tracker.hpp 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456
  1. /*M///////////////////////////////////////////////////////////////////////////////////////
  2. //
  3. // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
  4. //
  5. // By downloading, copying, installing or using the software you agree to this license.
  6. // If you do not agree to this license, do not download, install,
  7. // copy or use the software.
  8. //
  9. //
  10. // License Agreement
  11. // For Open Source Computer Vision Library
  12. //
  13. // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
  14. // Third party copyrights are property of their respective owners.
  15. //
  16. // Redistribution and use in source and binary forms, with or without modification,
  17. // are permitted provided that the following conditions are met:
  18. //
  19. // * Redistribution's of source code must retain the above copyright notice,
  20. // this list of conditions and the following disclaimer.
  21. //
  22. // * Redistribution's in binary form must reproduce the above copyright notice,
  23. // this list of conditions and the following disclaimer in the documentation
  24. // and/or other materials provided with the distribution.
  25. //
  26. // * The name of the copyright holders may not be used to endorse or promote products
  27. // derived from this software without specific prior written permission.
  28. //
  29. // This software is provided by the copyright holders and contributors "as is" and
  30. // any express or implied warranties, including, but not limited to, the implied
  31. // warranties of merchantability and fitness for a particular purpose are disclaimed.
  32. // In no event shall the Intel Corporation or contributors be liable for any direct,
  33. // indirect, incidental, special, exemplary, or consequential damages
  34. // (including, but not limited to, procurement of substitute goods or services;
  35. // loss of use, data, or profits; or business interruption) however caused
  36. // and on any theory of liability, whether in contract, strict liability,
  37. // or tort (including negligence or otherwise) arising in any way out of
  38. // the use of this software, even if advised of the possibility of such damage.
  39. //
  40. //M*/
  41. #ifndef __OPENCV_TRACKER_HPP__
  42. #define __OPENCV_TRACKER_HPP__
  43. #include "opencv2/core.hpp"
  44. #include "opencv2/imgproc/types_c.h"
  45. #include "feature.hpp"
  46. #include "onlineMIL.hpp"
  47. #include "onlineBoosting.hpp"
  48. #include <iostream>
  49. #define BOILERPLATE_CODE(name,classname) \
  50. static Ptr<classname> createTracker(const classname::Params &parameters=classname::Params());\
  51. virtual ~classname(){};
  52. /*
  53. * Partially based on:
  54. * ====================================================================================================================
  55. * - [AAM] S. Salti, A. Cavallaro, L. Di Stefano, Adaptive Appearance Modeling for Video Tracking: Survey and Evaluation
  56. * - [AMVOT] X. Li, W. Hu, C. Shen, Z. Zhang, A. Dick, A. van den Hengel, A Survey of Appearance Models in Visual Object Tracking
  57. *
  58. * This Tracking API has been designed with PlantUML. If you modify this API please change UML files under modules/tracking/doc/uml
  59. *
  60. */
  61. namespace cv
  62. {
  63. //! @addtogroup tracking
  64. //! @{
  65. /************************************ TrackerFeature Base Classes ************************************/
  66. /** @brief Abstract base class for TrackerFeature that represents the feature.
  67. */
  68. class CV_EXPORTS TrackerFeature
  69. {
  70. public:
  71. virtual ~TrackerFeature();
  72. /** @brief Compute the features in the images collection
  73. @param images The images
  74. @param response The output response
  75. */
  76. void compute( const std::vector<Mat>& images, Mat& response );
  77. /** @brief Create TrackerFeature by tracker feature type
  78. @param trackerFeatureType The TrackerFeature name
  79. The modes available now:
  80. - "HAAR" -- Haar Feature-based
  81. The modes that will be available soon:
  82. - "HOG" -- Histogram of Oriented Gradients features
  83. - "LBP" -- Local Binary Pattern features
  84. - "FEATURE2D" -- All types of Feature2D
  85. */
  86. static Ptr<TrackerFeature> create( const String& trackerFeatureType );
  87. /** @brief Identify most effective features
  88. @param response Collection of response for the specific TrackerFeature
  89. @param npoints Max number of features
  90. @note This method modifies the response parameter
  91. */
  92. virtual void selection( Mat& response, int npoints ) = 0;
  93. /** @brief Get the name of the specific TrackerFeature
  94. */
  95. String getClassName() const;
  96. protected:
  97. virtual bool computeImpl( const std::vector<Mat>& images, Mat& response ) = 0;
  98. String className;
  99. };
  100. /** @brief Class that manages the extraction and selection of features
  101. @cite AAM Feature Extraction and Feature Set Refinement (Feature Processing and Feature Selection).
  102. See table I and section III C @cite AMVOT Appearance modelling -\> Visual representation (Table II,
  103. section 3.1 - 3.2)
  104. TrackerFeatureSet is an aggregation of TrackerFeature
  105. @sa
  106. TrackerFeature
  107. */
  108. class CV_EXPORTS TrackerFeatureSet
  109. {
  110. public:
  111. TrackerFeatureSet();
  112. ~TrackerFeatureSet();
  113. /** @brief Extract features from the images collection
  114. @param images The input images
  115. */
  116. void extraction( const std::vector<Mat>& images );
  117. /** @brief Identify most effective features for all feature types (optional)
  118. */
  119. void selection();
  120. /** @brief Remove outliers for all feature types (optional)
  121. */
  122. void removeOutliers();
  123. /** @brief Add TrackerFeature in the collection. Return true if TrackerFeature is added, false otherwise
  124. @param trackerFeatureType The TrackerFeature name
  125. The modes available now:
  126. - "HAAR" -- Haar Feature-based
  127. The modes that will be available soon:
  128. - "HOG" -- Histogram of Oriented Gradients features
  129. - "LBP" -- Local Binary Pattern features
  130. - "FEATURE2D" -- All types of Feature2D
  131. Example TrackerFeatureSet::addTrackerFeature : :
  132. @code
  133. //sample usage:
  134. Ptr<TrackerFeature> trackerFeature = new TrackerFeatureHAAR( HAARparameters );
  135. featureSet->addTrackerFeature( trackerFeature );
  136. //or add CSC sampler with default parameters
  137. //featureSet->addTrackerFeature( "HAAR" );
  138. @endcode
  139. @note If you use the second method, you must initialize the TrackerFeature
  140. */
  141. bool addTrackerFeature( String trackerFeatureType );
  142. /** @overload
  143. @param feature The TrackerFeature class
  144. */
  145. bool addTrackerFeature( Ptr<TrackerFeature>& feature );
  146. /** @brief Get the TrackerFeature collection (TrackerFeature name, TrackerFeature pointer)
  147. */
  148. const std::vector<std::pair<String, Ptr<TrackerFeature> > >& getTrackerFeature() const;
  149. /** @brief Get the responses
  150. @note Be sure to call extraction before getResponses Example TrackerFeatureSet::getResponses : :
  151. */
  152. const std::vector<Mat>& getResponses() const;
  153. private:
  154. void clearResponses();
  155. bool blockAddTrackerFeature;
  156. std::vector<std::pair<String, Ptr<TrackerFeature> > > features; //list of features
  157. std::vector<Mat> responses; //list of response after compute
  158. };
  159. /************************************ TrackerSampler Base Classes ************************************/
  160. /** @brief Abstract base class for TrackerSamplerAlgorithm that represents the algorithm for the specific
  161. sampler.
