123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447 |
- -- Testcases for functions in math.
- --
- -- Each line takes the form:
- --
- -- <testid> <function> <input_value> -> <output_value> <flags>
- --
- -- where:
- --
- -- <testid> is a short name identifying the test,
- --
- -- <function> is the function to be tested (exp, cos, asinh, ...),
- --
- -- <input_value> is a string representing a floating-point value
- --
- -- <output_value> is the expected (ideal) output value, again
- -- represented as a string.
- --
- -- <flags> is a list of the floating-point flags required by C99
- --
- -- The possible flags are:
- --
- -- divide-by-zero : raised when a finite input gives a
- -- mathematically infinite result.
- --
- -- overflow : raised when a finite input gives a finite result that
- -- is too large to fit in the usual range of an IEEE 754 double.
- --
- -- invalid : raised for invalid inputs (e.g., sqrt(-1))
- --
- -- ignore-sign : indicates that the sign of the result is
- -- unspecified; e.g., if the result is given as inf,
- -- then both -inf and inf should be accepted as correct.
- --
- -- Flags may appear in any order.
- --
- -- Lines beginning with '--' (like this one) start a comment, and are
- -- ignored. Blank lines, or lines containing only whitespace, are also
- -- ignored.
- -- Many of the values below were computed with the help of
- -- version 2.4 of the MPFR library for multiple-precision
- -- floating-point computations with correct rounding. All output
- -- values in this file are (modulo yet-to-be-discovered bugs)
- -- correctly rounded, provided that each input and output decimal
- -- floating-point value below is interpreted as a representation of
- -- the corresponding nearest IEEE 754 double-precision value. See the
- -- MPFR homepage at http://www.mpfr.org for more information about the
- -- MPFR project.
- -------------------------
- -- erf: error function --
- -------------------------
- erf0000 erf 0.0 -> 0.0
- erf0001 erf -0.0 -> -0.0
- erf0002 erf inf -> 1.0
- erf0003 erf -inf -> -1.0
- erf0004 erf nan -> nan
- -- tiny values
- erf0010 erf 1e-308 -> 1.1283791670955125e-308
- erf0011 erf 5e-324 -> 4.9406564584124654e-324
- erf0012 erf 1e-10 -> 1.1283791670955126e-10
- -- small integers
- erf0020 erf 1 -> 0.84270079294971489
- erf0021 erf 2 -> 0.99532226501895271
- erf0022 erf 3 -> 0.99997790950300136
- erf0023 erf 4 -> 0.99999998458274209
- erf0024 erf 5 -> 0.99999999999846256
- erf0025 erf 6 -> 1.0
- erf0030 erf -1 -> -0.84270079294971489
- erf0031 erf -2 -> -0.99532226501895271
- erf0032 erf -3 -> -0.99997790950300136
- erf0033 erf -4 -> -0.99999998458274209
- erf0034 erf -5 -> -0.99999999999846256
- erf0035 erf -6 -> -1.0
- -- huge values should all go to +/-1, depending on sign
- erf0040 erf -40 -> -1.0
- erf0041 erf 1e16 -> 1.0
- erf0042 erf -1e150 -> -1.0
- erf0043 erf 1.7e308 -> 1.0
- -- Issue 8986: inputs x with exp(-x*x) near the underflow threshold
- -- incorrectly signalled overflow on some platforms.
