * int(2.2e9)
  227. with self.assertRaises(ValueError):
  228. float(s)
  229. del s
  230. s = "0." + "0" * int(2.2e9) + "1"
  231. with self.assertRaises(ValueError):
  232. float(s)
  233. del s
  234. def test_large_exponents(self):
  235. # Verify that the clipping of the exponent in strtod doesn't affect the
  236. # output values.
  237. def positive_exp(n):
  238. """ Long string with value 1.0 and exponent n"""
  239. return '0.{}1e+{}'.format('0'*(n-1), n)
  240. def negative_exp(n):
  241. """ Long string with value 1.0 and exponent -n"""
  242. return '1{}e-{}'.format('0'*n, n)
  243. self.assertEqual(float(positive_exp(10000)), 1.0)
  244. self.assertEqual(float(positive_exp(20000)), 1.0)
  245. self.assertEqual(float(positive_exp(30000)), 1.0)
  246. self.assertEqual(float(negative_exp(10000)), 1.0)
  247. self.assertEqual(float(negative_exp(20000)), 1.0)
  248. self.assertEqual(float(negative_exp(30000)), 1.0)
  249. def test_particular(self):
  250. # inputs that produced crashes or incorrectly rounded results with
  251. # previous versions of dtoa.c, for various reasons
  252. test_strings = [
  253. # issue 7632 bug 1, originally reported failing case
  254. '2183167012312112312312.23538020374420446192e-370',
  255. # 5 instances of issue 7632 bug 2
  256. '12579816049008305546974391768996369464963024663104e-357',
  257. '17489628565202117263145367596028389348922981857013e-357',
  258. '18487398785991994634182916638542680759613590482273e-357',
  259. '32002864200581033134358724675198044527469366773928e-358',
  260. '94393431193180696942841837085033647913224148539854e-358',
  261. '73608278998966969345824653500136787876436005957953e-358',
  262. '64774478836417299491718435234611299336288082136054e-358',
  263. '13704940134126574534878641876947980878824688451169e-357',
  264. '46697445774047060960624497964425416610480524760471e-358',
  265. # failing case for bug introduced by METD in r77451 (attempted
  266. # fix for issue 7632, bug 2), and fixed in r77482.
  267. '28639097178261763178489759107321392745108491825303e-311',
  268. # two numbers demonstrating a flaw in the bigcomp 'dig == 0'
  269. # correction block (issue 7632, bug 3)
  270. '1.00000000000000001e44',
  271. '1.0000000000000000100000000000000000000001e44',
  272. # dtoa.c bug for numbers just smaller than a power of 2 (issue
  273. # 7632, bug 4)
  274. '99999999999999994487665465554760717039532578546e-47',
  275. # failing case for off-by-one error introduced by METD in
  276. # r77483 (dtoa.c cleanup), fixed in r77490
  277. '965437176333654931799035513671997118345570045914469' #...
  278. '6213413350821416312194420007991306908470147322020121018368e0',
  279. # incorrect lsb detection for round-half-to-even when
  280. # bc->scale != 0 (issue 7632, bug 6).
  281. '104308485241983990666713401708072175773165034278685' #...
  282. '682646111762292409330928739751702404658197872319129' #...
  283. '036519947435319418387839758990478549477777586673075' #...
  284. '945844895981012024387992135617064532141489278815239' #...
  285. '849108105951619997829153633535314849999674266169258' #...
  286. '928940692239684771590065027025835804863585454872499' #...
  287. '320500023126142553932654370362024104462255244034053' #...
  288. '203998964360882487378334860197725139151265590832887' #...
  289. '433736189468858614521708567646743455601905935595381' #...
  290. '852723723645799866672558576993978025033590728687206' #...
  291. '296379801363024094048327273913079612469982585674824' #...
  292. '156000783167963081616214710691759864332339239688734' #...
  293. '656548790656486646106983450809073750535624894296242' #...
  294. '072010195710276073042036425579852459556183541199012' #...
  295. '652571123898996574563824424330960027873516082763671875e-1075',
  296. # demonstration that original fix for issue 7632 bug 1 was
  297. # buggy; the exit condition was too strong
  298. '247032822920623295e-341',
  299. # demonstrate similar problem to issue 7632 bug1: crash
  300. # with 'oversized quotient in quorem' message.
  301. '99037485700245683102805043437346965248029601286431e-373',
  302. '99617639833743863161109961162881027406769510558457e-373',
  303. '98852915025769345295749278351563179840130565591462e-372',
  304. '99059944827693569659153042769690930905148015876788e-373',
  305. '98914979205069368270421829889078356254059760327101e-372',
  306. # issue 7632 bug 5: the following 2 strings convert differently
  307. '1000000000000000000000000000000000000000e-16',
  308. '10000000000000000000000000000000000000000e-17',
  309. # issue 7632 bug 7
  310. '991633793189150720000000000000000000000000000000000000000e-33',
  311. # And another, similar, failing halfway case
  312. '4106250198039490000000000000000000000000000000000000000e-38',
  313. # issue 7632 bug 8: the following produced 10.0
  314. '10.900000000000000012345678912345678912345',
  315. # two humongous values from issue 7743
  316. '116512874940594195638617907092569881519034793229385' #...