  162. */
  163. class CV_EXPORTS TrackerSamplerAlgorithm
  164. {
  165. public:
  166. /**
  167. * \brief Destructor
  168. */
  169. virtual ~TrackerSamplerAlgorithm();
  170. /** @brief Create TrackerSamplerAlgorithm by tracker sampler type.
  171. @param trackerSamplerType The trackerSamplerType name
  172. The modes available now:
  173. - "CSC" -- Current State Center
  174. - "CS" -- Current State
  175. */
  176. static Ptr<TrackerSamplerAlgorithm> create( const String& trackerSamplerType );
  177. /** @brief Computes the regions starting from a position in an image.
  178. Return true if samples are computed, false otherwise
  179. @param image The current frame
  180. @param boundingBox The bounding box from which regions can be calculated
  181. @param sample The computed samples @cite AAM Fig. 1 variable Sk
  182. */
  183. bool sampling( const Mat& image, Rect boundingBox, std::vector<Mat>& sample );
  184. /** @brief Get the name of the specific TrackerSamplerAlgorithm
  185. */
  186. String getClassName() const;
  187. protected:
  188. String className;
  189. virtual bool samplingImpl( const Mat& image, Rect boundingBox, std::vector<Mat>& sample ) = 0;
  190. };
  191. /**
  192. * \brief Class that manages the sampler in order to select regions for the update the model of the tracker
  193. * [AAM] Sampling e Labeling. See table I and section III B
  194. */
  195. /** @brief Class that manages the sampler in order to select regions for the update the model of the tracker
  196. @cite AAM Sampling e Labeling. See table I and section III B
  197. TrackerSampler is an aggregation of TrackerSamplerAlgorithm
  198. @sa
  199. TrackerSamplerAlgorithm
  200. */
  201. class CV_EXPORTS TrackerSampler
  202. {
  203. public:
  204. /**
  205. * \brief Constructor
  206. */
  207. TrackerSampler();
  208. /**
  209. * \brief Destructor
  210. */
  211. ~TrackerSampler();
  212. /** @brief Computes the regions starting from a position in an image
  213. @param image The current frame
  214. @param boundingBox The bounding box from which regions can be calculated
  215. */
  216. void sampling( const Mat& image, Rect boundingBox );
  217. /** @brief Return the collection of the TrackerSamplerAlgorithm
  218. */
  219. const std::vector<std::pair<String, Ptr<TrackerSamplerAlgorithm> > >& getSamplers() const;
  220. /** @brief Return the samples from all TrackerSamplerAlgorithm, @cite AAM Fig. 1 variable Sk
  221. */
  222. const std::vector<Mat>& getSamples() const;
  223. /** @brief Add TrackerSamplerAlgorithm in the collection. Return true if sampler is added, false otherwise
  224. @param trackerSamplerAlgorithmType The TrackerSamplerAlgorithm name
  225. The modes available now:
  226. - "CSC" -- Current State Center
  227. - "CS" -- Current State
  228. - "PF" -- Particle Filtering
  229. Example TrackerSamplerAlgorithm::addTrackerSamplerAlgorithm : :
  230. @code
  231. TrackerSamplerCSC::Params CSCparameters;
  232. Ptr<TrackerSamplerAlgorithm> CSCSampler = new TrackerSamplerCSC( CSCparameters );
  233. if( !sampler->addTrackerSamplerAlgorithm( CSCSampler ) )
  234. return false;
  235. //or add CSC sampler with default parameters
  236. //sampler->addTrackerSamplerAlgorithm( "CSC" );
  237. @endcode
  238. @note If you use the second method, you must initialize the TrackerSamplerAlgorithm
  239. */
  240. bool addTrackerSamplerAlgorithm( String trackerSamplerAlgorithmType );
  241. /** @overload
  242. @param sampler The TrackerSamplerAlgorithm
  243. */
  244. bool addTrackerSamplerAlgorithm( Ptr<TrackerSamplerAlgorithm>& sampler );
  245. private:
  246. std::vector<std::pair<String, Ptr<TrackerSamplerAlgorithm> > > samplers;
  247. std::vector<Mat> samples;
  248. bool blockAddTrackerSampler;
  249. void clearSamples();
  250. };
  251. /************************************ TrackerModel Base Classes ************************************/
  252. /** @brief Abstract base class for TrackerTargetState that represents a possible state of the target.
  253. See @cite AAM \f$\hat{x}^{i}_{k}\f$ all the states candidates.
  254. Inherits this class with your Target state, In own implementation you can add scale variation,
  255. width, height, orientation, etc.
  256. */
  257. class CV_EXPORTS TrackerTargetState
  258. {
  259. public:
  260. virtual ~TrackerTargetState()
  261. {
  262. }
  263. ;
  264. /**
  265. * \brief Get the position
  266. * \return The position
  267. */
  268. Point2f getTargetPosition() const;
  269. /**
  270. * \brief Set the position
  271. * \param position The position
  272. */
  273. void setTargetPosition( const Point2f& position );
  274. /**
  275. * \brief Get the width of the target
  276. * \return The width of the target
  277. */
  278. int getTargetWidth() const;
  279. /**
  280. * \brief Set the width of the target
  281. * \param width The width of the target
  282. */
  283. void setTargetWidth( int width );
  284. /**
  285. * \brief Get the height of the target
  286. * \return The height of the target
  287. */
  288. int getTargetHeight() const;
  289. /**
  290. * \brief Set the height of the target
  291. * \param height The height of the target
  292. */
  293. void setTargetHeight( int height );
  294. protected:
  295. Point2f targetPosition;
  296. int targetWidth;
  297. int targetHeight;
  298. };
  299. /** @brief Represents the model of the target at frame \f$k\f$ (all states and scores)
  300. See @cite AAM The set of the pair \f$\langle \hat{x}^{i}_{k}, C^{i}_{k} \rangle\f$
  301. @sa TrackerTargetState
  302. */
  303. typedef std::vector<std::pair<Ptr<TrackerTargetState>, float> > ConfidenceMap;
  304. /** @brief Represents the estimate states for all frames
  305. @cite AAM \f$x_{k}\f$ is the trajectory of the target up to time \f$k\f$
  306. @sa TrackerTargetState
  307. */
  308. typedef std::vector<Ptr<TrackerTargetState> > Trajectory;
  309. /** @brief Abstract base class for TrackerStateEstimator that estimates the most likely target state.
