123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239 |
- '''This module implements specialized container datatypes providing
- alternatives to Python's general purpose built-in containers, dict,
- list, set, and tuple.
- * namedtuple factory function for creating tuple subclasses with named fields
- * deque list-like container with fast appends and pops on either end
- * ChainMap dict-like class for creating a single view of multiple mappings
- * Counter dict subclass for counting hashable objects
- * OrderedDict dict subclass that remembers the order entries were added
- * defaultdict dict subclass that calls a factory function to supply missing values
- * UserDict wrapper around dictionary objects for easier dict subclassing
- * UserList wrapper around list objects for easier list subclassing
- * UserString wrapper around string objects for easier string subclassing
- '''
- __all__ = ['deque', 'defaultdict', 'namedtuple', 'UserDict', 'UserList',
- 'UserString', 'Counter', 'OrderedDict', 'ChainMap']
- # For backwards compatibility, continue to make the collections ABCs
- # available through the collections module.
- from _collections_abc import *
- import _collections_abc
- __all__ += _collections_abc.__all__
- from operator import itemgetter as _itemgetter, eq as _eq
- from keyword import iskeyword as _iskeyword
- import sys as _sys
- import heapq as _heapq
- from _weakref import proxy as _proxy
- from itertools import repeat as _repeat, chain as _chain, starmap as _starmap
- from reprlib import recursive_repr as _recursive_repr
- try:
- from _collections import deque
- except ImportError:
- pass
- else:
- MutableSequence.register(deque)
- try:
- from _collections import defaultdict
- except ImportError:
- pass
- ################################################################################
- ### OrderedDict
- ################################################################################
- class _OrderedDictKeysView(KeysView):
- def __reversed__(self):
- yield from reversed(self._mapping)
- class _OrderedDictItemsView(ItemsView):
- def __reversed__(self):
- for key in reversed(self._mapping):
- yield (key, self._mapping[key])
- class _OrderedDictValuesView(ValuesView):
- def __reversed__(self):
- for key in reversed(self._mapping):
- yield self._mapping[key]
- class _Link(object):
- __slots__ = 'prev', 'next', 'key', '__weakref__'
- class OrderedDict(dict):
- 'Dictionary that remembers insertion order'
- # An inherited dict maps keys to values.
- # The inherited dict provides __getitem__, __len__, __contains__, and get.
- # The remaining methods are order-aware.
- # Big-O running times for all methods are the same as regular dictionaries.
- # The internal self.__map dict maps keys to links in a doubly linked list.
- # The circular doubly linked list starts and ends with a sentinel element.
- # The sentinel element never gets deleted (this simplifies the algorithm).
- # The sentinel is in self.__hardroot with a weakref proxy in self.__root.
- # The prev links are weakref proxies (to prevent circular references).
- # Individual links are kept alive by the hard reference in self.__map.
- # Those hard references disappear when a key is deleted from an OrderedDict.
- def __init__(*args, **kwds):
- '''Initialize an ordered dictionary. The signature is the same as
- regular dictionaries, but keyword arguments are not recommended because
- their insertion order is arbitrary.
- '''
- if not args:
- raise TypeError("descriptor '__init__' of 'OrderedDict' object "
- "needs an argument")
- self, *args = args
- if len(args) > 1:
- raise TypeError('expected at most 1 arguments, got %d' % len(args))
- try:
- self.__root
- except AttributeError:
- self.__hardroot = _Link()
- self.__root = root = _proxy(self.__hardroot)
- root.prev = root.next = root
- self.__map = {}
- self.__update(*args, **kwds)
- def __setitem__(self, key, value,
- dict_setitem=dict.__setitem__, proxy=_proxy, Link=_Link):
- 'od.__setitem__(i, y) <==> od[i]=y'
- # Setting a new item creates a new link at the end of the linked list,
- # and the inherited dictionary is updated with the new key/value pair.
- if key not in self:
- self.__map[key] = link = Link()
- root = self.__root
- last = root.prev
- link.prev, link.next, link.key = last, root, key
- last.next = link
- root.prev = proxy(link)
- dict_setitem(self, key, value)
- def __delitem__(self, key, dict_delitem=dict.__delitem__):
- 'od.__delitem__(y) <==> del od[y]'
- # Deleting an existing item uses self.__map to find the link which gets
- # removed by updating the links in the predecessor and successor nodes.
- dict_delitem(self, key)
- link = self.__map.pop(key)
- link_prev = link.prev
- link_next = link.next
- link_prev.next = link_next
- link_next.prev = link_prev
- link.prev = None
- link.next = None
- def __iter__(self):
- 'od.__iter__() <==> iter(od)'
- # Traverse the linked list in order.
- root = self.__root
- curr = root.next
- while curr is not root:
- yield curr.key
- curr = curr.next
- def __reversed__(self):
- 'od.__reversed__() <==> reversed(od)'
- # Traverse the linked list in reverse order.
