12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505 |
- #ifndef __OPENCV_ML_HPP__
- #define __OPENCV_ML_HPP__
- #ifdef __cplusplus
- # include "opencv2/core.hpp"
- #endif
- #ifdef __cplusplus
- #include <float.h>
- #include <map>
- #include <iostream>
- namespace cv
- {
- namespace ml
- {
- enum VariableTypes
- {
- VAR_NUMERICAL =0,
- VAR_ORDERED =0,
- VAR_CATEGORICAL =1
- };
- enum ErrorTypes
- {
- TEST_ERROR = 0,
- TRAIN_ERROR = 1
- };
- enum SampleTypes
- {
- ROW_SAMPLE = 0,
- COL_SAMPLE = 1
- };
- class CV_EXPORTS ParamGrid
- {
- public:
-
- ParamGrid();
-
- ParamGrid(double _minVal, double _maxVal, double _logStep);
- double minVal;
- double maxVal;
-
- double logStep;
- };
- class CV_EXPORTS_W TrainData
- {
- public:
- static inline float missingValue() { return FLT_MAX; }
- virtual ~TrainData();
- CV_WRAP virtual int getLayout() const = 0;
- CV_WRAP virtual int getNTrainSamples() const = 0;
- CV_WRAP virtual int getNTestSamples() const = 0;
- CV_WRAP virtual int getNSamples() const = 0;
- CV_WRAP virtual int getNVars() const = 0;
- CV_WRAP virtual int getNAllVars() const = 0;
- CV_WRAP virtual void getSample(InputArray varIdx, int sidx, float* buf) const = 0;
- CV_WRAP virtual Mat getSamples() const = 0;
- CV_WRAP virtual Mat getMissing() const = 0;
-
- CV_WRAP virtual Mat getTrainSamples(int layout=ROW_SAMPLE,
- bool compressSamples=true,
- bool compressVars=true) const = 0;
-
- CV_WRAP virtual Mat getTrainResponses() const = 0;
-
- CV_WRAP virtual Mat getTrainNormCatResponses() const = 0;
- CV_WRAP virtual Mat getTestResponses() const = 0;
- CV_WRAP virtual Mat getTestNormCatResponses() const = 0;
- CV_WRAP virtual Mat getResponses() const = 0;
- CV_WRAP virtual Mat getNormCatResponses() const = 0;
- CV_WRAP virtual Mat getSampleWeights() const = 0;
- CV_WRAP virtual Mat getTrainSampleWeights() const = 0;
- CV_WRAP virtual Mat getTestSampleWeights() const = 0;
- CV_WRAP virtual Mat getVarIdx() const = 0;
- CV_WRAP virtual Mat getVarType() const = 0;
- CV_WRAP virtual int getResponseType() const = 0;
- CV_WRAP virtual Mat getTrainSampleIdx() const = 0;
- CV_WRAP virtual Mat getTestSampleIdx() const = 0;
- CV_WRAP virtual void getValues(int vi, InputArray sidx, float* values) const = 0;
- virtual void getNormCatValues(int vi, InputArray sidx, int* values) const = 0;
- CV_WRAP virtual Mat getDefaultSubstValues() const = 0;
- CV_WRAP virtual int getCatCount(int vi) const = 0;
-
- CV_WRAP virtual Mat getClassLabels() const = 0;
- CV_WRAP virtual Mat getCatOfs() const = 0;
- CV_WRAP virtual Mat getCatMap() const = 0;
-
- CV_WRAP virtual void setTrainTestSplit(int count, bool shuffle=true) = 0;
-
- CV_WRAP virtual void setTrainTestSplitRatio(double ratio, bool shuffle=true) = 0;
- CV_WRAP virtual void shuffleTrainTest() = 0;
- CV_WRAP static Mat getSubVector(const Mat& vec, const Mat& idx);
-
- static Ptr<TrainData> loadFromCSV(const String& filename,
- int headerLineCount,
- int responseStartIdx=-1,
- int responseEndIdx=-1,
- const String& varTypeSpec=String(),