  310. See @cite AAM State estimator
  311. See @cite AMVOT Statistical modeling (Fig. 3), Table III (generative) - IV (discriminative) - V (hybrid)
  312. */
  313. class CV_EXPORTS TrackerStateEstimator
  314. {
  315. public:
  316. virtual ~TrackerStateEstimator();
  317. /** @brief Estimate the most likely target state, return the estimated state
  318. @param confidenceMaps The overall appearance model as a list of :cConfidenceMap
  319. */
  320. Ptr<TrackerTargetState> estimate( const std::vector<ConfidenceMap>& confidenceMaps );
  321. /** @brief Update the ConfidenceMap with the scores
  322. @param confidenceMaps The overall appearance model as a list of :cConfidenceMap
  323. */
  324. void update( std::vector<ConfidenceMap>& confidenceMaps );
  325. /** @brief Create TrackerStateEstimator by tracker state estimator type
  326. @param trackeStateEstimatorType The TrackerStateEstimator name
  327. The modes available now:
  328. - "BOOSTING" -- Boosting-based discriminative appearance models. See @cite AMVOT section 4.4
  329. The modes available soon:
  330. - "SVM" -- SVM-based discriminative appearance models. See @cite AMVOT section 4.5
  331. */
  332. static Ptr<TrackerStateEstimator> create( const String& trackeStateEstimatorType );
  333. /** @brief Get the name of the specific TrackerStateEstimator
  334. */
  335. String getClassName() const;
  336. protected:
  337. virtual Ptr<TrackerTargetState> estimateImpl( const std::vector<ConfidenceMap>& confidenceMaps ) = 0;
  338. virtual void updateImpl( std::vector<ConfidenceMap>& confidenceMaps ) = 0;
  339. String className;
  340. };
  341. /** @brief Abstract class that represents the model of the target. It must be instantiated by specialized
  342. tracker
  343. See @cite AAM Ak
  344. Inherits this with your TrackerModel
  345. */
  346. class CV_EXPORTS TrackerModel
  347. {
  348. public:
  349. /**
  350. * \brief Constructor
  351. */
  352. TrackerModel();
  353. /**
  354. * \brief Destructor
  355. */
  356. virtual ~TrackerModel();
  357. /** @brief Set TrackerEstimator, return true if the tracker state estimator is added, false otherwise
  358. @param trackerStateEstimator The TrackerStateEstimator
  359. @note You can add only one TrackerStateEstimator
  360. */
  361. bool setTrackerStateEstimator( Ptr<TrackerStateEstimator> trackerStateEstimator );
  362. /** @brief Estimate the most likely target location
  363. @cite AAM ME, Model Estimation table I
  364. @param responses Features extracted from TrackerFeatureSet
  365. */
  366. void modelEstimation( const std::vector<Mat>& responses );
  367. /** @brief Update the model
  368. @cite AAM MU, Model Update table I
  369. */
  370. void modelUpdate();
  371. /** @brief Run the TrackerStateEstimator, return true if is possible to estimate a new state, false otherwise
  372. */
  373. bool runStateEstimator();
  374. /** @brief Set the current TrackerTargetState in the Trajectory
  375. @param lastTargetState The current TrackerTargetState
  376. */
  377. void setLastTargetState( const Ptr<TrackerTargetState>& lastTargetState );
  378. /** @brief Get the last TrackerTargetState from Trajectory
  379. */
  380. Ptr<TrackerTargetState> getLastTargetState() const;
  381. /** @brief Get the list of the ConfidenceMap
  382. */
  383. const std::vector<ConfidenceMap>& getConfidenceMaps() const;
  384. /** @brief Get the last ConfidenceMap for the current frame
  385. */
  386. const ConfidenceMap& getLastConfidenceMap() const;
  387. /** @brief Get the TrackerStateEstimator
  388. */
  389. Ptr<TrackerStateEstimator> getTrackerStateEstimator() const;
  390. private:
  391. void clearCurrentConfidenceMap();
  392. protected:
  393. std::vector<ConfidenceMap> confidenceMaps;
  394. Ptr<TrackerStateEstimator> stateEstimator;
  395. ConfidenceMap currentConfidenceMap;
  396. Trajectory trajectory;
  397. int maxCMLength;
  398. virtual void modelEstimationImpl( const std::vector<Mat>& responses ) = 0;
  399. virtual void modelUpdateImpl() = 0;
  400. };
  401. /************************************ Tracker Base Class ************************************/
  402. /** @brief Base abstract class for the long-term tracker:
  403. */
  404. class CV_EXPORTS_W Tracker : public virtual Algorithm
  405. {
  406. public:
  407. virtual ~Tracker();
  408. /** @brief Initialize the tracker with a know bounding box that surrounding the target
  409. @param image The initial frame
  410. @param boundingBox The initial boundig box
  411. @return True if initialization went succesfully, false otherwise
  412. */
  413. CV_WRAP bool init( const Mat& image, const Rect2d& boundingBox );
  414. /** @brief Update the tracker, find the new most likely bounding box for the target
  415. @param image The current frame
  416. @param boundingBox The boundig box that represent the new target location, if true was returned, not
  417. modified otherwise
  418. @return True means that target was located and false means that tracker cannot locate target in
  419. current frame. Note, that latter *does not* imply that tracker has failed, maybe target is indeed
  420. missing from the frame (say, out of sight)
  421. */
  422. CV_WRAP bool update( const Mat& image, CV_OUT Rect2d& boundingBox );
  423. /** @brief Creates a tracker by its name.
