123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185 |
- ======================================
- Python IEEE 754 floating point support
- ======================================
- >>> from sys import float_info as FI
- >>> from math import *
- >>> PI = pi
- >>> E = e
- You must never compare two floats with == because you are not going to get
- what you expect. We treat two floats as equal if the difference between them
- is small than epsilon.
- >>> EPS = 1E-15
- >>> def equal(x, y):
- ... """Almost equal helper for floats"""
- ... return abs(x - y) < EPS
- NaNs and INFs
- =============
- In Python 2.6 and newer NaNs (not a number) and infinity can be constructed
- from the strings 'inf' and 'nan'.
- >>> INF = float('inf')
- >>> NINF = float('-inf')
- >>> NAN = float('nan')
- >>> INF
- inf
- >>> NINF
- -inf
- >>> NAN
- nan
- The math module's ``isnan`` and ``isinf`` functions can be used to detect INF
- and NAN:
- >>> isinf(INF), isinf(NINF), isnan(NAN)
- (True, True, True)
- >>> INF == -NINF
- True
- Infinity
- --------
- Ambiguous operations like ``0 * inf`` or ``inf - inf`` result in NaN.
- >>> INF * 0
- nan
- >>> INF - INF
- nan
- >>> INF / INF
- nan
- However unambigous operations with inf return inf:
- >>> INF * INF
- inf
- >>> 1.5 * INF
- inf
- >>> 0.5 * INF
- inf
- >>> INF / 1000
- inf
- Not a Number
- ------------
- NaNs are never equal to another number, even itself
- >>> NAN == NAN
- False
- >>> NAN < 0
- False
- >>> NAN >= 0
- False
- All operations involving a NaN return a NaN except for nan**0 and 1**nan.
- >>> 1 + NAN
- nan
- >>> 1 * NAN
- nan
- >>> 0 * NAN
- nan
- >>> 1 ** NAN
- 1.0
- >>> NAN ** 0
- 1.0
- >>> 0 ** NAN
- nan
- >>> (1.0 + FI.epsilon) * NAN
- nan
- Misc Functions
- ==============
- The power of 1 raised to x is always 1.0, even for special values like 0,
- infinity and NaN.
- >>> pow(1, 0)
- 1.0
- >>> pow(1, INF)
- 1.0
- >>> pow(1, -INF)
- 1.0
- >>> pow(1, NAN)
- 1.0
- The power of 0 raised to x is defined as 0, if x is positive. Negative
- values are a domain error or zero division error and NaN result in a
- silent NaN.
- >>> pow(0, 0)
- 1.0
- >>> pow(0, INF)
- 0.0
- >>> pow(0, -INF)
- Traceback (most recent call last):
- ...
- ValueError: math domain error
- >>> 0 ** -1
- Traceback (most recent call last):
- ...
- ZeroDivisionError: 0.0 cannot be raised to a negative power
- >>> pow(0, NAN)
- nan
- Trigonometric Functions
- =======================
- >>> sin(INF)
- Traceback (most recent call last):
- ...
- ValueError: math domain error
- >>> sin(NINF)
- Traceback (most recent call last):
- ...
- ValueError: math domain error
- >>> sin(NAN)
- nan
- >>> cos(INF)
- Traceback (most recent call last):
- ...
- ValueError: math domain error
- >>> cos(NINF)
- Traceback (most recent call last):
- ...
- ValueError: math domain error
- >>> cos(NAN)
- nan
- >>> tan(INF)
- Traceback (most recent call last):
- ...
- ValueError: math domain error
- >>> tan(NINF)
- Traceback (most recent call last):
- ...
- ValueError: math domain error
- >>> tan(NAN)
- nan
- Neither pi nor tan are exact, but you can assume that tan(pi/2) is a large value
- and tan(pi) is a very small value:
- >>> tan(PI/2) > 1E10
- True
- >>> -tan(-PI/2) > 1E10
- True
- >>> tan(PI) < 1E-15
- True
- >>> asin(NAN), acos(NAN), atan(NAN)
- (nan, nan, nan)
- >>> asin(INF), asin(NINF)
- Traceback (most recent call last):
- ...
- ValueError: math domain error
- >>> acos(INF), acos(NINF)
- Traceback (most recent call last):
- ...
- ValueError: math domain error
- >>> equal(atan(INF), PI/2), equal(atan(NINF), -PI/2)
- (True, True)
- Hyberbolic Functions
- ====================
|