facerec.hpp 7.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166
  1. // This file is part of OpenCV project.
  2. // It is subject to the license terms in the LICENSE file found in the top-level directory
  3. // of this distribution and at http://opencv.org/license.html.
  4. // Copyright (c) 2011,2012. Philipp Wagner <bytefish[at]gmx[dot]de>.
  5. // Third party copyrights are property of their respective owners.
  6. #ifndef __OPENCV_FACEREC_HPP__
  7. #define __OPENCV_FACEREC_HPP__
  8. #include "opencv2/face.hpp"
  9. #include "opencv2/core.hpp"
  10. namespace cv { namespace face {
  11. //! @addtogroup face
  12. //! @{
  13. // base for two classes
  14. class CV_EXPORTS_W BasicFaceRecognizer : public FaceRecognizer
  15. {
  16. public:
  17. /** @see setNumComponents */
  18. CV_WRAP virtual int getNumComponents() const = 0;
  19. /** @copybrief getNumComponents @see getNumComponents */
  20. CV_WRAP virtual void setNumComponents(int val) = 0;
  21. /** @see setThreshold */
  22. CV_WRAP virtual double getThreshold() const = 0;
  23. /** @copybrief getThreshold @see getThreshold */
  24. CV_WRAP virtual void setThreshold(double val) = 0;
  25. CV_WRAP virtual std::vector<cv::Mat> getProjections() const = 0;
  26. CV_WRAP virtual cv::Mat getLabels() const = 0;
  27. CV_WRAP virtual cv::Mat getEigenValues() const = 0;
  28. CV_WRAP virtual cv::Mat getEigenVectors() const = 0;
  29. CV_WRAP virtual cv::Mat getMean() const = 0;
  30. };
  31. /**
  32. @param num_components The number of components (read: Eigenfaces) kept for this Principal
  33. Component Analysis. As a hint: There's no rule how many components (read: Eigenfaces) should be
  34. kept for good reconstruction capabilities. It is based on your input data, so experiment with the
  35. number. Keeping 80 components should almost always be sufficient.
  36. @param threshold The threshold applied in the prediction.
  37. ### Notes:
  38. - Training and prediction must be done on grayscale images, use cvtColor to convert between the
  39. color spaces.
  40. - **THE EIGENFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL
  41. SIZE.** (caps-lock, because I got so many mails asking for this). You have to make sure your
  42. input data has the correct shape, else a meaningful exception is thrown. Use resize to resize
  43. the images.
  44. - This model does not support updating.
  45. ### Model internal data:
  46. - num_components see createEigenFaceRecognizer.
  47. - threshold see createEigenFaceRecognizer.
  48. - eigenvalues The eigenvalues for this Principal Component Analysis (ordered descending).
  49. - eigenvectors The eigenvectors for this Principal Component Analysis (ordered by their
  50. eigenvalue).
  51. - mean The sample mean calculated from the training data.
  52. - projections The projections of the training data.
  53. - labels The threshold applied in the prediction. If the distance to the nearest neighbor is
  54. larger than the threshold, this method returns -1.
  55. */
  56. CV_EXPORTS_W Ptr<BasicFaceRecognizer> createEigenFaceRecognizer(int num_components = 0, double threshold = DBL_MAX);
  57. /**
  58. @param num_components The number of components (read: Fisherfaces) kept for this Linear
  59. Discriminant Analysis with the Fisherfaces criterion. It's useful to keep all components, that
  60. means the number of your classes c (read: subjects, persons you want to recognize). If you leave
  61. this at the default (0) or set it to a value less-equal 0 or greater (c-1), it will be set to the
  62. correct number (c-1) automatically.
  63. @param threshold The threshold applied in the prediction. If the distance to the nearest neighbor
  64. is larger than the threshold, this method returns -1.
  65. ### Notes:
  66. - Training and prediction must be done on grayscale images, use cvtColor to convert between the
  67. color spaces.
  68. - **THE FISHERFACES METHOD MAKES THE ASSUMPTION, THAT THE TRAINING AND TEST IMAGES ARE OF EQUAL
  69. SIZE.** (caps-lock, because I got so many mails asking for this). You have to make sure your
  70. input data has the correct shape, else a meaningful exception is thrown. Use resize to resize
  71. the images.