- root = self.__root
- curr = root.prev
- while curr is not root:
- yield curr.key
- curr = curr.prev
- def clear(self):
- 'od.clear() -> None. Remove all items from od.'
- root = self.__root
- root.prev = root.next = root
- self.__map.clear()
- dict.clear(self)
- def popitem(self, last=True):
- '''od.popitem() -> (k, v), return and remove a (key, value) pair.
- Pairs are returned in LIFO order if last is true or FIFO order if false.
- '''
- if not self:
- raise KeyError('dictionary is empty')
- root = self.__root
- if last:
- link = root.prev
- link_prev = link.prev
- link_prev.next = root
- root.prev = link_prev
- else:
- link = root.next
- link_next = link.next
- root.next = link_next
- link_next.prev = root
- key = link.key
- del self.__map[key]
- value = dict.pop(self, key)
- return key, value
- def move_to_end(self, key, last=True):
- '''Move an existing element to the end (or beginning if last==False).
- Raises KeyError if the element does not exist.
- When last=True, acts like a fast version of self[key]=self.pop(key).
- '''
- link = self.__map[key]
- link_prev = link.prev
- link_next = link.next
- link_prev.next = link_next
- link_next.prev = link_prev
- root = self.__root
- if last:
- last = root.prev
- link.prev = last
- link.next = root
- last.next = root.prev = link
- else:
- first = root.next
- link.prev = root
- link.next = first
- root.next = first.prev = link
- def __sizeof__(self):
- sizeof = _sys.getsizeof
- n = len(self) + 1 # number of links including root
- size = sizeof(self.__dict__) # instance dictionary
- size += sizeof(self.__map) * 2 # internal dict and inherited dict
- size += sizeof(self.__hardroot) * n # link objects
- size += sizeof(self.__root) * n # proxy objects
- return size
- update = __update = MutableMapping.update
- def keys(self):
- "D.keys() -> a set-like object providing a view on D's keys"
- return _OrderedDictKeysView(self)
- def items(self):
- "D.items() -> a set-like object providing a view on D's items"
- return _OrderedDictItemsView(self)
- def values(self):
- "D.values() -> an object providing a view on D's values"
- return _OrderedDictValuesView(self)
- __ne__ = MutableMapping.__ne__
- __marker = object()
- def pop(self, key, default=__marker):
- '''od.pop(k[,d]) -> v, remove specified key and return the corresponding
- value. If key is not found, d is returned if given, otherwise KeyError
- is raised.
- '''
- if key in self:
- result = self[key]
- del self[key]
- return result
- if default is self.__marker:
- raise KeyError(key)
- return default
- def setdefault(self, key, default=None):
- 'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od'
- if key in self:
- return self[key]
- self[key] = default
- return default
- @_recursive_repr()
- def __repr__(self):
- 'od.__repr__() <==> repr(od)'
- if not self:
- return '%s()' % (self.__class__.__name__,)
- return '%s(%r)' % (self.__class__.__name__, list(self.items()))
- def __reduce__(self):
- 'Return state information for pickling'
- inst_dict = vars(self).copy()
- for k in vars(OrderedDict()):
- inst_dict.pop(k, None)
- return self.__class__, (), inst_dict or None, None, iter(self.items())
- def copy(self):
- 'od.copy() -> a shallow copy of od'
- return self.__class__(self)
- @classmethod
- def fromkeys(cls, iterable, value=None):
- '''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S.
- If not specified, the value defaults to None.
- '''
- self = cls()
- for key in iterable:
- self[key] = value
- return self
- def __eq__(self, other):
- '''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive
- while comparison to a regular mapping is order-insensitive.
- '''
- if isinstance(other, OrderedDict):
- return dict.__eq__(self, other) and all(map(_eq, self, other))
- return dict.__eq__(self, other)
- try:
- from _collections import OrderedDict
- except ImportError:
- # Leave the pure Python version in place.
- pass
- ################################################################################
- ### namedtuple
- ################################################################################
- _class_template = """\
- from builtins import property as _property, tuple as _tuple
- from operator import itemgetter as _itemgetter
- from collections import OrderedDict
- class {typename}(tuple):
- '{typename}({arg_list})'
- __slots__ = ()
- _fields = {field_names!r}
- def __new__(_cls, {arg_list}):
- 'Create new instance of {typename}({arg_list})'
- return _tuple.__new__(_cls, ({arg_list}))
- @classmethod
- def _make(cls, iterable, new=tuple.__new__, len=len):
- 'Make a new {typename} object from a sequence or iterable'
- result = new(cls, iterable)
- if len(result) != {num_fields:d}:
- raise TypeError('Expected {num_fields:d} arguments, got %d' % len(result))
- return result
- def _replace(_self, **kwds):
- 'Return a new {typename} object replacing specified fields with new values'
- result = _self._make(map(kwds.pop, {field_names!r}, _self))
- if kwds:
- raise ValueError('Got unexpected field names: %r' % list(kwds))
- return result
- def __repr__(self):
- 'Return a nicely formatted representation string'
- return self.__class__.__name__ + '({repr_fmt})' % self
- def _asdict(self):
- 'Return a new OrderedDict which maps field names to their values.'
