123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164 |
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2014, OpenCV Foundation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- /** @file
- @author Tolga Birdal <tbirdal AT gmail.com>
- */
- #ifndef __OPENCV_SURFACE_MATCHING_HELPERS_HPP__
- #define __OPENCV_SURFACE_MATCHING_HELPERS_HPP__
- #include <opencv2/core.hpp>
- namespace cv
- {
- namespace ppf_match_3d
- {
- //! @addtogroup surface_matching
- //! @{
- /**
- * @brief Load a PLY file
- * @param [in] fileName The PLY model to read
- * @param [in] withNormals Flag wheather the input PLY contains normal information,
- * and whether it should be loaded or not
- * @return Returns the matrix on successfull load
- */
- CV_EXPORTS Mat loadPLYSimple(const char* fileName, int withNormals);
- /**
- * @brief Write a point cloud to PLY file
- * @param [in] PC Input point cloud
- * @param [in] fileName The PLY model file to write
- */
- CV_EXPORTS void writePLY(Mat PC, const char* fileName);
- /**
- * @brief Used for debbuging pruposes, writes a point cloud to a PLY file with the tip
- * of the normal vectors as visible red points
- * @param [in] PC Input point cloud
- * @param [in] fileName The PLY model file to write
- */
- CV_EXPORTS void writePLYVisibleNormals(Mat PC, const char* fileName);
- Mat samplePCUniform(Mat PC, int sampleStep);
- Mat samplePCUniformInd(Mat PC, int sampleStep, std::vector<int>& indices);
- /**
- * Sample a point cloud using uniform steps
- * @param [in] pc Input point cloud
- * @param [in] xrange X components (min and max) of the bounding box of the model
- * @param [in] yrange Y components (min and max) of the bounding box of the model
- * @param [in] zrange Z components (min and max) of the bounding box of the model
- * @param [in] sample_step_relative The point cloud is sampled such that all points
- * have a certain minimum distance. This minimum distance is determined relatively using
- * the parameter sample_step_relative.
- * @param [in] weightByCenter The contribution of the quantized data points can be weighted
- * by the distance to the origin. This parameter enables/disables the use of weighting.
- * @return Sampled point cloud
- */
- CV_EXPORTS Mat samplePCByQuantization(Mat pc, float xrange[2], float yrange[2], float zrange[2], float sample_step_relative, int weightByCenter=0);
- void computeBboxStd(Mat pc, float xRange[2], float yRange[2], float zRange[2]);
- void* indexPCFlann(Mat pc);
- void destroyFlann(void* flannIndex);
- void queryPCFlann(void* flannIndex, Mat& pc, Mat& indices, Mat& distances);
- void queryPCFlann(void* flannIndex, Mat& pc, Mat& indices, Mat& distances, const int numNeighbors);
- /**
- * Mostly for visualization purposes. Normalizes the point cloud in a Hartley-Zissermann
- * fashion. In other words, the point cloud is centered, and scaled such that the largest
- * distance from the origin is sqrt(2). Finally a rescaling is applied.
- * @param [in] pc Input point cloud (CV_32F family). Point clouds with 3 or 6 elements per
- * row are expected.
- * @param [in] scale The scale after normalization. Default to 1.
- * @return Normalized point cloud
- */
- CV_EXPORTS Mat normalize_pc(Mat pc, float scale);
- Mat normalizePCCoeff(Mat pc, float scale, float* Cx, float* Cy, float* Cz, float* MinVal, float* MaxVal);
- Mat transPCCoeff(Mat pc, float scale, float Cx, float Cy, float Cz, float MinVal, float MaxVal);
- /**
- * Transforms the point cloud with a given a homogeneous 4x4 pose matrix (in double precision)
- * @param [in] pc Input point cloud (CV_32F family). Point clouds with 3 or 6 elements per
- * row are expected. In the case where the normals are provided, they are also rotated to be
- * compatible with the entire transformation
- * @param [in] Pose 4x4 pose matrix, but linearized in row-major form.
- * @return Transformed point cloud
- */
- CV_EXPORTS Mat transformPCPose(Mat pc, double Pose[16]);
- /**
- * Generate a random 4x4 pose matrix
- * @param [out] Pose The random pose
- */
- CV_EXPORTS void getRandomPose(double Pose[16]);
- /**
- * Adds a uniform noise in the given scale to the input point cloud
- * @param [in] pc Input point cloud (CV_32F family).
- * @param [in] scale Input scale of the noise. The larger the scale, the more noisy the output
- */
- CV_EXPORTS Mat addNoisePC(Mat pc, double scale);
- /**
- * @brief Compute the normals of an arbitrary point cloud
- * computeNormalsPC3d uses a plane fitting approach to smoothly compute
- * local normals. Normals are obtained through the eigenvector of the covariance
- * matrix, corresponding to the smallest eigen value.
- * If PCNormals is provided to be an Nx6 matrix, then no new allocation
- * is made, instead the existing memory is overwritten.
- * @param [in] PC Input point cloud to compute the normals for.
- * @param [in] PCNormals Output point cloud
- * @param [in] NumNeighbors Number of neighbors to take into account in a local region
- * @param [in] FlipViewpoint Should normals be flipped to a viewing direction?
- * @param [in] viewpoint
- * @return Returns 0 on success
- */
- CV_EXPORTS int computeNormalsPC3d(const Mat& PC, Mat& PCNormals, const int NumNeighbors, const bool FlipViewpoint, const double viewpoint[3]);
- //! @}
- } // namespace ppf_match_3d
- } // namespace cv
- #endif
|