- char delimiter=',',
- char missch='?');
-
- CV_WRAP static Ptr<TrainData> create(InputArray samples, int layout, InputArray responses,
- InputArray varIdx=noArray(), InputArray sampleIdx=noArray(),
- InputArray sampleWeights=noArray(), InputArray varType=noArray());
- };
- class CV_EXPORTS_W StatModel : public Algorithm
- {
- public:
-
- enum Flags {
- UPDATE_MODEL = 1,
- RAW_OUTPUT=1,
- COMPRESSED_INPUT=2,
- PREPROCESSED_INPUT=4
- };
-
- CV_WRAP virtual int getVarCount() const = 0;
- CV_WRAP virtual bool empty() const;
-
- CV_WRAP virtual bool isTrained() const = 0;
-
- CV_WRAP virtual bool isClassifier() const = 0;
-
- CV_WRAP virtual bool train( const Ptr<TrainData>& trainData, int flags=0 );
-
- CV_WRAP virtual bool train( InputArray samples, int layout, InputArray responses );
-
- CV_WRAP virtual float calcError( const Ptr<TrainData>& data, bool test, OutputArray resp ) const;
-
- CV_WRAP virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0;
-
- template<typename _Tp> static Ptr<_Tp> train(const Ptr<TrainData>& data, int flags=0)
- {
- Ptr<_Tp> model = _Tp::create();
- return !model.empty() && model->train(data, flags) ? model : Ptr<_Tp>();
- }
- };
- class CV_EXPORTS_W NormalBayesClassifier : public StatModel
- {
- public:
-
- CV_WRAP virtual float predictProb( InputArray inputs, OutputArray outputs,
- OutputArray outputProbs, int flags=0 ) const = 0;
-
- CV_WRAP static Ptr<NormalBayesClassifier> create();
- };
- class CV_EXPORTS_W KNearest : public StatModel
- {
- public:
-
-
- CV_WRAP virtual int getDefaultK() const = 0;
-
- CV_WRAP virtual void setDefaultK(int val) = 0;
-
-
- CV_WRAP virtual bool getIsClassifier() const = 0;
-
- CV_WRAP virtual void setIsClassifier(bool val) = 0;
-
-
- CV_WRAP virtual int getEmax() const = 0;
-
- CV_WRAP virtual void setEmax(int val) = 0;
-
-
- CV_WRAP virtual int getAlgorithmType() const = 0;
-
- CV_WRAP virtual void setAlgorithmType(int val) = 0;
-
- CV_WRAP virtual float findNearest( InputArray samples, int k,
- OutputArray results,
- OutputArray neighborResponses=noArray(),
- OutputArray dist=noArray() ) const = 0;
-
- enum Types
- {
- BRUTE_FORCE=1,
- KDTREE=2
- };
-
- CV_WRAP static Ptr<KNearest> create();
- };
- class CV_EXPORTS_W SVM : public StatModel
- {
- public:
- class CV_EXPORTS Kernel : public Algorithm
- {
- public:
- virtual int getType() const = 0;
- virtual void calc( int vcount, int n, const float* vecs, const float* another, float* results ) = 0;
- };
-
-
- CV_WRAP virtual int getType() const = 0;
-
- CV_WRAP virtual void setType(int val) = 0;
-
-
- CV_WRAP virtual double getGamma() const = 0;
-
- CV_WRAP virtual void setGamma(double val) = 0;
-
-
- CV_WRAP virtual double getCoef0() const = 0;
-
- CV_WRAP virtual void setCoef0(double val) = 0;
-
-
- CV_WRAP virtual double getDegree() const = 0;
-
- CV_WRAP virtual void setDegree(double val) = 0;
-
-
- CV_WRAP virtual double getC() const = 0;
-
- CV_WRAP virtual void setC(double val) = 0;
-
-
- CV_WRAP virtual double getNu() const = 0;
-