- return OrderedDict(zip(self._fields, self))
- def __getnewargs__(self):
- 'Return self as a plain tuple. Used by copy and pickle.'
- return tuple(self)
- {field_defs}
- """
- _repr_template = '{name}=%r'
- _field_template = '''\
- {name} = _property(_itemgetter({index:d}), doc='Alias for field number {index:d}')
- '''
- def namedtuple(typename, field_names, verbose=False, rename=False):
- """Returns a new subclass of tuple with named fields.
- >>> Point = namedtuple('Point', ['x', 'y'])
- >>> Point.__doc__ # docstring for the new class
- 'Point(x, y)'
- >>> p = Point(11, y=22) # instantiate with positional args or keywords
- >>> p[0] + p[1] # indexable like a plain tuple
- 33
- >>> x, y = p # unpack like a regular tuple
- >>> x, y
- (11, 22)
- >>> p.x + p.y # fields also accessible by name
- 33
- >>> d = p._asdict() # convert to a dictionary
- >>> d['x']
- 11
- >>> Point(**d) # convert from a dictionary
- Point(x=11, y=22)
- >>> p._replace(x=100) # _replace() is like str.replace() but targets named fields
- Point(x=100, y=22)
- """
- # Validate the field names. At the user's option, either generate an error
- # message or automatically replace the field name with a valid name.
- if isinstance(field_names, str):
- field_names = field_names.replace(',', ' ').split()
- field_names = list(map(str, field_names))
- typename = str(typename)
- if rename:
- seen = set()
- for index, name in enumerate(field_names):
- if (not name.isidentifier()
- or _iskeyword(name)
- or name.startswith('_')
- or name in seen):
- field_names[index] = '_%d' % index
- seen.add(name)
- for name in [typename] + field_names:
- if type(name) != str:
- raise TypeError('Type names and field names must be strings')
- if not name.isidentifier():
- raise ValueError('Type names and field names must be valid '
- 'identifiers: %r' % name)
- if _iskeyword(name):
- raise ValueError('Type names and field names cannot be a '
- 'keyword: %r' % name)
- seen = set()
- for name in field_names:
- if name.startswith('_') and not rename:
- raise ValueError('Field names cannot start with an underscore: '
- '%r' % name)
- if name in seen:
- raise ValueError('Encountered duplicate field name: %r' % name)
- seen.add(name)
- # Fill-in the class template
- class_definition = _class_template.format(
- typename = typename,
- field_names = tuple(field_names),
- num_fields = len(field_names),
- arg_list = repr(tuple(field_names)).replace("'", "")[1:-1],
- repr_fmt = ', '.join(_repr_template.format(name=name)
- for name in field_names),
- field_defs = '\n'.join(_field_template.format(index=index, name=name)
- for index, name in enumerate(field_names))
- )
- # Execute the template string in a temporary namespace and support
- # tracing utilities by setting a value for frame.f_globals['__name__']
- namespace = dict(__name__='namedtuple_%s' % typename)
- exec(class_definition, namespace)
- result = namespace[typename]
- result._source = class_definition
- if verbose:
- print(result._source)
- # For pickling to work, the __module__ variable needs to be set to the frame
- # where the named tuple is created. Bypass this step in environments where
- # sys._getframe is not defined (Jython for example) or sys._getframe is not
- # defined for arguments greater than 0 (IronPython).
- try:
- result.__module__ = _sys._getframe(1).f_globals.get('__name__', '__main__')
- except (AttributeError, ValueError):
- pass
- return result
- ########################################################################
- ### Counter
- ########################################################################
- def _count_elements(mapping, iterable):
- 'Tally elements from the iterable.'
- mapping_get = mapping.get
- for elem in iterable:
- mapping[elem] = mapping_get(elem, 0) + 1
- try: # Load C helper function if available
- from _collections import _count_elements
- except ImportError:
- pass
- class Counter(dict):
- '''Dict subclass for counting hashable items. Sometimes called a bag
- or multiset. Elements are stored as dictionary keys and their counts
- are stored as dictionary values.