  424. @param trackerType Tracker type
  425. The following detector types are supported:
  426. - "MIL" -- TrackerMIL
  427. - "BOOSTING" -- TrackerBoosting
  428. */
  429. CV_WRAP static Ptr<Tracker> create( const String& trackerType );
  430. virtual void read( const FileNode& fn )=0;
  431. virtual void write( FileStorage& fs ) const=0;
  432. Ptr<TrackerModel> getModel()
  433. {
  434. return model;
  435. }
  436. protected:
  437. virtual bool initImpl( const Mat& image, const Rect2d& boundingBox ) = 0;
  438. virtual bool updateImpl( const Mat& image, Rect2d& boundingBox ) = 0;
  439. bool isInit;
  440. Ptr<TrackerFeatureSet> featureSet;
  441. Ptr<TrackerSampler> sampler;
  442. Ptr<TrackerModel> model;
  443. };
  444. /************************************ Specific TrackerStateEstimator Classes ************************************/
  445. /** @brief TrackerStateEstimator based on Boosting
  446. */
  447. class CV_EXPORTS TrackerStateEstimatorMILBoosting : public TrackerStateEstimator
  448. {
  449. public:
  450. /**
  451. * Implementation of the target state for TrackerStateEstimatorMILBoosting
  452. */
  453. class TrackerMILTargetState : public TrackerTargetState
  454. {
  455. public:
  456. /**
  457. * \brief Constructor
  458. * \param position Top left corner of the bounding box
  459. * \param width Width of the bounding box
  460. * \param height Height of the bounding box
  461. * \param foreground label for target or background
  462. * \param features features extracted
  463. */
  464. TrackerMILTargetState( const Point2f& position, int width, int height, bool foreground, const Mat& features );
  465. /**
  466. * \brief Destructor
  467. */
  468. ~TrackerMILTargetState()
  469. {
  470. }
  471. ;
  472. /** @brief Set label: true for target foreground, false for background
  473. @param foreground Label for background/foreground
  474. */
  475. void setTargetFg( bool foreground );
  476. /** @brief Set the features extracted from TrackerFeatureSet
  477. @param features The features extracted
  478. */
  479. void setFeatures( const Mat& features );
  480. /** @brief Get the label. Return true for target foreground, false for background
  481. */
  482. bool isTargetFg() const;
  483. /** @brief Get the features extracted
  484. */
  485. Mat getFeatures() const;
  486. private:
  487. bool isTarget;
  488. Mat targetFeatures;
  489. };
  490. /** @brief Constructor
  491. @param nFeatures Number of features for each sample
  492. */
  493. TrackerStateEstimatorMILBoosting( int nFeatures = 250 );
  494. ~TrackerStateEstimatorMILBoosting();
  495. /** @brief Set the current confidenceMap
  496. @param confidenceMap The current :cConfidenceMap
  497. */
  498. void setCurrentConfidenceMap( ConfidenceMap& confidenceMap );
  499. protected:
  500. Ptr<TrackerTargetState> estimateImpl( const std::vector<ConfidenceMap>& confidenceMaps );
  501. void updateImpl( std::vector<ConfidenceMap>& confidenceMaps );
  502. private:
  503. uint max_idx( const std::vector<float> &v );
  504. void prepareData( const ConfidenceMap& confidenceMap, Mat& positive, Mat& negative );
  505. ClfMilBoost boostMILModel;
  506. bool trained;
  507. int numFeatures;
  508. ConfidenceMap currentConfidenceMap;
  509. };
  510. /** @brief TrackerStateEstimatorAdaBoosting based on ADA-Boosting
  511. */
  512. class CV_EXPORTS TrackerStateEstimatorAdaBoosting : public TrackerStateEstimator
  513. {
  514. public:
  515. /** @brief Implementation of the target state for TrackerAdaBoostingTargetState
  516. */
  517. class TrackerAdaBoostingTargetState : public TrackerTargetState
  518. {
  519. public:
  520. /**
  521. * \brief Constructor
  522. * \param position Top left corner of the bounding box
  523. * \param width Width of the bounding box
  524. * \param height Height of the bounding box
  525. * \param foreground label for target or background
  526. * \param responses list of features
  527. */
  528. TrackerAdaBoostingTargetState( const Point2f& position, int width, int height, bool foreground, const Mat& responses );
  529. /**
  530. * \brief Destructor
  531. */
  532. ~TrackerAdaBoostingTargetState()
  533. {
  534. }
  535. ;
  536. /** @brief Set the features extracted from TrackerFeatureSet
  537. @param responses The features extracted
  538. */
  539. void setTargetResponses( const Mat& responses );
  540. /** @brief Set label: true for target foreground, false for background
  541. @param foreground Label for background/foreground
  542. */
  543. void setTargetFg( bool foreground );
  544. /** @brief Get the features extracted
  545. */
  546. Mat getTargetResponses() const;
  547. /** @brief Get the label. Return true for target foreground, false for background
  548. */
  549. bool isTargetFg() const;
  550. private:
  551. bool isTarget;
  552. Mat targetResponses;
  553. };
  554. /** @brief Constructor
  555. @param numClassifer Number of base classifiers
  556. @param initIterations Number of iterations in the initialization
  557. @param nFeatures Number of features/weak classifiers
  558. @param patchSize tracking rect
  559. @param ROI initial ROI
  560. */
  561. TrackerStateEstimatorAdaBoosting( int numClassifer, int initIterations, int nFeatures, Size patchSize, const Rect& ROI );
  562. /**
  563. * \brief Destructor
  564. */
  565. ~TrackerStateEstimatorAdaBoosting();
  566. /** @brief Get the sampling ROI
  567. */
  568. Rect getSampleROI() const;
  569. /** @brief Set the sampling ROI
  570. @param ROI the sampling ROI
  571. */
  572. void setSampleROI( const Rect& ROI );
  573. /** @brief Set the current confidenceMap
  574. @param confidenceMap The current :cConfidenceMap
  575. */
  576. void setCurrentConfidenceMap( ConfidenceMap& confidenceMap );
  577. /** @brief Get the list of the selected weak classifiers for the classification step
  578. */
  579. std::vector<int> computeSelectedWeakClassifier();
  580. /** @brief Get the list of the weak classifiers that should be replaced
  581. */
  582. std::vector<int> computeReplacedClassifier();
  583. /** @brief Get the list of the weak classifiers that replace those to be replaced
  584. */
  585. std::vector<int> computeSwappedClassifier();
  586. protected:
  587. Ptr<TrackerTargetState> estimateImpl( const std::vector<ConfidenceMap>& confidenceMaps );
  588. void updateImpl( std::vector<ConfidenceMap>& confidenceMaps );
  589. Ptr<StrongClassifierDirectSelection> boostClassifier;
  590. private:
  591. int numBaseClassifier;
  592. int iterationInit;
  593. int numFeatures;
  594. bool trained;
  595. Size initPatchSize;
  596. Rect sampleROI;
  597. std::vector<int> replacedClassifier;
  598. std::vector<int> swappedClassifier;
  599. ConfidenceMap currentConfidenceMap;