- CV_WRAP virtual void setNu(double val) = 0;
-
-
- CV_WRAP virtual double getP() const = 0;
-
- CV_WRAP virtual void setP(double val) = 0;
-
-
- CV_WRAP virtual cv::Mat getClassWeights() const = 0;
-
- CV_WRAP virtual void setClassWeights(const cv::Mat &val) = 0;
-
-
- CV_WRAP virtual cv::TermCriteria getTermCriteria() const = 0;
-
- CV_WRAP virtual void setTermCriteria(const cv::TermCriteria &val) = 0;
-
- CV_WRAP virtual int getKernelType() const = 0;
-
- CV_WRAP virtual void setKernel(int kernelType) = 0;
-
- virtual void setCustomKernel(const Ptr<Kernel> &_kernel) = 0;
-
- enum Types {
-
- C_SVC=100,
-
- NU_SVC=101,
-
- ONE_CLASS=102,
-
- EPS_SVR=103,
-
- NU_SVR=104
- };
-
- enum KernelTypes {
-
- CUSTOM=-1,
-
- LINEAR=0,
-
- POLY=1,
-
- RBF=2,
-
- SIGMOID=3,
-
- CHI2=4,
-
- INTER=5
- };
-
- enum ParamTypes {
- C=0,
- GAMMA=1,
- P=2,
- NU=3,
- COEF=4,
- DEGREE=5
- };
-
- virtual bool trainAuto( const Ptr<TrainData>& data, int kFold = 10,
- ParamGrid Cgrid = SVM::getDefaultGrid(SVM::C),
- ParamGrid gammaGrid = SVM::getDefaultGrid(SVM::GAMMA),
- ParamGrid pGrid = SVM::getDefaultGrid(SVM::P),
- ParamGrid nuGrid = SVM::getDefaultGrid(SVM::NU),
- ParamGrid coeffGrid = SVM::getDefaultGrid(SVM::COEF),
- ParamGrid degreeGrid = SVM::getDefaultGrid(SVM::DEGREE),
- bool balanced=false) = 0;
-
- CV_WRAP virtual Mat getSupportVectors() const = 0;
-
- CV_WRAP Mat getUncompressedSupportVectors() const;
-
- CV_WRAP virtual double getDecisionFunction(int i, OutputArray alpha, OutputArray svidx) const = 0;
-
- static ParamGrid getDefaultGrid( int param_id );
-
- CV_WRAP static Ptr<SVM> create();
- };
- class CV_EXPORTS_W EM : public StatModel
- {
- public:
-
- enum Types {
-
- COV_MAT_SPHERICAL=0,
-
- COV_MAT_DIAGONAL=1,
-
- COV_MAT_GENERIC=2,
- COV_MAT_DEFAULT=COV_MAT_DIAGONAL
- };
-
- enum {DEFAULT_NCLUSTERS=5, DEFAULT_MAX_ITERS=100};
-
- enum {START_E_STEP=1, START_M_STEP=2, START_AUTO_STEP=0};
-
-
- CV_WRAP virtual int getClustersNumber() const = 0;
-
- CV_WRAP virtual void setClustersNumber(int val) = 0;
-
-
- CV_WRAP virtual int getCovarianceMatrixType() const = 0;
-
- CV_WRAP virtual void setCovarianceMatrixType(int val) = 0;
-
-
- CV_WRAP virtual TermCriteria getTermCriteria() const = 0;
-
- CV_WRAP virtual void setTermCriteria(const TermCriteria &val) = 0;
-
- CV_WRAP virtual Mat getWeights() const = 0;
-
- CV_WRAP virtual Mat getMeans() const = 0;
-
- CV_WRAP virtual void getCovs(CV_OUT std::vector<Mat>& covs) const = 0;
-
- CV_WRAP virtual Vec2d predict2(InputArray sample, OutputArray probs) const = 0;
-
- CV_WRAP virtual bool trainEM(InputArray samples,
- OutputArray logLikelihoods=noArray(),
- OutputArray labels=noArray(),
- OutputArray probs=noArray()) = 0;
-
- CV_WRAP virtual bool trainE(InputArray samples, InputArray means0,
- InputArray covs0=noArray(),
- InputArray weights0=noArray(),
- OutputArray logLikelihoods=noArray(),
- OutputArray labels=noArray(),
- OutputArray probs=noArray()) = 0;
-
- CV_WRAP virtual bool trainM(InputArray samples, InputArray probs0,
- OutputArray logLikelihoods=noArray(),