  72. - This model does not support updating.
  73. ### Model internal data:
  74. - num_components see createFisherFaceRecognizer.
  75. - threshold see createFisherFaceRecognizer.
  76. - eigenvalues The eigenvalues for this Linear Discriminant Analysis (ordered descending).
  77. - eigenvectors The eigenvectors for this Linear Discriminant Analysis (ordered by their
  78. eigenvalue).
  79. - mean The sample mean calculated from the training data.
  80. - projections The projections of the training data.
  81. - labels The labels corresponding to the projections.
  82. */
  83. CV_EXPORTS_W Ptr<BasicFaceRecognizer> createFisherFaceRecognizer(int num_components = 0, double threshold = DBL_MAX);
  84. class CV_EXPORTS_W LBPHFaceRecognizer : public FaceRecognizer
  85. {
  86. public:
  87. /** @see setGridX */
  88. CV_WRAP virtual int getGridX() const = 0;
  89. /** @copybrief getGridX @see getGridX */
  90. CV_WRAP virtual void setGridX(int val) = 0;
  91. /** @see setGridY */
  92. CV_WRAP virtual int getGridY() const = 0;
  93. /** @copybrief getGridY @see getGridY */
  94. CV_WRAP virtual void setGridY(int val) = 0;
  95. /** @see setRadius */
  96. CV_WRAP virtual int getRadius() const = 0;
  97. /** @copybrief getRadius @see getRadius */
  98. CV_WRAP virtual void setRadius(int val) = 0;
  99. /** @see setNeighbors */
  100. CV_WRAP virtual int getNeighbors() const = 0;
  101. /** @copybrief getNeighbors @see getNeighbors */
  102. CV_WRAP virtual void setNeighbors(int val) = 0;
  103. /** @see setThreshold */
  104. CV_WRAP virtual double getThreshold() const = 0;
  105. /** @copybrief getThreshold @see getThreshold */
  106. CV_WRAP virtual void setThreshold(double val) = 0;
  107. CV_WRAP virtual std::vector<cv::Mat> getHistograms() const = 0;
  108. CV_WRAP virtual cv::Mat getLabels() const = 0;
  109. };
  110. /**
  111. @param radius The radius used for building the Circular Local Binary Pattern. The greater the
  112. radius, the
  113. @param neighbors The number of sample points to build a Circular Local Binary Pattern from. An
  114. appropriate value is to use `8` sample points. Keep in mind: the more sample points you include,
  115. the higher the computational cost.
  116. @param grid_x The number of cells in the horizontal direction, 8 is a common value used in
  117. publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
  118. feature vector.
  119. @param grid_y The number of cells in the vertical direction, 8 is a common value used in
  120. publications. The more cells, the finer the grid, the higher the dimensionality of the resulting
  121. feature vector.
  122. @param threshold The threshold applied in the prediction. If the distance to the nearest neighbor
  123. is larger than the threshold, this method returns -1.
  124. ### Notes:
  125. - The Circular Local Binary Patterns (used in training and prediction) expect the data given as
  126. grayscale images, use cvtColor to convert between the color spaces.
  127. - This model supports updating.
  128. ### Model internal data:
  129. - radius see createLBPHFaceRecognizer.
  130. - neighbors see createLBPHFaceRecognizer.
  131. - grid_x see createLBPHFaceRecognizer.
  132. - grid_y see createLBPHFaceRecognizer.
  133. - threshold see createLBPHFaceRecognizer.
  134. - histograms Local Binary Patterns Histograms calculated from the given training data (empty if
  135. none was given).
  136. - labels Labels corresponding to the calculated Local Binary Patterns Histograms.
  137. */
  138. CV_EXPORTS_W Ptr<LBPHFaceRecognizer> createLBPHFaceRecognizer(int radius=1, int neighbors=8, int grid_x=8, int grid_y=8, double threshold = DBL_MAX);
  139. //! @}
  140. }} //namespace cv::face
  141. #endif //__OPENCV_FACEREC_HPP__