- >>> c = Counter('abcdeabcdabcaba') # count elements from a string
- >>> c.most_common(3) # three most common elements
- [('a', 5), ('b', 4), ('c', 3)]
- >>> sorted(c) # list all unique elements
- ['a', 'b', 'c', 'd', 'e']
- >>> ''.join(sorted(c.elements())) # list elements with repetitions
- 'aaaaabbbbcccdde'
- >>> sum(c.values()) # total of all counts
- 15
- >>> c['a'] # count of letter 'a'
- 5
- >>> for elem in 'shazam': # update counts from an iterable
- ... c[elem] += 1 # by adding 1 to each element's count
- >>> c['a'] # now there are seven 'a'
- 7
- >>> del c['b'] # remove all 'b'
- >>> c['b'] # now there are zero 'b'
- 0
- >>> d = Counter('simsalabim') # make another counter
- >>> c.update(d) # add in the second counter
- >>> c['a'] # now there are nine 'a'
- 9
- >>> c.clear() # empty the counter
- >>> c
- Counter()
- Note: If a count is set to zero or reduced to zero, it will remain
- in the counter until the entry is deleted or the counter is cleared:
- >>> c = Counter('aaabbc')
- >>> c['b'] -= 2 # reduce the count of 'b' by two
- >>> c.most_common() # 'b' is still in, but its count is zero
- [('a', 3), ('c', 1), ('b', 0)]
- '''
- # References:
- # http://en.wikipedia.org/wiki/Multiset
- # http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
- # http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm
- # http://code.activestate.com/recipes/259174/
- # Knuth, TAOCP Vol. II section 4.6.3
- def __init__(*args, **kwds):
- '''Create a new, empty Counter object. And if given, count elements
- from an input iterable. Or, initialize the count from another mapping
- of elements to their counts.
- >>> c = Counter() # a new, empty counter
- >>> c = Counter('gallahad') # a new counter from an iterable
- >>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping
- >>> c = Counter(a=4, b=2) # a new counter from keyword args
- '''
- if not args:
- raise TypeError("descriptor '__init__' of 'Counter' object "
- "needs an argument")
- self, *args = args
- if len(args) > 1:
- raise TypeError('expected at most 1 arguments, got %d' % len(args))
- super(Counter, self).__init__()
- self.update(*args, **kwds)
- def __missing__(self, key):
- 'The count of elements not in the Counter is zero.'
- # Needed so that self[missing_item] does not raise KeyError
- return 0
- def most_common(self, n=None):
- '''List the n most common elements and their counts from the most
- common to the least. If n is None, then list all element counts.
- >>> Counter('abcdeabcdabcaba').most_common(3)
- [('a', 5), ('b', 4), ('c', 3)]
- '''
- # Emulate Bag.sortedByCount from Smalltalk
- if n is None:
- return sorted(self.items(), key=_itemgetter(1), reverse=True)
- return _heapq.nlargest(n, self.items(), key=_itemgetter(1))
- def elements(self):
- '''Iterator over elements repeating each as many times as its count.
- >>> c = Counter('ABCABC')
- >>> sorted(c.elements())
- ['A', 'A', 'B', 'B', 'C', 'C']
- # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1
- >>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
- >>> product = 1
- >>> for factor in prime_factors.elements(): # loop over factors
- ... product *= factor # and multiply them
- >>> product
- 1836
- Note, if an element's count has been set to zero or is a negative
- number, elements() will ignore it.
- '''
- # Emulate Bag.do from Smalltalk and Multiset.begin from C++.
- return _chain.from_iterable(_starmap(_repeat, self.items()))
- # Override dict methods where necessary
- @classmethod
- def fromkeys(cls, iterable, v=None):
- # There is no equivalent method for counters because setting v=1
- # means that no element can have a count greater than one.
- raise NotImplementedError(
- 'Counter.fromkeys() is undefined. Use Counter(iterable) instead.')
- def update(*args, **kwds):
- '''Like dict.update() but add counts instead of replacing them.
- Source can be an iterable, a dictionary, or another Counter instance.
- >>> c = Counter('which')
- >>> c.update('witch') # add elements from another iterable
- >>> d = Counter('watch')
- >>> c.update(d) # add elements from another counter
- >>> c['h'] # four 'h' in which, witch, and watch
- 4
- '''
- # The regular dict.update() operation makes no sense here because the
- # replace behavior results in the some of original untouched counts
- # being mixed-in with all of the other counts for a mismash that
- # doesn't have a straight-forward interpretation in most counting
- # contexts. Instead, we implement straight-addition. Both the inputs
- # and outputs are allowed to contain zero and negative counts.
- if not args:
- raise TypeError("descriptor 'update' of 'Counter' object "
- "needs an argument")
- self, *args = args
- if len(args) > 1:
- raise TypeError('expected at most 1 arguments, got %d' % len(args))
- iterable = args[0] if args else None
- if iterable is not None:
- if isinstance(iterable, Mapping):
- if self:
- self_get = self.get
- for elem, count in iterable.items():
- self[elem] = count + self_get(elem, 0)
- else:
- super(Counter, self).update(iterable) # fast path when counter is empty
- else:
- _count_elements(self, iterable)
- if kwds:
- self.update(kwds)
- def subtract(*args, **kwds):
- '''Like dict.update() but subtracts counts instead of replacing them.