- erf0100 erf 26.2 -> 1.0
- erf0101 erf 26.4 -> 1.0
- erf0102 erf 26.6 -> 1.0
- erf0103 erf 26.8 -> 1.0
- erf0104 erf 27.0 -> 1.0
- erf0105 erf 27.2 -> 1.0
- erf0106 erf 27.4 -> 1.0
- erf0107 erf 27.6 -> 1.0
- erf0110 erf -26.2 -> -1.0
- erf0111 erf -26.4 -> -1.0
- erf0112 erf -26.6 -> -1.0
- erf0113 erf -26.8 -> -1.0
- erf0114 erf -27.0 -> -1.0
- erf0115 erf -27.2 -> -1.0
- erf0116 erf -27.4 -> -1.0
- erf0117 erf -27.6 -> -1.0
- ----------------------------------------
- -- erfc: complementary error function --
- ----------------------------------------
- erfc0000 erfc 0.0 -> 1.0
- erfc0001 erfc -0.0 -> 1.0
- erfc0002 erfc inf -> 0.0
- erfc0003 erfc -inf -> 2.0
- erfc0004 erfc nan -> nan
- -- tiny values
- erfc0010 erfc 1e-308 -> 1.0
- erfc0011 erfc 5e-324 -> 1.0
- erfc0012 erfc 1e-10 -> 0.99999999988716204
- -- small integers
- erfc0020 erfc 1 -> 0.15729920705028513
- erfc0021 erfc 2 -> 0.0046777349810472662
- erfc0022 erfc 3 -> 2.2090496998585441e-05
- erfc0023 erfc 4 -> 1.541725790028002e-08
- erfc0024 erfc 5 -> 1.5374597944280349e-12
- erfc0025 erfc 6 -> 2.1519736712498913e-17
- erfc0030 erfc -1 -> 1.8427007929497148
- erfc0031 erfc -2 -> 1.9953222650189528
- erfc0032 erfc -3 -> 1.9999779095030015
- erfc0033 erfc -4 -> 1.9999999845827421
- erfc0034 erfc -5 -> 1.9999999999984626
- erfc0035 erfc -6 -> 2.0
- -- as x -> infinity, erfc(x) behaves like exp(-x*x)/x/sqrt(pi)
- erfc0040 erfc 20 -> 5.3958656116079012e-176
- erfc0041 erfc 25 -> 8.3001725711965228e-274
- erfc0042 erfc 27 -> 5.2370464393526292e-319
- erfc0043 erfc 28 -> 0.0
- -- huge values
- erfc0050 erfc -40 -> 2.0
- erfc0051 erfc 1e16 -> 0.0
- erfc0052 erfc -1e150 -> 2.0
- erfc0053 erfc 1.7e308 -> 0.0
- -- Issue 8986: inputs x with exp(-x*x) near the underflow threshold
- -- incorrectly signalled overflow on some platforms.
- erfc0100 erfc 26.2 -> 1.6432507924389461e-300
- erfc0101 erfc 26.4 -> 4.4017768588035426e-305
- erfc0102 erfc 26.6 -> 1.0885125885442269e-309
- erfc0103 erfc 26.8 -> 2.4849621571966629e-314
- erfc0104 erfc 27.0 -> 5.2370464393526292e-319
- erfc0105 erfc 27.2 -> 9.8813129168249309e-324
- erfc0106 erfc 27.4 -> 0.0
- erfc0107 erfc 27.6 -> 0.0
- erfc0110 erfc -26.2 -> 2.0
- erfc0111 erfc -26.4 -> 2.0
- erfc0112 erfc -26.6 -> 2.0
- erfc0113 erfc -26.8 -> 2.0
- erfc0114 erfc -27.0 -> 2.0
- erfc0115 erfc -27.2 -> 2.0
- erfc0116 erfc -27.4 -> 2.0
- erfc0117 erfc -27.6 -> 2.0
- ---------------------------------------------------------
- -- lgamma: log of absolute value of the gamma function --
- ---------------------------------------------------------
- -- special values
- lgam0000 lgamma 0.0 -> inf divide-by-zero
- lgam0001 lgamma -0.0 -> inf divide-by-zero
- lgam0002 lgamma inf -> inf
- lgam0003 lgamma -inf -> inf
- lgam0004 lgamma nan -> nan
- -- negative integers
- lgam0010 lgamma -1 -> inf divide-by-zero
- lgam0011 lgamma -2 -> inf divide-by-zero
- lgam0012 lgamma -1e16 -> inf divide-by-zero
- lgam0013 lgamma -1e300 -> inf divide-by-zero
- lgam0014 lgamma -1.79e308 -> inf divide-by-zero
- -- small positive integers give factorials
- lgam0020 lgamma 1 -> 0.0
- lgam0021 lgamma 2 -> 0.0