  600. };
  601. /**
  602. * \brief TrackerStateEstimator based on SVM
  603. */
  604. class CV_EXPORTS TrackerStateEstimatorSVM : public TrackerStateEstimator
  605. {
  606. public:
  607. TrackerStateEstimatorSVM();
  608. ~TrackerStateEstimatorSVM();
  609. protected:
  610. Ptr<TrackerTargetState> estimateImpl( const std::vector<ConfidenceMap>& confidenceMaps );
  611. void updateImpl( std::vector<ConfidenceMap>& confidenceMaps );
  612. };
  613. /************************************ Specific TrackerSamplerAlgorithm Classes ************************************/
  614. /** @brief TrackerSampler based on CSC (current state centered), used by MIL algorithm TrackerMIL
  615. */
  616. class CV_EXPORTS TrackerSamplerCSC : public TrackerSamplerAlgorithm
  617. {
  618. public:
  619. enum
  620. {
  621. MODE_INIT_POS = 1, //!< mode for init positive samples
  622. MODE_INIT_NEG = 2, //!< mode for init negative samples
  623. MODE_TRACK_POS = 3, //!< mode for update positive samples
  624. MODE_TRACK_NEG = 4, //!< mode for update negative samples
  625. MODE_DETECT = 5 //!< mode for detect samples
  626. };
  627. struct CV_EXPORTS Params
  628. {
  629. Params();
  630. float initInRad; //!< radius for gathering positive instances during init
  631. float trackInPosRad; //!< radius for gathering positive instances during tracking
  632. float searchWinSize; //!< size of search window
  633. int initMaxNegNum; //!< # negative samples to use during init
  634. int trackMaxPosNum; //!< # positive samples to use during training
  635. int trackMaxNegNum; //!< # negative samples to use during training
  636. };
  637. /** @brief Constructor
  638. @param parameters TrackerSamplerCSC parameters TrackerSamplerCSC::Params
  639. */
  640. TrackerSamplerCSC( const TrackerSamplerCSC::Params &parameters = TrackerSamplerCSC::Params() );
  641. /** @brief Set the sampling mode of TrackerSamplerCSC
  642. @param samplingMode The sampling mode
  643. The modes are:
  644. - "MODE_INIT_POS = 1" -- for the positive sampling in initialization step
  645. - "MODE_INIT_NEG = 2" -- for the negative sampling in initialization step
  646. - "MODE_TRACK_POS = 3" -- for the positive sampling in update step
  647. - "MODE_TRACK_NEG = 4" -- for the negative sampling in update step
  648. - "MODE_DETECT = 5" -- for the sampling in detection step
  649. */
  650. void setMode( int samplingMode );
  651. ~TrackerSamplerCSC();
  652. protected:
  653. bool samplingImpl( const Mat& image, Rect boundingBox, std::vector<Mat>& sample );
  654. private:
  655. Params params;
  656. int mode;
  657. RNG rng;
  658. std::vector<Mat> sampleImage( const Mat& img, int x, int y, int w, int h, float inrad, float outrad = 0, int maxnum = 1000000 );
  659. };
  660. /** @brief TrackerSampler based on CS (current state), used by algorithm TrackerBoosting
  661. */
  662. class CV_EXPORTS TrackerSamplerCS : public TrackerSamplerAlgorithm
  663. {
  664. public:
  665. enum
  666. {
  667. MODE_POSITIVE = 1, //!< mode for positive samples
  668. MODE_NEGATIVE = 2, //!< mode for negative samples
  669. MODE_CLASSIFY = 3 //!< mode for classify samples
  670. };
  671. struct CV_EXPORTS Params
  672. {
  673. Params();
  674. float overlap; //!<overlapping for the search windows
  675. float searchFactor; //!<search region parameter
  676. };
  677. /** @brief Constructor
  678. @param parameters TrackerSamplerCS parameters TrackerSamplerCS::Params
  679. */
  680. TrackerSamplerCS( const TrackerSamplerCS::Params &parameters = TrackerSamplerCS::Params() );
  681. /** @brief Set the sampling mode of TrackerSamplerCS
  682. @param samplingMode The sampling mode
  683. The modes are:
  684. - "MODE_POSITIVE = 1" -- for the positive sampling
  685. - "MODE_NEGATIVE = 2" -- for the negative sampling
  686. - "MODE_CLASSIFY = 3" -- for the sampling in classification step
  687. */
  688. void setMode( int samplingMode );
  689. ~TrackerSamplerCS();
  690. bool samplingImpl( const Mat& image, Rect boundingBox, std::vector<Mat>& sample );
  691. Rect getROI() const;
  692. private:
  693. Rect getTrackingROI( float searchFactor );
  694. Rect RectMultiply( const Rect & rect, float f );
  695. std::vector<Mat> patchesRegularScan( const Mat& image, Rect trackingROI, Size patchSize );
  696. void setCheckedROI( Rect imageROI );
  697. Params params;
  698. int mode;
  699. Rect trackedPatch;
  700. Rect validROI;
  701. Rect ROI;
  702. };
  703. /** @brief This sampler is based on particle filtering.
  704. In principle, it can be thought of as performing some sort of optimization (and indeed, this
  705. tracker uses opencv's optim module), where tracker seeks to find the rectangle in given frame,
  706. which is the most *"similar"* to the initial rectangle (the one, given through the constructor).
  707. The optimization performed is stochastic and somehow resembles genetic algorithms, where on each new
  708. image received (submitted via TrackerSamplerPF::sampling()) we start with the region bounded by
  709. boundingBox, then generate several "perturbed" boxes, take the ones most similar to the original.
  710. This selection round is repeated several times. At the end, we hope that only the most promising box
  711. remaining, and these are combined to produce the subrectangle of image, which is put as a sole
  712. element in array sample.
  713. It should be noted, that the definition of "similarity" between two rectangles is based on comparing
  714. their histograms. As experiments show, tracker is *not* very succesfull if target is assumed to
  715. strongly change its dimensions.
  716. */
  717. class CV_EXPORTS TrackerSamplerPF : public TrackerSamplerAlgorithm
  718. {
  719. public:
  720. /** @brief This structure contains all the parameters that can be varied during the course of sampling
  721. algorithm. Below is the structure exposed, together with its members briefly explained with
  722. reference to the above discussion on algorithm's working.
  723. */
  724. struct CV_EXPORTS Params
  725. {
  726. Params();
  727. int iterationNum; //!< number of selection rounds
  728. int particlesNum; //!< number of "perturbed" boxes on each round
  729. double alpha; //!< with each new round we exponentially decrease the amount of "perturbing" we allow (like in simulated annealing)
  730. //!< and this very alpha controls how fast annealing happens, ie. how fast perturbing decreases
  731. Mat_<double> std; //!< initial values for perturbing (1-by-4 array, as each rectangle is given by 4 values -- coordinates of opposite vertices,
  732. //!< hence we have 4 values to perturb)
  733. };
  734. /** @brief Constructor
  735. @param chosenRect Initial rectangle, that is supposed to contain target we'd like to track.