- OutputArray labels=noArray(),
- OutputArray probs=noArray()) = 0;
-
- CV_WRAP static Ptr<EM> create();
- };
- class CV_EXPORTS_W DTrees : public StatModel
- {
- public:
-
- enum Flags { PREDICT_AUTO=0, PREDICT_SUM=(1<<8), PREDICT_MAX_VOTE=(2<<8), PREDICT_MASK=(3<<8) };
-
-
- CV_WRAP virtual int getMaxCategories() const = 0;
-
- CV_WRAP virtual void setMaxCategories(int val) = 0;
-
-
- CV_WRAP virtual int getMaxDepth() const = 0;
-
- CV_WRAP virtual void setMaxDepth(int val) = 0;
-
-
- CV_WRAP virtual int getMinSampleCount() const = 0;
-
- CV_WRAP virtual void setMinSampleCount(int val) = 0;
-
-
- CV_WRAP virtual int getCVFolds() const = 0;
-
- CV_WRAP virtual void setCVFolds(int val) = 0;
-
-
- CV_WRAP virtual bool getUseSurrogates() const = 0;
-
- CV_WRAP virtual void setUseSurrogates(bool val) = 0;
-
-
- CV_WRAP virtual bool getUse1SERule() const = 0;
-
- CV_WRAP virtual void setUse1SERule(bool val) = 0;
-
-
- CV_WRAP virtual bool getTruncatePrunedTree() const = 0;
-
- CV_WRAP virtual void setTruncatePrunedTree(bool val) = 0;
-
-
- CV_WRAP virtual float getRegressionAccuracy() const = 0;
-
- CV_WRAP virtual void setRegressionAccuracy(float val) = 0;
-
-
- CV_WRAP virtual cv::Mat getPriors() const = 0;
-
- CV_WRAP virtual void setPriors(const cv::Mat &val) = 0;
-
- class CV_EXPORTS Node
- {
- public:
- Node();
- double value;
-
- int classIdx;
-
- int parent;
- int left;
- int right;
- int defaultDir;
-
- int split;
- };
-
- class CV_EXPORTS Split
- {
- public:
- Split();
- int varIdx;
- bool inversed;
-
- float quality;
- int next;
- float c;
- int subsetOfs;
- };
-
- virtual const std::vector<int>& getRoots() const = 0;
-
- virtual const std::vector<Node>& getNodes() const = 0;
-
- virtual const std::vector<Split>& getSplits() const = 0;
-
- virtual const std::vector<int>& getSubsets() const = 0;
-
- CV_WRAP static Ptr<DTrees> create();
- };
- class CV_EXPORTS_W RTrees : public DTrees
- {
- public:
-
-
- CV_WRAP virtual bool getCalculateVarImportance() const = 0;
-
- CV_WRAP virtual void setCalculateVarImportance(bool val) = 0;
-
-
- CV_WRAP virtual int getActiveVarCount() const = 0;
-
- CV_WRAP virtual void setActiveVarCount(int val) = 0;
-
-
- CV_WRAP virtual TermCriteria getTermCriteria() const = 0;
-
- CV_WRAP virtual void setTermCriteria(const TermCriteria &val) = 0;
-
- CV_WRAP virtual Mat getVarImportance() const = 0;
-
- CV_WRAP static Ptr<RTrees> create();
- };
- class CV_EXPORTS_W Boost : public DTrees
- {
- public:
-
-
- CV_WRAP virtual int getBoostType() const = 0;
-
- CV_WRAP virtual void setBoostType(int val) = 0;
-
-
- CV_WRAP virtual int getWeakCount() const = 0;
-
- CV_WRAP virtual void setWeakCount(int val) = 0;
-
-
- CV_WRAP virtual double getWeightTrimRate() const = 0;
-
- CV_WRAP virtual void setWeightTrimRate(double val) = 0;
-
- enum Types {
- DISCRETE=0,
- REAL=1,
-
- LOGIT=2,
- GENTLE=3
-
- };
-
- CV_WRAP static Ptr<Boost> create();
- };
- class CV_EXPORTS_W ANN_MLP : public StatModel
- {
- public:
-
- enum TrainingMethods {