- Counts can be reduced below zero. Both the inputs and outputs are
- allowed to contain zero and negative counts.
- Source can be an iterable, a dictionary, or another Counter instance.
- >>> c = Counter('which')
- >>> c.subtract('witch') # subtract elements from another iterable
- >>> c.subtract(Counter('watch')) # subtract elements from another counter
- >>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch
- 0
- >>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch
- -1
- '''
- if not args:
- raise TypeError("descriptor 'subtract' of 'Counter' object "
- "needs an argument")
- self, *args = args
- if len(args) > 1:
- raise TypeError('expected at most 1 arguments, got %d' % len(args))
- iterable = args[0] if args else None
- if iterable is not None:
- self_get = self.get
- if isinstance(iterable, Mapping):
- for elem, count in iterable.items():
- self[elem] = self_get(elem, 0) - count
- else:
- for elem in iterable:
- self[elem] = self_get(elem, 0) - 1
- if kwds:
- self.subtract(kwds)
- def copy(self):
- 'Return a shallow copy.'
- return self.__class__(self)
- def __reduce__(self):
- return self.__class__, (dict(self),)
- def __delitem__(self, elem):
- 'Like dict.__delitem__() but does not raise KeyError for missing values.'
- if elem in self:
- super().__delitem__(elem)
- def __repr__(self):
- if not self:
- return '%s()' % self.__class__.__name__
- try:
- items = ', '.join(map('%r: %r'.__mod__, self.most_common()))
- return '%s({%s})' % (self.__class__.__name__, items)
- except TypeError:
- # handle case where values are not orderable
- return '{0}({1!r})'.format(self.__class__.__name__, dict(self))
- # Multiset-style mathematical operations discussed in:
- # Knuth TAOCP Volume II section 4.6.3 exercise 19
- # and at http://en.wikipedia.org/wiki/Multiset
- #
- # Outputs guaranteed to only include positive counts.
- #
- # To strip negative and zero counts, add-in an empty counter:
- # c += Counter()
- def __add__(self, other):
- '''Add counts from two counters.
- >>> Counter('abbb') + Counter('bcc')
- Counter({'b': 4, 'c': 2, 'a': 1})
- '''
- if not isinstance(other, Counter):
- return NotImplemented
- result = Counter()
- for elem, count in self.items():
- newcount = count + other[elem]
- if newcount > 0:
- result[elem] = newcount
- for elem, count in other.items():
- if elem not in self and count > 0:
- result[elem] = count
- return result
- def __sub__(self, other):
- ''' Subtract count, but keep only results with positive counts.
- >>> Counter('abbbc') - Counter('bccd')
- Counter({'b': 2, 'a': 1})
- '''
- if not isinstance(other, Counter):
- return NotImplemented
- result = Counter()
- for elem, count in self.items():
- newcount = count - other[elem]
- if newcount > 0:
- result[elem] = newcount
- for elem, count in other.items():
- if elem not in self and count < 0:
- result[elem] = 0 - count
- return result
- def __or__(self, other):
- '''Union is the maximum of value in either of the input counters.
- >>> Counter('abbb') | Counter('bcc')
- Counter({'b': 3, 'c': 2, 'a': 1})
- '''
- if not isinstance(other, Counter):
- return NotImplemented
- result = Counter()
- for elem, count in self.items():
- other_count = other[elem]
- newcount = other_count if count < other_count else count
- if newcount > 0:
- result[elem] = newcount
- for elem, count in other.items():
- if elem not in self and count > 0:
- result[elem] = count
- return result
- def __and__(self, other):
- ''' Intersection is the minimum of corresponding counts.
- >>> Counter('abbb') & Counter('bcc')
- Counter({'b': 1})
- '''
- if not isinstance(other, Counter):
- return NotImplemented
- result = Counter()
- for elem, count in self.items():
- other_count = other[elem]
- newcount = count if count < other_count else other_count
- if newcount > 0:
- result[elem] = newcount
- return result
- def __pos__(self):
- 'Adds an empty counter, effectively stripping negative and zero counts'
- result = Counter()
- for elem, count in self.items():
- if count > 0:
- result[elem] = count
- return result
- def __neg__(self):
- '''Subtracts from an empty counter. Strips positive and zero counts,
- and flips the sign on negative counts.
- '''
- result = Counter()
- for elem, count in self.items():
- if count < 0:
- result[elem] = 0 - count
- return result
- def _keep_positive(self):
- '''Internal method to strip elements with a negative or zero count'''
- nonpositive = [elem for elem, count in self.items() if not count > 0]
- for elem in nonpositive:
- del self[elem]
- return self
- def __iadd__(self, other):
- '''Inplace add from another counter, keeping only positive counts.