- lgam0022 lgamma 3 -> 0.69314718055994529
- lgam0023 lgamma 4 -> 1.791759469228055
- lgam0024 lgamma 5 -> 3.1780538303479458
- lgam0025 lgamma 6 -> 4.7874917427820458
- -- half integers
- lgam0030 lgamma 0.5 -> 0.57236494292470008
- lgam0031 lgamma 1.5 -> -0.12078223763524522
- lgam0032 lgamma 2.5 -> 0.28468287047291918
- lgam0033 lgamma 3.5 -> 1.2009736023470743
- lgam0034 lgamma -0.5 -> 1.2655121234846454
- lgam0035 lgamma -1.5 -> 0.86004701537648098
- lgam0036 lgamma -2.5 -> -0.056243716497674054
- lgam0037 lgamma -3.5 -> -1.309006684993042
- -- values near 0
- lgam0040 lgamma 0.1 -> 2.252712651734206
- lgam0041 lgamma 0.01 -> 4.5994798780420219
- lgam0042 lgamma 1e-8 -> 18.420680738180209
- lgam0043 lgamma 1e-16 -> 36.841361487904734
- lgam0044 lgamma 1e-30 -> 69.077552789821368
- lgam0045 lgamma 1e-160 -> 368.41361487904732
- lgam0046 lgamma 1e-308 -> 709.19620864216608
- lgam0047 lgamma 5.6e-309 -> 709.77602713741896
- lgam0048 lgamma 5.5e-309 -> 709.79404564292167
- lgam0049 lgamma 1e-309 -> 711.49879373516012
- lgam0050 lgamma 1e-323 -> 743.74692474082133
- lgam0051 lgamma 5e-324 -> 744.44007192138122
- lgam0060 lgamma -0.1 -> 2.3689613327287886
- lgam0061 lgamma -0.01 -> 4.6110249927528013
- lgam0062 lgamma -1e-8 -> 18.420680749724522
- lgam0063 lgamma -1e-16 -> 36.841361487904734
- lgam0064 lgamma -1e-30 -> 69.077552789821368
- lgam0065 lgamma -1e-160 -> 368.41361487904732
- lgam0066 lgamma -1e-308 -> 709.19620864216608
- lgam0067 lgamma -5.6e-309 -> 709.77602713741896
- lgam0068 lgamma -5.5e-309 -> 709.79404564292167
- lgam0069 lgamma -1e-309 -> 711.49879373516012
- lgam0070 lgamma -1e-323 -> 743.74692474082133
- lgam0071 lgamma -5e-324 -> 744.44007192138122
- -- values near negative integers
- lgam0080 lgamma -0.99999999999999989 -> 36.736800569677101
- lgam0081 lgamma -1.0000000000000002 -> 36.043653389117154
- lgam0082 lgamma -1.9999999999999998 -> 35.350506208557213
- lgam0083 lgamma -2.0000000000000004 -> 34.657359027997266
- lgam0084 lgamma -100.00000000000001 -> -331.85460524980607
- lgam0085 lgamma -99.999999999999986 -> -331.85460524980596
- -- large inputs
- lgam0100 lgamma 170 -> 701.43726380873704
- lgam0101 lgamma 171 -> 706.57306224578736
- lgam0102 lgamma 171.624 -> 709.78077443669895
- lgam0103 lgamma 171.625 -> 709.78591682948365
- lgam0104 lgamma 172 -> 711.71472580228999
- lgam0105 lgamma 2000 -> 13198.923448054265
- lgam0106 lgamma 2.55998332785163e305 -> 1.7976931348623099e+308
- lgam0107 lgamma 2.55998332785164e305 -> inf overflow
- lgam0108 lgamma 1.7e308 -> inf overflow
- -- inputs for which gamma(x) is tiny
- lgam0120 lgamma -100.5 -> -364.90096830942736
- lgam0121 lgamma -160.5 -> -656.88005261126432
- lgam0122 lgamma -170.5 -> -707.99843314507882
- lgam0123 lgamma -171.5 -> -713.14301641168481
- lgam0124 lgamma -176.5 -> -738.95247590846486
- lgam0125 lgamma -177.5 -> -744.13144651738037
- lgam0126 lgamma -178.5 -> -749.3160351186001
- lgam0130 lgamma -1000.5 -> -5914.4377011168517
- lgam0131 lgamma -30000.5 -> -279278.6629959144
- lgam0132 lgamma -4503599627370495.5 -> -1.5782258434492883e+17
- -- results close to 0: positive argument ...