  736. @param parameters
  737. */
  738. TrackerSamplerPF(const Mat& chosenRect,const TrackerSamplerPF::Params &parameters = TrackerSamplerPF::Params());
  739. protected:
  740. bool samplingImpl( const Mat& image, Rect boundingBox, std::vector<Mat>& sample );
  741. private:
  742. Params params;
  743. Ptr<MinProblemSolver> _solver;
  744. Ptr<MinProblemSolver::Function> _function;
  745. };
  746. /************************************ Specific TrackerFeature Classes ************************************/
  747. /**
  748. * \brief TrackerFeature based on Feature2D
  749. */
  750. class CV_EXPORTS TrackerFeatureFeature2d : public TrackerFeature
  751. {
  752. public:
  753. /**
  754. * \brief Constructor
  755. * \param detectorType string of FeatureDetector
  756. * \param descriptorType string of DescriptorExtractor
  757. */
  758. TrackerFeatureFeature2d( String detectorType, String descriptorType );
  759. ~TrackerFeatureFeature2d();
  760. void selection( Mat& response, int npoints );
  761. protected:
  762. bool computeImpl( const std::vector<Mat>& images, Mat& response );
  763. private:
  764. std::vector<KeyPoint> keypoints;
  765. };
  766. /**
  767. * \brief TrackerFeature based on HOG
  768. */
  769. class CV_EXPORTS TrackerFeatureHOG : public TrackerFeature
  770. {
  771. public:
  772. TrackerFeatureHOG();
  773. ~TrackerFeatureHOG();
  774. void selection( Mat& response, int npoints );
  775. protected:
  776. bool computeImpl( const std::vector<Mat>& images, Mat& response );
  777. };
  778. /** @brief TrackerFeature based on HAAR features, used by TrackerMIL and many others algorithms
  779. @note HAAR features implementation is copied from apps/traincascade and modified according to MIL
  780. */
  781. class CV_EXPORTS TrackerFeatureHAAR : public TrackerFeature
  782. {
  783. public:
  784. struct CV_EXPORTS Params
  785. {
  786. Params();
  787. int numFeatures; //!< # of rects
  788. Size rectSize; //!< rect size
  789. bool isIntegral; //!< true if input images are integral, false otherwise
  790. };
  791. /** @brief Constructor
  792. @param parameters TrackerFeatureHAAR parameters TrackerFeatureHAAR::Params
  793. */
  794. TrackerFeatureHAAR( const TrackerFeatureHAAR::Params &parameters = TrackerFeatureHAAR::Params() );
  795. ~TrackerFeatureHAAR();
  796. /** @brief Compute the features only for the selected indices in the images collection
  797. @param selFeatures indices of selected features
  798. @param images The images
  799. @param response Collection of response for the specific TrackerFeature
  800. */
  801. bool extractSelected( const std::vector<int> selFeatures, const std::vector<Mat>& images, Mat& response );
  802. /** @brief Identify most effective features
  803. @param response Collection of response for the specific TrackerFeature
  804. @param npoints Max number of features
  805. @note This method modifies the response parameter
  806. */
  807. void selection( Mat& response, int npoints );
  808. /** @brief Swap the feature in position source with the feature in position target
  809. @param source The source position
  810. @param target The target position
  811. */
  812. bool swapFeature( int source, int target );
  813. /** @brief Swap the feature in position id with the feature input
  814. @param id The position
  815. @param feature The feature
  816. */
  817. bool swapFeature( int id, CvHaarEvaluator::FeatureHaar& feature );
  818. /** @brief Get the feature in position id
  819. @param id The position
  820. */
  821. CvHaarEvaluator::FeatureHaar& getFeatureAt( int id );
  822. protected:
  823. bool computeImpl( const std::vector<Mat>& images, Mat& response );
  824. private:
  825. Params params;
  826. Ptr<CvHaarEvaluator> featureEvaluator;
  827. };
  828. /**
  829. * \brief TrackerFeature based on LBP
  830. */
  831. class CV_EXPORTS TrackerFeatureLBP : public TrackerFeature
  832. {
  833. public:
  834. TrackerFeatureLBP();
  835. ~TrackerFeatureLBP();
  836. void selection( Mat& response, int npoints );
  837. protected:
  838. bool computeImpl( const std::vector<Mat>& images, Mat& response );
  839. };
  840. /************************************ Specific Tracker Classes ************************************/
  841. /** @brief The MIL algorithm trains a classifier in an online manner to separate the object from the
  842. background.
  843. Multiple Instance Learning avoids the drift problem for a robust tracking. The implementation is
  844. based on @cite MIL .
  845. Original code can be found here <http://vision.ucsd.edu/~bbabenko/project_miltrack.shtml>
  846. */
  847. class CV_EXPORTS TrackerMIL : public Tracker
  848. {
  849. public:
  850. struct CV_EXPORTS Params
  851. {
  852. Params();
  853. //parameters for sampler
  854. float samplerInitInRadius; //!< radius for gathering positive instances during init
  855. int samplerInitMaxNegNum; //!< # negative samples to use during init
  856. float samplerSearchWinSize; //!< size of search window
  857. float samplerTrackInRadius; //!< radius for gathering positive instances during tracking
  858. int samplerTrackMaxPosNum; //!< # positive samples to use during tracking
  859. int samplerTrackMaxNegNum; //!< # negative samples to use during tracking
  860. int featureSetNumFeatures; //!< # features
  861. void read( const FileNode& fn );
  862. void write( FileStorage& fs ) const;
  863. };
  864. /** @brief Constructor
  865. @param parameters MIL parameters TrackerMIL::Params
  866. */
  867. BOILERPLATE_CODE("MIL",TrackerMIL);
  868. };
  869. /** @brief This is a real-time object tracking based on a novel on-line version of the AdaBoost algorithm.
  870. The classifier uses the surrounding background as negative examples in update step to avoid the
  871. drifting problem. The implementation is based on @cite OLB .
  872. */
  873. class CV_EXPORTS TrackerBoosting : public Tracker
  874. {
  875. public:
  876. struct CV_EXPORTS Params
  877. {
  878. Params();
  879. int numClassifiers; //!<the number of classifiers to use in a OnlineBoosting algorithm
  880. float samplerOverlap; //!<search region parameters to use in a OnlineBoosting algorithm
  881. float samplerSearchFactor; //!< search region parameters to use in a OnlineBoosting algorithm
  882. int iterationInit; //!<the initial iterations
  883. int featureSetNumFeatures; //!< # features
  884. /**
  885. * \brief Read parameters from file
  886. */
  887. void read( const FileNode& fn );
  888. /**
  889. * \brief Write parameters in a file
  890. */
  891. void write( FileStorage& fs ) const;
  892. };
  893. /** @brief Constructor
  894. @param parameters BOOSTING parameters TrackerBoosting::Params
  895. */
  896. BOILERPLATE_CODE("BOOSTING",TrackerBoosting);
  897. };
  898. /** @brief Median Flow tracker implementation.
