ieee754.txt 3.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185
  1. ======================================
  2. Python IEEE 754 floating point support
  3. ======================================
  4. >>> from sys import float_info as FI
  5. >>> from math import *
  6. >>> PI = pi
  7. >>> E = e
  8. You must never compare two floats with == because you are not going to get
  9. what you expect. We treat two floats as equal if the difference between them
  10. is small than epsilon.
  11. >>> EPS = 1E-15
  12. >>> def equal(x, y):
  13. ... """Almost equal helper for floats"""
  14. ... return abs(x - y) < EPS
  15. NaNs and INFs
  16. =============
  17. In Python 2.6 and newer NaNs (not a number) and infinity can be constructed
  18. from the strings 'inf' and 'nan'.
  19. >>> INF = float('inf')
  20. >>> NINF = float('-inf')
  21. >>> NAN = float('nan')
  22. >>> INF
  23. inf
  24. >>> NINF
  25. -inf
  26. >>> NAN
  27. nan
  28. The math module's ``isnan`` and ``isinf`` functions can be used to detect INF
  29. and NAN:
  30. >>> isinf(INF), isinf(NINF), isnan(NAN)
  31. (True, True, True)
  32. >>> INF == -NINF
  33. True
  34. Infinity
  35. --------
  36. Ambiguous operations like ``0 * inf`` or ``inf - inf`` result in NaN.
  37. >>> INF * 0
  38. nan
  39. >>> INF - INF
  40. nan
  41. >>> INF / INF
  42. nan
  43. However unambigous operations with inf return inf:
  44. >>> INF * INF
  45. inf
  46. >>> 1.5 * INF
  47. inf
  48. >>> 0.5 * INF
  49. inf
  50. >>> INF / 1000
  51. inf
  52. Not a Number
  53. ------------
  54. NaNs are never equal to another number, even itself
  55. >>> NAN == NAN
  56. False
  57. >>> NAN < 0
  58. False
  59. >>> NAN >= 0
  60. False
  61. All operations involving a NaN return a NaN except for nan**0 and 1**nan.
  62. >>> 1 + NAN
  63. nan
  64. >>> 1 * NAN
  65. nan
  66. >>> 0 * NAN
  67. nan
  68. >>> 1 ** NAN
  69. 1.0
  70. >>> NAN ** 0
  71. 1.0
  72. >>> 0 ** NAN
  73. nan
  74. >>> (1.0 + FI.epsilon) * NAN
  75. nan
  76. Misc Functions
  77. ==============
  78. The power of 1 raised to x is always 1.0, even for special values like 0,
  79. infinity and NaN.
  80. >>> pow(1, 0)
  81. 1.0
  82. >>> pow(1, INF)
  83. 1.0
  84. >>> pow(1, -INF)
  85. 1.0
  86. >>> pow(1, NAN)
  87. 1.0
  88. The power of 0 raised to x is defined as 0, if x is positive. Negative
  89. values are a domain error or zero division error and NaN result in a
  90. silent NaN.
  91. >>> pow(0, 0)
  92. 1.0
  93. >>> pow(0, INF)
  94. 0.0
  95. >>> pow(0, -INF)
  96. Traceback (most recent call last):
  97. ...
  98. ValueError: math domain error
  99. >>> 0 ** -1
  100. Traceback (most recent call last):
  101. ...
  102. ZeroDivisionError: 0.0 cannot be raised to a negative power
  103. >>> pow(0, NAN)
  104. nan
  105. Trigonometric Functions
  106. =======================
  107. >>> sin(INF)
  108. Traceback (most recent call last):
  109. ...
  110. ValueError: math domain error
  111. >>> sin(NINF)
  112. Traceback (most recent call last):
  113. ...
  114. ValueError: math domain error
  115. >>> sin(NAN)
  116. nan
  117. >>> cos(INF)
  118. Traceback (most recent call last):
  119. ...
  120. ValueError: math domain error
  121. >>> cos(NINF)
  122. Traceback (most recent call last):
  123. ...
  124. ValueError: math domain error
  125. >>> cos(NAN)
  126. nan
  127. >>> tan(INF)
  128. Traceback (most recent call last):
  129. ...
  130. ValueError: math domain error
  131. >>> tan(NINF)
  132. Traceback (most recent call last):
  133. ...
  134. ValueError: math domain error
  135. >>> tan(NAN)
  136. nan
  137. Neither pi nor tan are exact, but you can assume that tan(pi/2) is a large value
  138. and tan(pi) is a very small value:
  139. >>> tan(PI/2) > 1E10
  140. True
  141. >>> -tan(-PI/2) > 1E10
  142. True
  143. >>> tan(PI) < 1E-15
  144. True
  145. >>> asin(NAN), acos(NAN), atan(NAN)
  146. (nan, nan, nan)
  147. >>> asin(INF), asin(NINF)
  148. Traceback (most recent call last):
  149. ...
  150. ValueError: math domain error
  151. >>> acos(INF), acos(NINF)
  152. Traceback (most recent call last):
  153. ...
  154. ValueError: math domain error
  155. >>> equal(atan(INF), PI/2), equal(atan(NINF), -PI/2)
  156. (True, True)
  157. Hyberbolic Functions
  158. ====================