- >>> c = Counter('abbb')
- >>> c += Counter('bcc')
- >>> c
- Counter({'b': 4, 'c': 2, 'a': 1})
- '''
- for elem, count in other.items():
- self[elem] += count
- return self._keep_positive()
- def __isub__(self, other):
- '''Inplace subtract counter, but keep only results with positive counts.
- >>> c = Counter('abbbc')
- >>> c -= Counter('bccd')
- >>> c
- Counter({'b': 2, 'a': 1})
- '''
- for elem, count in other.items():
- self[elem] -= count
- return self._keep_positive()
- def __ior__(self, other):
- '''Inplace union is the maximum of value from either counter.
- >>> c = Counter('abbb')
- >>> c |= Counter('bcc')
- >>> c
- Counter({'b': 3, 'c': 2, 'a': 1})
- '''
- for elem, other_count in other.items():
- count = self[elem]
- if other_count > count:
- self[elem] = other_count
- return self._keep_positive()
- def __iand__(self, other):
- '''Inplace intersection is the minimum of corresponding counts.
- >>> c = Counter('abbb')
- >>> c &= Counter('bcc')
- >>> c
- Counter({'b': 1})
- '''
- for elem, count in self.items():
- other_count = other[elem]
- if other_count < count:
- self[elem] = other_count
- return self._keep_positive()
- ########################################################################
- ### ChainMap (helper for configparser and string.Template)
- ########################################################################
- class ChainMap(MutableMapping):
- ''' A ChainMap groups multiple dicts (or other mappings) together
- to create a single, updateable view.
- The underlying mappings are stored in a list. That list is public and can
- be accessed or updated using the *maps* attribute. There is no other
- state.
- Lookups search the underlying mappings successively until a key is found.
- In contrast, writes, updates, and deletions only operate on the first
- mapping.
- '''
- def __init__(self, *maps):
- '''Initialize a ChainMap by setting *maps* to the given mappings.
- If no mappings are provided, a single empty dictionary is used.
- '''
- self.maps = list(maps) or [{}] # always at least one map
- def __missing__(self, key):
- raise KeyError(key)
- def __getitem__(self, key):
- for mapping in self.maps:
- try:
- return mapping[key] # can't use 'key in mapping' with defaultdict
- except KeyError:
- pass
- return self.__missing__(key) # support subclasses that define __missing__
- def get(self, key, default=None):
- return self[key] if key in self else default
- def __len__(self):
- return len(set().union(*self.maps)) # reuses stored hash values if possible
- def __iter__(self):
- return iter(set().union(*self.maps))
- def __contains__(self, key):
- return any(key in m for m in self.maps)
- def __bool__(self):
- return any(self.maps)
- @_recursive_repr()
- def __repr__(self):
- return '{0.__class__.__name__}({1})'.format(
- self, ', '.join(map(repr, self.maps)))
- @classmethod
- def fromkeys(cls, iterable, *args):
- 'Create a ChainMap with a single dict created from the iterable.'
- return cls(dict.fromkeys(iterable, *args))
- def copy(self):
- 'New ChainMap or subclass with a new copy of maps[0] and refs to maps[1:]'
- return self.__class__(self.maps[0].copy(), *self.maps[1:])
- __copy__ = copy
- def new_child(self, m=None): # like Django's Context.push()
- '''New ChainMap with a new map followed by all previous maps.
- If no map is provided, an empty dict is used.
- '''
- if m is None:
- m = {}
- return self.__class__(m, *self.maps)
- @property
- def parents(self): # like Django's Context.pop()
- 'New ChainMap from maps[1:].'
- return self.__class__(*self.maps[1:])
- def __setitem__(self, key, value):
- self.maps[0][key] = value
- def __delitem__(self, key):
- try:
- del self.maps[0][key]
- except KeyError:
- raise KeyError('Key not found in the first mapping: {!r}'.format(key))
- def popitem(self):
- 'Remove and return an item pair from maps[0]. Raise KeyError is maps[0] is empty.'
- try:
- return self.maps[0].popitem()
- except KeyError:
- raise KeyError('No keys found in the first mapping.')
- def pop(self, key, *args):
- 'Remove *key* from maps[0] and return its value. Raise KeyError if *key* not in maps[0].'
- try:
- return self.maps[0].pop(key, *args)
- except KeyError:
- raise KeyError('Key not found in the first mapping: {!r}'.format(key))
- def clear(self):
- 'Clear maps[0], leaving maps[1:] intact.'