- lgam0150 lgamma 0.99999999999999989 -> 6.4083812134800075e-17
- lgam0151 lgamma 1.0000000000000002 -> -1.2816762426960008e-16
- lgam0152 lgamma 1.9999999999999998 -> -9.3876980655431170e-17
- lgam0153 lgamma 2.0000000000000004 -> 1.8775396131086244e-16
- -- ... and negative argument
- lgam0160 lgamma -2.7476826467 -> -5.2477408147689136e-11
- lgam0161 lgamma -2.457024738 -> 3.3464637541912932e-10
- ---------------------------
- -- gamma: Gamma function --
- ---------------------------
- -- special values
- gam0000 gamma 0.0 -> inf divide-by-zero
- gam0001 gamma -0.0 -> -inf divide-by-zero
- gam0002 gamma inf -> inf
- gam0003 gamma -inf -> nan invalid
- gam0004 gamma nan -> nan
- -- negative integers inputs are invalid
- gam0010 gamma -1 -> nan invalid
- gam0011 gamma -2 -> nan invalid
- gam0012 gamma -1e16 -> nan invalid
- gam0013 gamma -1e300 -> nan invalid
- -- small positive integers give factorials
- gam0020 gamma 1 -> 1
- gam0021 gamma 2 -> 1
- gam0022 gamma 3 -> 2
- gam0023 gamma 4 -> 6
- gam0024 gamma 5 -> 24
- gam0025 gamma 6 -> 120
- -- half integers
- gam0030 gamma 0.5 -> 1.7724538509055161
- gam0031 gamma 1.5 -> 0.88622692545275805
- gam0032 gamma 2.5 -> 1.3293403881791370
- gam0033 gamma 3.5 -> 3.3233509704478426
- gam0034 gamma -0.5 -> -3.5449077018110322
- gam0035 gamma -1.5 -> 2.3632718012073548
- gam0036 gamma -2.5 -> -0.94530872048294190
- gam0037 gamma -3.5 -> 0.27008820585226911
- -- values near 0
- gam0040 gamma 0.1 -> 9.5135076986687306
- gam0041 gamma 0.01 -> 99.432585119150602
- gam0042 gamma 1e-8 -> 99999999.422784343
- gam0043 gamma 1e-16 -> 10000000000000000
- gam0044 gamma 1e-30 -> 9.9999999999999988e+29
- gam0045 gamma 1e-160 -> 1.0000000000000000e+160
- gam0046 gamma 1e-308 -> 1.0000000000000000e+308
- gam0047 gamma 5.6e-309 -> 1.7857142857142848e+308
- gam0048 gamma 5.5e-309 -> inf overflow
- gam0049 gamma 1e-309 -> inf overflow
- gam0050 gamma 1e-323 -> inf overflow
- gam0051 gamma 5e-324 -> inf overflow
- gam0060 gamma -0.1 -> -10.686287021193193
- gam0061 gamma -0.01 -> -100.58719796441078
- gam0062 gamma -1e-8 -> -100000000.57721567
- gam0063 gamma -1e-16 -> -10000000000000000
- gam0064 gamma -1e-30 -> -9.9999999999999988e+29
- gam0065 gamma -1e-160 -> -1.0000000000000000e+160
- gam0066 gamma -1e-308 -> -1.0000000000000000e+308
- gam0067 gamma -5.6e-309 -> -1.7857142857142848e+308
- gam0068 gamma -5.5e-309 -> -inf overflow
- gam0069 gamma -1e-309 -> -inf overflow
- gam0070 gamma -1e-323 -> -inf overflow
- gam0071 gamma -5e-324 -> -inf overflow
- -- values near negative integers
- gam0080 gamma -0.99999999999999989 -> -9007199254740992.0
- gam0081 gamma -1.0000000000000002 -> 4503599627370495.5
- gam0082 gamma -1.9999999999999998 -> 2251799813685248.5
- gam0083 gamma -2.0000000000000004 -> -1125899906842623.5
- gam0084 gamma -100.00000000000001 -> -7.5400833348831090e-145
- gam0085 gamma -99.999999999999986 -> 7.5400833348840962e-145
- -- large inputs
- gam0100 gamma 170 -> 4.2690680090047051e+304
- gam0101 gamma 171 -> 7.2574156153079990e+306
- gam0102 gamma 171.624 -> 1.7942117599248104e+308
- gam0103 gamma 171.625 -> inf overflow
- gam0104 gamma 172 -> inf overflow
- gam0105 gamma 2000 -> inf overflow
- gam0106 gamma 1.7e308 -> inf overflow
- -- inputs for which gamma(x) is tiny
- gam0120 gamma -100.5 -> -3.3536908198076787e-159
- gam0121 gamma -160.5 -> -5.2555464470078293e-286
- gam0122 gamma -170.5 -> -3.3127395215386074e-308
- gam0123 gamma -171.5 -> 1.9316265431711902e-310
- gam0124 gamma -176.5 -> -1.1956388629358166e-321
- gam0125 gamma -177.5 -> 4.9406564584124654e-324
- gam0126 gamma -178.5 -> -0.0
- gam0127 gamma -179.5 -> 0.0