  899. Implementation of a paper @cite MedianFlow .
  900. The tracker is suitable for very smooth and predictable movements when object is visible throughout
  901. the whole sequence. It's quite and accurate for this type of problems (in particular, it was shown
  902. by authors to outperform MIL). During the implementation period the code at
  903. <http://www.aonsquared.co.uk/node/5>, the courtesy of the author Arthur Amarra, was used for the
  904. reference purpose.
  905. */
  906. class CV_EXPORTS TrackerMedianFlow : public Tracker
  907. {
  908. public:
  909. struct CV_EXPORTS Params
  910. {
  911. Params();
  912. int pointsInGrid; //!<square root of number of keypoints used; increase it to trade
  913. //!<accurateness for speed; default value is sensible and recommended
  914. void read( const FileNode& /*fn*/ );
  915. void write( FileStorage& /*fs*/ ) const;
  916. };
  917. /** @brief Constructor
  918. @param parameters Median Flow parameters TrackerMedianFlow::Params
  919. */
  920. BOILERPLATE_CODE("MEDIANFLOW",TrackerMedianFlow);
  921. };
  922. /** @brief TLD is a novel tracking framework that explicitly decomposes the long-term tracking task into
  923. tracking, learning and detection.
  924. The tracker follows the object from frame to frame. The detector localizes all appearances that
  925. have been observed so far and corrects the tracker if necessary. The learning estimates detector’s
  926. errors and updates it to avoid these errors in the future. The implementation is based on @cite TLD .
  927. The Median Flow algorithm (see cv::TrackerMedianFlow) was chosen as a tracking component in this
  928. implementation, following authors. Tracker is supposed to be able to handle rapid motions, partial
  929. occlusions, object absence etc.
  930. */
  931. class CV_EXPORTS TrackerTLD : public Tracker
  932. {
  933. public:
  934. struct CV_EXPORTS Params
  935. {
  936. Params();
  937. void read( const FileNode& /*fn*/ );
  938. void write( FileStorage& /*fs*/ ) const;
  939. };
  940. /** @brief Constructor
  941. @param parameters TLD parameters TrackerTLD::Params
  942. */
  943. BOILERPLATE_CODE("TLD",TrackerTLD);
  944. };
  945. /** @brief KCF is a novel tracking framework that utilizes properties of circulant matrix to enhance the processing speed.
  946. * This tracking method is an implementation of @cite KCF_ECCV which is extended to KFC with color-names features (@cite KCF_CN).
  947. * The original paper of KCF is available at <http://home.isr.uc.pt/~henriques/circulant/index.html>
  948. * as well as the matlab implementation. For more information about KCF with color-names features, please refer to
  949. * <http://www.cvl.isy.liu.se/research/objrec/visualtracking/colvistrack/index.html>.
  950. */
  951. class CV_EXPORTS TrackerKCF : public Tracker
  952. {
  953. public:
  954. /**
  955. * \brief Feature type to be used in the tracking grayscale, colornames, compressed color-names
  956. * The modes available now:
  957. - "GRAY" -- Use grayscale values as the feature
  958. - "CN" -- Color-names feature
  959. */
  960. enum MODE {
  961. GRAY = (1u << 0),
  962. CN = (1u << 1),
  963. CUSTOM = (1u << 2)
  964. };
  965. struct CV_EXPORTS Params
  966. {
  967. /**
  968. * \brief Constructor
  969. */
  970. Params();
  971. /**
  972. * \brief Read parameters from file, currently unused
  973. */
  974. void read(const FileNode& /*fn*/);
  975. /**
  976. * \brief Read parameters from file, currently unused
  977. */
  978. void write(FileStorage& /*fs*/) const;
  979. double sigma; //!< gaussian kernel bandwidth
  980. double lambda; //!< regularization
  981. double interp_factor; //!< linear interpolation factor for adaptation
  982. double output_sigma_factor; //!< spatial bandwidth (proportional to target)
  983. double pca_learning_rate; //!< compression learning rate
  984. bool resize; //!< activate the resize feature to improve the processing speed
  985. bool split_coeff; //!< split the training coefficients into two matrices
  986. bool wrap_kernel; //!< wrap around the kernel values
  987. bool compress_feature; //!< activate the pca method to compress the features
  988. int max_patch_size; //!< threshold for the ROI size
  989. int compressed_size; //!< feature size after compression
  990. unsigned int desc_pca; //!< compressed descriptors of TrackerKCF::MODE
  991. unsigned int desc_npca; //!< non-compressed descriptors of TrackerKCF::MODE
  992. };
  993. virtual void setFeatureExtractor(void(*)(const Mat, const Rect, Mat&), bool pca_func = false);
  994. /** @brief Constructor
  995. @param parameters KCF parameters TrackerKCF::Params
  996. */
  997. BOILERPLATE_CODE("KCF", TrackerKCF);
  998. };
  999. /************************************ MultiTracker Class ---By Laksono Kurnianggoro---) ************************************/
  1000. /** @brief This class is used to track multiple objects using the specified tracker algorithm.
  1001. * The MultiTracker is naive implementation of multiple object tracking.
  1002. * It process the tracked objects independently without any optimization accross the tracked objects.
  1003. */
  1004. class CV_EXPORTS_W MultiTracker
  1005. {
  1006. public:
  1007. /**
  1008. * \brief Constructor.
  1009. * In the case of trackerType is given, it will be set as the default algorithm for all trackers.
  1010. * @param trackerType the name of the tracker algorithm to be used
  1011. */
  1012. CV_WRAP MultiTracker(const String& trackerType = "");
  1013. /**
  1014. * \brief Destructor
  1015. */
  1016. ~MultiTracker();
  1017. /**
  1018. * \brief Add a new object to be tracked.
  1019. * The defaultAlgorithm will be used the newly added tracker.
  1020. * @param image input image
  1021. * @param boundingBox a rectangle represents ROI of the tracked object
  1022. */
  1023. CV_WRAP bool add(const Mat& image, const Rect2d& boundingBox);
  1024. /**
  1025. * \brief Add a new object to be tracked.