- self.maps[0].clear()
- ################################################################################
- ### UserDict
- ################################################################################
- class UserDict(MutableMapping):
- # Start by filling-out the abstract methods
- def __init__(*args, **kwargs):
- if not args:
- raise TypeError("descriptor '__init__' of 'UserDict' object "
- "needs an argument")
- self, *args = args
- if len(args) > 1:
- raise TypeError('expected at most 1 arguments, got %d' % len(args))
- if args:
- dict = args[0]
- elif 'dict' in kwargs:
- dict = kwargs.pop('dict')
- import warnings
- warnings.warn("Passing 'dict' as keyword argument is deprecated",
- PendingDeprecationWarning, stacklevel=2)
- else:
- dict = None
- self.data = {}
- if dict is not None:
- self.update(dict)
- if len(kwargs):
- self.update(kwargs)
- def __len__(self): return len(self.data)
- def __getitem__(self, key):
- if key in self.data:
- return self.data[key]
- if hasattr(self.__class__, "__missing__"):
- return self.__class__.__missing__(self, key)
- raise KeyError(key)
- def __setitem__(self, key, item): self.data[key] = item
- def __delitem__(self, key): del self.data[key]
- def __iter__(self):
- return iter(self.data)
- # Modify __contains__ to work correctly when __missing__ is present
- def __contains__(self, key):
- return key in self.data
- # Now, add the methods in dicts but not in MutableMapping
- def __repr__(self): return repr(self.data)
- def copy(self):
- if self.__class__ is UserDict:
- return UserDict(self.data.copy())
- import copy
- data = self.data
- try:
- self.data = {}
- c = copy.copy(self)
- finally:
- self.data = data
- c.update(self)
- return c
- @classmethod
- def fromkeys(cls, iterable, value=None):
- d = cls()
- for key in iterable:
- d[key] = value
- return d
- ################################################################################
- ### UserList
- ################################################################################
- class UserList(MutableSequence):
- """A more or less complete user-defined wrapper around list objects."""
- def __init__(self, initlist=None):
- self.data = []
- if initlist is not None:
- # XXX should this accept an arbitrary sequence?
- if type(initlist) == type(self.data):
- self.data[:] = initlist
- elif isinstance(initlist, UserList):
- self.data[:] = initlist.data[:]
- else:
- self.data = list(initlist)
- def __repr__(self): return repr(self.data)
- def __lt__(self, other): return self.data < self.__cast(other)
- def __le__(self, other): return self.data <= self.__cast(other)
- def __eq__(self, other): return self.data == self.__cast(other)
- def __gt__(self, other): return self.data > self.__cast(other)
- def __ge__(self, other): return self.data >= self.__cast(other)
- def __cast(self, other):
- return other.data if isinstance(other, UserList) else other
- def __contains__(self, item): return item in self.data
- def __len__(self): return len(self.data)
- def __getitem__(self, i): return self.data[i]
- def __setitem__(self, i, item): self.data[i] = item
- def __delitem__(self, i): del self.data[i]
- def __add__(self, other):
- if isinstance(other, UserList):
- return self.__class__(self.data + other.data)
- elif isinstance(other, type(self.data)):
- return self.__class__(self.data + other)
- return self.__class__(self.data + list(other))
- def __radd__(self, other):
- if isinstance(other, UserList):
- return self.__class__(other.data + self.data)
- elif isinstance(other, type(self.data)):
- return self.__class__(other + self.data)
- return self.__class__(list(other) + self.data)
- def __iadd__(self, other):
- if isinstance(other, UserList):
- self.data += other.data
- elif isinstance(other, type(self.data)):
- self.data += other
- else:
- self.data += list(other)
- return self
- def __mul__(self, n):
- return self.__class__(self.data*n)
- __rmul__ = __mul__
- def __imul__(self, n):
- self.data *= n
- return self
- def append(self, item): self.data.append(item)
- def insert(self, i, item): self.data.insert(i, item)
- def pop(self, i=-1): return self.data.pop(i)
- def remove(self, item): self.data.remove(item)
- def clear(self): self.data.clear()
- def copy(self): return self.__class__(self)
- def count(self, item): return self.data.count(item)
- def index(self, item, *args): return self.data.index(item, *args)
- def reverse(self): self.data.reverse()
- def sort(self, *args, **kwds): self.data.sort(*args, **kwds)
- def extend(self, other):
- if isinstance(other, UserList):
- self.data.extend(other.data)
- else:
- self.data.extend(other)
- ################################################################################
- ### UserString
- ################################################################################
- class UserString(Sequence):
- def __init__(self, seq):
- if isinstance(seq, str):
- self.data = seq
- elif isinstance(seq, UserString):
- self.data = seq.data[:]
- else:
- self.data = str(seq)
- def __str__(self): return str(self.data)
- def __repr__(self): return repr(self.data)
- def __int__(self): return int(self.data)
- def __float__(self): return float(self.data)
- def __complex__(self): return complex(self.data)