- gam0128 gamma -201.0001 -> 0.0
- gam0129 gamma -202.9999 -> -0.0
- gam0130 gamma -1000.5 -> -0.0
- gam0131 gamma -1000000000.3 -> -0.0
- gam0132 gamma -4503599627370495.5 -> 0.0
- -- inputs that cause problems for the standard reflection formula,
- -- thanks to loss of accuracy in 1-x
- gam0140 gamma -63.349078729022985 -> 4.1777971677761880e-88
- gam0141 gamma -127.45117632943295 -> 1.1831110896236810e-214
- -----------------------------------------------------------
- -- expm1: exp(x) - 1, without precision loss for small x --
- -----------------------------------------------------------
- -- special values
- expm10000 expm1 0.0 -> 0.0
- expm10001 expm1 -0.0 -> -0.0
- expm10002 expm1 inf -> inf
- expm10003 expm1 -inf -> -1.0
- expm10004 expm1 nan -> nan
- -- expm1(x) ~ x for tiny x
- expm10010 expm1 5e-324 -> 5e-324
- expm10011 expm1 1e-320 -> 1e-320
- expm10012 expm1 1e-300 -> 1e-300
- expm10013 expm1 1e-150 -> 1e-150
- expm10014 expm1 1e-20 -> 1e-20
- expm10020 expm1 -5e-324 -> -5e-324
- expm10021 expm1 -1e-320 -> -1e-320
- expm10022 expm1 -1e-300 -> -1e-300
- expm10023 expm1 -1e-150 -> -1e-150
- expm10024 expm1 -1e-20 -> -1e-20
- -- moderate sized values, where direct evaluation runs into trouble
- expm10100 expm1 1e-10 -> 1.0000000000500000e-10
- expm10101 expm1 -9.9999999999999995e-08 -> -9.9999995000000163e-8
- expm10102 expm1 3.0000000000000001e-05 -> 3.0000450004500034e-5
- expm10103 expm1 -0.0070000000000000001 -> -0.0069755570667648951
- expm10104 expm1 -0.071499208740094633 -> -0.069002985744820250
- expm10105 expm1 -0.063296004180116799 -> -0.061334416373633009
- expm10106 expm1 0.02390954035597756 -> 0.024197665143819942
- expm10107 expm1 0.085637352649044901 -> 0.089411184580357767
- expm10108 expm1 0.5966174947411006 -> 0.81596588596501485
- expm10109 expm1 0.30247206212075139 -> 0.35319987035848677
- expm10110 expm1 0.74574727375889516 -> 1.1080161116737459
- expm10111 expm1 0.97767512926555711 -> 1.6582689207372185
- expm10112 expm1 0.8450154566787712 -> 1.3280137976535897
- expm10113 expm1 -0.13979260323125264 -> -0.13046144381396060
- expm10114 expm1 -0.52899322039643271 -> -0.41080213643695923
- expm10115 expm1 -0.74083261478900631 -> -0.52328317124797097
- expm10116 expm1 -0.93847766984546055 -> -0.60877704724085946
- expm10117 expm1 10.0 -> 22025.465794806718
- expm10118 expm1 27.0 -> 532048240600.79865
- expm10119 expm1 123 -> 2.6195173187490626e+53
- expm10120 expm1 -12.0 -> -0.99999385578764666
- expm10121 expm1 -35.100000000000001 -> -0.99999999999999944
- -- extreme negative values
- expm10201 expm1 -37.0 -> -0.99999999999999989
- expm10200 expm1 -38.0 -> -1.0
- expm10210 expm1 -710.0 -> -1.0
- -- the formula expm1(x) = 2 * sinh(x/2) * exp(x/2) doesn't work so
- -- well when exp(x/2) is subnormal or underflows to zero; check we're
- -- not using it!
- expm10211 expm1 -1420.0 -> -1.0
- expm10212 expm1 -1450.0 -> -1.0
- expm10213 expm1 -1500.0 -> -1.0
- expm10214 expm1 -1e50 -> -1.0
- expm10215 expm1 -1.79e308 -> -1.0
- -- extreme positive values
- expm10300 expm1 300 -> 1.9424263952412558e+130
- expm10301 expm1 700 -> 1.0142320547350045e+304
- -- the next test (expm10302) is disabled because it causes failure on
- -- OS X 10.4/Intel: apparently all values over 709.78 produce an
- -- overflow on that platform. See issue #7575.
- -- expm10302 expm1 709.78271289328393 -> 1.7976931346824240e+308
- expm10303 expm1 709.78271289348402 -> inf overflow
- expm10304 expm1 1000 -> inf overflow
- expm10305 expm1 1e50 -> inf overflow
- expm10306 expm1 1.79e308 -> inf overflow
- -- weaker version of expm10302
- expm10307 expm1 709.5 -> 1.3549863193146328e+308
|