  1026. * @param trackerType the name of the tracker algorithm to be used
  1027. * @param image input image
  1028. * @param boundingBox a rectangle represents ROI of the tracked object
  1029. */
  1030. CV_WRAP bool add(const String& trackerType, const Mat& image, const Rect2d& boundingBox);
  1031. /**
  1032. * \brief Add a set of objects to be tracked.
  1033. * @param trackerType the name of the tracker algorithm to be used
  1034. * @param image input image
  1035. * @param boundingBox list of the tracked objects
  1036. */
  1037. CV_WRAP bool add(const String& trackerType, const Mat& image, std::vector<Rect2d> boundingBox);
  1038. /**
  1039. * \brief Add a set of objects to be tracked using the defaultAlgorithm tracker.
  1040. * @param image input image
  1041. * @param boundingBox list of the tracked objects
  1042. */
  1043. CV_WRAP bool add(const Mat& image, std::vector<Rect2d> boundingBox);
  1044. /**
  1045. * \brief Update the current tracking status.
  1046. * The result will be saved in the internal storage.
  1047. * @param image input image
  1048. */
  1049. bool update(const Mat& image);
  1050. //!< storage for the tracked objects, each object corresponds to one tracker algorithm.
  1051. std::vector<Rect2d> objects;
  1052. /**
  1053. * \brief Update the current tracking status.
  1054. * @param image input image
  1055. * @param boundingBox the tracking result, represent a list of ROIs of the tracked objects.
  1056. */
  1057. CV_WRAP bool update(const Mat& image, CV_OUT std::vector<Rect2d> & boundingBox);
  1058. protected:
  1059. //!< storage for the tracker algorithms.
  1060. std::vector< Ptr<Tracker> > trackerList;
  1061. //!< default algorithm for the tracking method.
  1062. String defaultAlgorithm;
  1063. };
  1064. class ROISelector {
  1065. public:
  1066. Rect2d select(Mat img, bool fromCenter = true);
  1067. Rect2d select(const cv::String& windowName, Mat img, bool showCrossair = true, bool fromCenter = true);
  1068. void select(const cv::String& windowName, Mat img, std::vector<Rect2d> & boundingBox, bool fromCenter = true);
  1069. struct handlerT{
  1070. // basic parameters
  1071. bool isDrawing;
  1072. Rect2d box;
  1073. Mat image;
  1074. // parameters for drawing from the center
  1075. bool drawFromCenter;
  1076. Point2f center;
  1077. // initializer list
  1078. handlerT() : isDrawing(false), drawFromCenter(true) {};
  1079. }selectorParams;
  1080. // to store the tracked objects
  1081. std::vector<handlerT> objects;
  1082. private:
  1083. static void mouseHandler(int event, int x, int y, int flags, void *param);
  1084. void opencv_mouse_callback(int event, int x, int y, int, void *param);
  1085. // save the keypressed characted
  1086. int key;
  1087. };
  1088. Rect2d CV_EXPORTS_W selectROI(Mat img, bool fromCenter = true);
  1089. Rect2d CV_EXPORTS_W selectROI(const cv::String& windowName, Mat img, bool showCrossair = true, bool fromCenter = true);
  1090. void CV_EXPORTS_W selectROI(const cv::String& windowName, Mat img, std::vector<Rect2d> & boundingBox, bool fromCenter = true);
  1091. /************************************ Multi-Tracker Classes ---By Tyan Vladimir---************************************/
  1092. /** @brief Base abstract class for the long-term Multi Object Trackers:
  1093. @sa Tracker, MultiTrackerTLD
  1094. */
  1095. class CV_EXPORTS MultiTracker_Alt
  1096. {
  1097. public:
  1098. /** @brief Constructor for Multitracker
  1099. */
  1100. MultiTracker_Alt()
  1101. {
  1102. targetNum = 0;
  1103. }
  1104. /** @brief Add a new target to a tracking-list and initialize the tracker with a know bounding box that surrounding the target
  1105. @param image The initial frame
  1106. @param boundingBox The initial boundig box of target
  1107. @param tracker_algorithm_name Multi-tracker algorithm name
  1108. @return True if new target initialization went succesfully, false otherwise
  1109. */
  1110. bool addTarget(const Mat& image, const Rect2d& boundingBox, String tracker_algorithm_name);
  1111. /** @brief Update all trackers from the tracking-list, find a new most likely bounding boxes for the targets
  1112. @param image The current frame
  1113. @return True means that all targets were located and false means that tracker couldn't locate one of the targets in
  1114. current frame. Note, that latter *does not* imply that tracker has failed, maybe target is indeed
  1115. missing from the frame (say, out of sight)
  1116. */
  1117. bool update(const Mat& image);
  1118. /** @brief Current number of targets in tracking-list
  1119. */
  1120. int targetNum;
  1121. /** @brief Trackers list for Multi-Object-Tracker
  1122. */
  1123. std::vector <Ptr<Tracker> > trackers;
  1124. /** @brief Bounding Boxes list for Multi-Object-Tracker
  1125. */
  1126. std::vector <Rect2d> boundingBoxes;
  1127. /** @brief List of randomly generated colors for bounding boxes display
  1128. */
  1129. std::vector<Scalar> colors;
  1130. };
  1131. /** @brief Multi Object Tracker for TLD. TLD is a novel tracking framework that explicitly decomposes
  1132. the long-term tracking task into tracking, learning and detection.
  1133. The tracker follows the object from frame to frame. The detector localizes all appearances that
  1134. have been observed so far and corrects the tracker if necessary. The learning estimates detector’s
  1135. errors and updates it to avoid these errors in the future. The implementation is based on @cite TLD .
  1136. The Median Flow algorithm (see cv::TrackerMedianFlow) was chosen as a tracking component in this
  1137. implementation, following authors. Tracker is supposed to be able to handle rapid motions, partial
  1138. occlusions, object absence etc.
  1139. @sa Tracker, MultiTracker, TrackerTLD
  1140. */
  1141. class CV_EXPORTS MultiTrackerTLD : public MultiTracker_Alt
  1142. {
  1143. public:
  1144. /** @brief Update all trackers from the tracking-list, find a new most likely bounding boxes for the targets by
  1145. optimized update method using some techniques to speedup calculations specifically for MO TLD. The only limitation
  1146. is that all target bounding boxes should have approximately same aspect ratios. Speed boost is around 20%
  1147. @param image The current frame.
  1148. @return True means that all targets were located and false means that tracker couldn't locate one of the targets in
  1149. current frame. Note, that latter *does not* imply that tracker has failed, maybe target is indeed
  1150. missing from the frame (say, out of sight)
  1151. */
  1152. bool update_opt(const Mat& image);
  1153. };
  1154. //! @}
  1155. } /* namespace cv */
  1156. #endif