- def __hash__(self): return hash(self.data)
- def __getnewargs__(self):
- return (self.data[:],)
- def __eq__(self, string):
- if isinstance(string, UserString):
- return self.data == string.data
- return self.data == string
- def __lt__(self, string):
- if isinstance(string, UserString):
- return self.data < string.data
- return self.data < string
- def __le__(self, string):
- if isinstance(string, UserString):
- return self.data <= string.data
- return self.data <= string
- def __gt__(self, string):
- if isinstance(string, UserString):
- return self.data > string.data
- return self.data > string
- def __ge__(self, string):
- if isinstance(string, UserString):
- return self.data >= string.data
- return self.data >= string
- def __contains__(self, char):
- if isinstance(char, UserString):
- char = char.data
- return char in self.data
- def __len__(self): return len(self.data)
- def __getitem__(self, index): return self.__class__(self.data[index])
- def __add__(self, other):
- if isinstance(other, UserString):
- return self.__class__(self.data + other.data)
- elif isinstance(other, str):
- return self.__class__(self.data + other)
- return self.__class__(self.data + str(other))
- def __radd__(self, other):
- if isinstance(other, str):
- return self.__class__(other + self.data)
- return self.__class__(str(other) + self.data)
- def __mul__(self, n):
- return self.__class__(self.data*n)
- __rmul__ = __mul__
- def __mod__(self, args):
- return self.__class__(self.data % args)
- def __rmod__(self, format):
- return self.__class__(format % args)
- # the following methods are defined in alphabetical order:
- def capitalize(self): return self.__class__(self.data.capitalize())
- def casefold(self):
- return self.__class__(self.data.casefold())
- def center(self, width, *args):
- return self.__class__(self.data.center(width, *args))
- def count(self, sub, start=0, end=_sys.maxsize):
- if isinstance(sub, UserString):
- sub = sub.data
- return self.data.count(sub, start, end)
- def encode(self, encoding=None, errors=None): # XXX improve this?
- if encoding:
- if errors:
- return self.__class__(self.data.encode(encoding, errors))
- return self.__class__(self.data.encode(encoding))
- return self.__class__(self.data.encode())
- def endswith(self, suffix, start=0, end=_sys.maxsize):
- return self.data.endswith(suffix, start, end)
- def expandtabs(self, tabsize=8):
- return self.__class__(self.data.expandtabs(tabsize))
- def find(self, sub, start=0, end=_sys.maxsize):
- if isinstance(sub, UserString):
- sub = sub.data
- return self.data.find(sub, start, end)
- def format(self, *args, **kwds):
- return self.data.format(*args, **kwds)
- def format_map(self, mapping):
- return self.data.format_map(mapping)
- def index(self, sub, start=0, end=_sys.maxsize):
- return self.data.index(sub, start, end)
- def isalpha(self): return self.data.isalpha()
- def isalnum(self): return self.data.isalnum()
- def isdecimal(self): return self.data.isdecimal()
- def isdigit(self): return self.data.isdigit()
- def isidentifier(self): return self.data.isidentifier()
- def islower(self): return self.data.islower()
- def isnumeric(self): return self.data.isnumeric()
- def isprintable(self): return self.data.isprintable()
- def isspace(self): return self.data.isspace()
- def istitle(self): return self.data.istitle()
- def isupper(self): return self.data.isupper()
- def join(self, seq): return self.data.join(seq)
- def ljust(self, width, *args):
- return self.__class__(self.data.ljust(width, *args))
- def lower(self): return self.__class__(self.data.lower())
- def lstrip(self, chars=None): return self.__class__(self.data.lstrip(chars))
- maketrans = str.maketrans
- def partition(self, sep):
- return self.data.partition(sep)
- def replace(self, old, new, maxsplit=-1):
- if isinstance(old, UserString):
- old = old.data
- if isinstance(new, UserString):
- new = new.data
- return self.__class__(self.data.replace(old, new, maxsplit))
- def rfind(self, sub, start=0, end=_sys.maxsize):
- if isinstance(sub, UserString):
- sub = sub.data
- return self.data.rfind(sub, start, end)
- def rindex(self, sub, start=0, end=_sys.maxsize):
- return self.data.rindex(sub, start, end)
- def rjust(self, width, *args):
- return self.__class__(self.data.rjust(width, *args))
- def rpartition(self, sep):
- return self.data.rpartition(sep)
- def rstrip(self, chars=None):
- return self.__class__(self.data.rstrip(chars))
- def split(self, sep=None, maxsplit=-1):
- return self.data.split(sep, maxsplit)
- def rsplit(self, sep=None, maxsplit=-1):
- return self.data.rsplit(sep, maxsplit)
- def splitlines(self, keepends=False): return self.data.splitlines(keepends)
- def startswith(self, prefix, start=0, end=_sys.maxsize):
- return self.data.startswith(prefix, start, end)
- def strip(self, chars=None): return self.__class__(self.data.strip(chars))
- def swapcase(self): return self.__class__(self.data.swapcase())
- def title(self): return self.__class__(self.data.title())
- def translate(self, *args):
- return self.__class__(self.data.translate(*args))
- def upper(self): return self.__class__(self.data.upper())
- def zfill(self, width): return self.__class__(self.data.zfill(width))
|