  317. '228569165191541890846564669771714896916084883987920' #...
  318. '473321268100296857636200926065340769682863349205363' #...
  319. '349247637660671783209907949273683040397979984107806' #...
  320. '461822693332712828397617946036239581632976585100633' #...
  321. '520260770761060725403904123144384571612073732754774' #...
  322. '588211944406465572591022081973828448927338602556287' #...
  323. '851831745419397433012491884869454462440536895047499' #...
  324. '436551974649731917170099387762871020403582994193439' #...
  325. '761933412166821484015883631622539314203799034497982' #...
  326. '130038741741727907429575673302461380386596501187482' #...
  327. '006257527709842179336488381672818798450229339123527' #...
  328. '858844448336815912020452294624916993546388956561522' #...
  329. '161875352572590420823607478788399460162228308693742' #...
  330. '05287663441403533948204085390898399055004119873046875e-1075',
  331. '525440653352955266109661060358202819561258984964913' #...
  332. '892256527849758956045218257059713765874251436193619' #...
  333. '443248205998870001633865657517447355992225852945912' #...
  334. '016668660000210283807209850662224417504752264995360' #...
  335. '631512007753855801075373057632157738752800840302596' #...
  336. '237050247910530538250008682272783660778181628040733' #...
  337. '653121492436408812668023478001208529190359254322340' #...
  338. '397575185248844788515410722958784640926528544043090' #...
  339. '115352513640884988017342469275006999104519620946430' #...
  340. '818767147966495485406577703972687838176778993472989' #...
  341. '561959000047036638938396333146685137903018376496408' #...
  342. '319705333868476925297317136513970189073693314710318' #...
  343. '991252811050501448326875232850600451776091303043715' #...
  344. '157191292827614046876950225714743118291034780466325' #...
  345. '085141343734564915193426994587206432697337118211527' #...
  346. '278968731294639353354774788602467795167875117481660' #...
  347. '4738791256853675690543663283782215866825e-1180',
  348. # exercise exit conditions in bigcomp comparison loop
  349. '2602129298404963083833853479113577253105939995688e2',
  350. '260212929840496308383385347911357725310593999568896e0',
  351. '26021292984049630838338534791135772531059399956889601e-2',
  352. '260212929840496308383385347911357725310593999568895e0',
  353. '260212929840496308383385347911357725310593999568897e0',
  354. '260212929840496308383385347911357725310593999568996e0',
  355. '260212929840496308383385347911357725310593999568866e0',
  356. # 2**53
  357. '9007199254740992.00',
  358. # 2**1024 - 2**970: exact overflow boundary. All values
  359. # smaller than this should round to something finite; any value
  360. # greater than or equal to this one overflows.
  361. '179769313486231580793728971405303415079934132710037' #...
  362. '826936173778980444968292764750946649017977587207096' #...
  363. '330286416692887910946555547851940402630657488671505' #...
  364. '820681908902000708383676273854845817711531764475730' #...
  365. '270069855571366959622842914819860834936475292719074' #...
  366. '168444365510704342711559699508093042880177904174497792',
  367. # 2**1024 - 2**970 - tiny
  368. '179769313486231580793728971405303415079934132710037' #...
  369. '826936173778980444968292764750946649017977587207096' #...
  370. '330286416692887910946555547851940402630657488671505' #...
  371. '820681908902000708383676273854845817711531764475730' #...
  372. '270069855571366959622842914819860834936475292719074' #...
  373. '168444365510704342711559699508093042880177904174497791.999',
  374. # 2**1024 - 2**970 + tiny
  375. '179769313486231580793728971405303415079934132710037' #...
  376. '826936173778980444968292764750946649017977587207096' #...
  377. '330286416692887910946555547851940402630657488671505' #...
  378. '820681908902000708383676273854845817711531764475730' #...
  379. '270069855571366959622842914819860834936475292719074' #...
  380. '168444365510704342711559699508093042880177904174497792.001',
  381. # 1 - 2**-54, +-tiny
  382. '999999999999999944488848768742172978818416595458984375e-54',
  383. '9999999999999999444888487687421729788184165954589843749999999e-54',
  384. '9999999999999999444888487687421729788184165954589843750000001e-54',
  385. ]
  386. for s in test_strings:
  387. self.check_strtod(s)
  388. def test_main():
  389. test_support.run_unittest(StrtodTests)
  390. if __name__ == "__main__":
  391. test_main()