- BACKPROP=0,
- RPROP=1
- };
-
- CV_WRAP virtual void setTrainMethod(int method, double param1 = 0, double param2 = 0) = 0;
-
- CV_WRAP virtual int getTrainMethod() const = 0;
-
- CV_WRAP virtual void setActivationFunction(int type, double param1 = 0, double param2 = 0) = 0;
-
- CV_WRAP virtual void setLayerSizes(InputArray _layer_sizes) = 0;
-
- CV_WRAP virtual cv::Mat getLayerSizes() const = 0;
-
-
- CV_WRAP virtual TermCriteria getTermCriteria() const = 0;
-
- CV_WRAP virtual void setTermCriteria(TermCriteria val) = 0;
-
-
- CV_WRAP virtual double getBackpropWeightScale() const = 0;
-
- CV_WRAP virtual void setBackpropWeightScale(double val) = 0;
-
-
- CV_WRAP virtual double getBackpropMomentumScale() const = 0;
-
- CV_WRAP virtual void setBackpropMomentumScale(double val) = 0;
-
-
- CV_WRAP virtual double getRpropDW0() const = 0;
-
- CV_WRAP virtual void setRpropDW0(double val) = 0;
-
-
- CV_WRAP virtual double getRpropDWPlus() const = 0;
-
- CV_WRAP virtual void setRpropDWPlus(double val) = 0;
-
-
- CV_WRAP virtual double getRpropDWMinus() const = 0;
-
- CV_WRAP virtual void setRpropDWMinus(double val) = 0;
-
-
- CV_WRAP virtual double getRpropDWMin() const = 0;
-
- CV_WRAP virtual void setRpropDWMin(double val) = 0;
-
-
- CV_WRAP virtual double getRpropDWMax() const = 0;
-
- CV_WRAP virtual void setRpropDWMax(double val) = 0;
-
- enum ActivationFunctions {
-
- IDENTITY = 0,
-
- SIGMOID_SYM = 1,
-
- GAUSSIAN = 2
- };
-
- enum TrainFlags {
-
- UPDATE_WEIGHTS = 1,
-
- NO_INPUT_SCALE = 2,
-
- NO_OUTPUT_SCALE = 4
- };
- CV_WRAP virtual Mat getWeights(int layerIdx) const = 0;
-
- CV_WRAP static Ptr<ANN_MLP> create();
- };
- class CV_EXPORTS_W LogisticRegression : public StatModel
- {
- public:
-
-
- CV_WRAP virtual double getLearningRate() const = 0;
-
- CV_WRAP virtual void setLearningRate(double val) = 0;
-
-
- CV_WRAP virtual int getIterations() const = 0;
-
- CV_WRAP virtual void setIterations(int val) = 0;
-
-
- CV_WRAP virtual int getRegularization() const = 0;
-
- CV_WRAP virtual void setRegularization(int val) = 0;
-
-
- CV_WRAP virtual int getTrainMethod() const = 0;
-
- CV_WRAP virtual void setTrainMethod(int val) = 0;
-
-
- CV_WRAP virtual int getMiniBatchSize() const = 0;
-
- CV_WRAP virtual void setMiniBatchSize(int val) = 0;
-
-
- CV_WRAP virtual TermCriteria getTermCriteria() const = 0;
-
- CV_WRAP virtual void setTermCriteria(TermCriteria val) = 0;
-
- enum RegKinds {
- REG_DISABLE = -1,
- REG_L1 = 0,
- REG_L2 = 1
- };
-
- enum Methods {
- BATCH = 0,
- MINI_BATCH = 1
- };
-
- CV_WRAP virtual float predict( InputArray samples, OutputArray results=noArray(), int flags=0 ) const = 0;
-
- CV_WRAP virtual Mat get_learnt_thetas() const = 0;
-
- CV_WRAP static Ptr<LogisticRegression> create();
- };
- CV_EXPORTS void randMVNormal( InputArray mean, InputArray cov, int nsamples, OutputArray samples);
- CV_EXPORTS void createConcentricSpheresTestSet( int nsamples, int nfeatures, int nclasses,
- OutputArray samples, OutputArray responses);
- }
- }
- #endif
- #endif
|