rubycomplex.swg 3.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148
  1. /*
  2. Defines the As/From conversors for double/float complex, you need to
  3. provide complex Type, the Name you want to use in the converters,
  4. the complex Constructor method, and the Real and Imag complex
  5. accessor methods.
  6. See the std_complex.i and ccomplex.i for concrete examples.
  7. */
  8. %fragment("rb_complex_new","header")
  9. {
  10. %#if !defined(T_COMPLEX)
  11. /* Ruby versions prior to 1.9 did not have native complex numbers. They were an extension in the STD library. */
  12. SWIGINTERN VALUE rb_complex_new(VALUE x, VALUE y) {
  13. static ID new_id = rb_intern("new");
  14. static VALUE cComplex = rb_const_get(rb_cObject, rb_intern("Complex"));
  15. return rb_funcall(cComplex, new_id, 2, x, y);
  16. }
  17. %#endif
  18. }
  19. %fragment("SWIG_Complex_Numbers","header")
  20. {
  21. %#if !defined(T_COMPLEX)
  22. SWIGINTERN int SWIG_Is_Complex( VALUE obj ) {
  23. static ID real_id = rb_intern("real");
  24. static ID imag_id = rb_intern("imag");
  25. return ( (rb_respond_to( obj, real_id ) ) &&
  26. (rb_respond_to( obj, imag_id ) ) );
  27. }
  28. %#else
  29. SWIGINTERN int SWIG_Is_Complex( VALUE obj ) {
  30. return TYPE(obj) == T_COMPLEX;
  31. }
  32. %#endif
  33. SWIGINTERN VALUE SWIG_Complex_Real(VALUE obj) {
  34. static ID real_id = rb_intern("real");
  35. return rb_funcall(obj, real_id, 0);
  36. }
  37. SWIGINTERN VALUE SWIG_Complex_Imaginary(VALUE obj) {
  38. static ID imag_id = rb_intern("imag");
  39. return rb_funcall(obj, imag_id, 0);
  40. }
  41. }
  42. %init {
  43. %#if !defined(T_COMPLEX)
  44. rb_require("complex");
  45. %#endif
  46. }
  47. /* the common from converter */
  48. %define %swig_fromcplx_conv(Type, Real, Imag)
  49. %fragment(SWIG_From_frag(Type),"header",fragment="rb_complex_new")
  50. {
  51. SWIGINTERNINLINE VALUE
  52. SWIG_From(Type)(%ifcplusplus(const Type&, Type) c)
  53. {
  54. VALUE re = rb_float_new(Real(c));
  55. VALUE im = rb_float_new(Imag(c));
  56. return rb_complex_new(re, im);
  57. }
  58. }
  59. %enddef
  60. /* the double case */
  61. %define %swig_cplxdbl_conv(Type, Constructor, Real, Imag)
  62. %fragment(SWIG_AsVal_frag(Type),"header",
  63. fragment=SWIG_AsVal_frag(double),
  64. fragment="SWIG_Complex_Numbers")
  65. {
  66. SWIGINTERN int
  67. SWIG_AsVal(Type) (VALUE o, Type* val)
  68. {
  69. if ( SWIG_Is_Complex( o ) ) {
  70. if (val) {
  71. VALUE real = SWIG_Complex_Real(o);
  72. VALUE imag = SWIG_Complex_Imaginary(o);
  73. double re = 0;
  74. SWIG_AsVal_double( real, &re );
  75. double im = 0;
  76. SWIG_AsVal_double( imag, &im );
  77. *val = Constructor(re, im);
  78. }
  79. return SWIG_OK;
  80. } else {
  81. double d;
  82. int res = SWIG_AddCast(SWIG_AsVal(double)(o, &d));
  83. if (SWIG_IsOK(res)) {
  84. if (val) *val = Constructor(d, 0.0);
  85. return res;
  86. }
  87. }
  88. return SWIG_TypeError;
  89. }
  90. }
  91. %swig_fromcplx_conv(Type, Real, Imag);
  92. %enddef
  93. /* the float case */
  94. %define %swig_cplxflt_conv(Type, Constructor, Real, Imag)
  95. %fragment(SWIG_AsVal_frag(Type),"header",
  96. fragment=SWIG_AsVal_frag(float),
  97. fragment=SWIG_AsVal_frag(double),
  98. fragment="SWIG_Complex_Numbers") {
  99. SWIGINTERN int
  100. SWIG_AsVal(Type)(VALUE o, Type *val)
  101. {
  102. if ( SWIG_Is_Complex( o ) ) {
  103. VALUE real = SWIG_Complex_Real(o);
  104. VALUE imag = SWIG_Complex_Imaginary(o);
  105. double re = 0;
  106. SWIG_AsVal_double( real, &re );
  107. double im = 0;
  108. SWIG_AsVal_double( imag, &im );
  109. if ((-FLT_MAX <= re && re <= FLT_MAX) &&
  110. (-FLT_MAX <= im && im <= FLT_MAX)) {
  111. if (val) *val = Constructor(%numeric_cast(re, float),
  112. %numeric_cast(im, float));
  113. return SWIG_OK;
  114. } else {
  115. return SWIG_OverflowError;
  116. }
  117. } else {
  118. float re;
  119. int res = SWIG_AddCast(SWIG_AsVal(float)(o, &re));
  120. if (SWIG_IsOK(res)) {
  121. if (val) *val = Constructor(re, 0.0);
  122. return res;
  123. }
  124. }
  125. return SWIG_TypeError;
  126. }
  127. }
  128. %swig_fromcplx_conv(Type, Real, Imag);
  129. %enddef
  130. #define %swig_cplxflt_convn(Type, Constructor, Real, Imag) \
  131. %swig_cplxflt_conv(Type, Constructor, Real, Imag)
  132. #define %swig_cplxdbl_convn(Type, Constructor, Real, Imag) \
  133. %swig_cplxdbl_conv(Type, Constructor, Real, Imag)