123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784 |
- // Copyright Christopher Kormanyos 2002 - 2011.
- // Copyright 2011 John Maddock. Distributed under the Boost
- // Distributed under the Boost Software License, Version 1.0.
- // (See accompanying file LICENSE_1_0.txt or copy at
- // http://www.boost.org/LICENSE_1_0.txt)
- // This work is based on an earlier work:
- // "Algorithm 910: A Portable C++ Multiple-Precision System for Special-Function Calculations",
- // in ACM TOMS, {VOL 37, ISSUE 4, (February 2011)} (C) ACM, 2011. http://doi.acm.org/10.1145/1916461.1916469
- //
- // This file has no include guards or namespaces - it's expanded inline inside default_ops.hpp
- //
- #ifdef BOOST_MSVC
- #pragma warning(push)
- #pragma warning(disable:6326) // comparison of two constants
- #endif
- template <class T>
- void hyp0F1(T& result, const T& b, const T& x)
- {
- typedef typename boost::multiprecision::detail::canonical<boost::int32_t, T>::type si_type;
- typedef typename boost::multiprecision::detail::canonical<boost::uint32_t, T>::type ui_type;
- // Compute the series representation of Hypergeometric0F1 taken from
- // http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric0F1/06/01/01/
- // There are no checks on input range or parameter boundaries.
- T x_pow_n_div_n_fact(x);
- T pochham_b (b);
- T bp (b);
- eval_divide(result, x_pow_n_div_n_fact, pochham_b);
- eval_add(result, ui_type(1));
- si_type n;
- T tol;
- tol = ui_type(1);
- eval_ldexp(tol, tol, 1 - boost::multiprecision::detail::digits2<number<T, et_on> >::value);
- eval_multiply(tol, result);
- if(eval_get_sign(tol) < 0)
- tol.negate();
- T term;
- static const int series_limit =
- boost::multiprecision::detail::digits2<number<T, et_on> >::value < 100
- ? 100 : boost::multiprecision::detail::digits2<number<T, et_on> >::value;
- // Series expansion of hyperg_0f1(; b; x).
- for(n = 2; n < series_limit; ++n)
- {
- eval_multiply(x_pow_n_div_n_fact, x);
- eval_divide(x_pow_n_div_n_fact, n);
- eval_increment(bp);
- eval_multiply(pochham_b, bp);
- eval_divide(term, x_pow_n_div_n_fact, pochham_b);
- eval_add(result, term);
- bool neg_term = eval_get_sign(term) < 0;
- if(neg_term)
- term.negate();
- if(term.compare(tol) <= 0)
- break;
- }
- if(n >= series_limit)
- BOOST_THROW_EXCEPTION(std::runtime_error("H0F1 Failed to Converge"));
- }
- template <class T>
- void eval_sin(T& result, const T& x)
- {
- BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The sin function is only valid for floating point types.");
- if(&result == &x)
- {
- T temp;
- eval_sin(temp, x);
- result = temp;
- return;
- }
- typedef typename boost::multiprecision::detail::canonical<boost::int32_t, T>::type si_type;
- typedef typename boost::multiprecision::detail::canonical<boost::uint32_t, T>::type ui_type;
- typedef typename mpl::front<typename T::float_types>::type fp_type;
- switch(eval_fpclassify(x))
- {
- case FP_INFINITE:
- case FP_NAN:
- if(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
- result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
- else
- BOOST_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
- return;
- case FP_ZERO:
- result = ui_type(0);
- return;
- default: ;
- }
- // Local copy of the argument
- T xx = x;
- // Analyze and prepare the phase of the argument.
- // Make a local, positive copy of the argument, xx.
- // The argument xx will be reduced to 0 <= xx <= pi/2.
- bool b_negate_sin = false;
- if(eval_get_sign(x) < 0)
- {
- xx.negate();
- b_negate_sin = !b_negate_sin;
- }
- T n_pi, t;
- // Remove even multiples of pi.
- if(xx.compare(get_constant_pi<T>()) > 0)
- {
- eval_divide(n_pi, xx, get_constant_pi<T>());
- eval_trunc(n_pi, n_pi);
- t = ui_type(2);
- eval_fmod(t, n_pi, t);
- const bool b_n_pi_is_even = eval_get_sign(t) == 0;
- eval_multiply(n_pi, get_constant_pi<T>());
- eval_subtract(xx, n_pi);
- BOOST_MATH_INSTRUMENT_CODE(xx.str(0, std::ios_base::scientific));
- BOOST_MATH_INSTRUMENT_CODE(n_pi.str(0, std::ios_base::scientific));
- // Adjust signs if the multiple of pi is not even.
- if(!b_n_pi_is_even)
- {
- b_negate_sin = !b_negate_sin;
- }
- }
- // Reduce the argument to 0 <= xx <= pi/2.
- eval_ldexp(t, get_constant_pi<T>(), -1);
- if(xx.compare(t) > 0)
- {
- eval_subtract(xx, get_constant_pi<T>(), xx);
- BOOST_MATH_INSTRUMENT_CODE(xx.str(0, std::ios_base::scientific));
- }
- eval_subtract(t, xx);
- const bool b_zero = eval_get_sign(xx) == 0;
- const bool b_pi_half = eval_get_sign(t) == 0;
- // Check if the reduced argument is very close to 0 or pi/2.
- const bool b_near_zero = xx.compare(fp_type(1e-1)) < 0;
- const bool b_near_pi_half = t.compare(fp_type(1e-1)) < 0;;
- if(b_zero)
- {
- result = ui_type(0);
- }
- else if(b_pi_half)
- {
- result = ui_type(1);
- }
- else if(b_near_zero)
- {
- eval_multiply(t, xx, xx);
- eval_divide(t, si_type(-4));
- T t2;
- t2 = fp_type(1.5);
- hyp0F1(result, t2, t);
- BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific));
- eval_multiply(result, xx);
- }
- else if(b_near_pi_half)
- {
- eval_multiply(t, t);
- eval_divide(t, si_type(-4));
- T t2;
- t2 = fp_type(0.5);
- hyp0F1(result, t2, t);
- BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific));
- }
- else
- {
- // Scale to a small argument for an efficient Taylor series,
- // implemented as a hypergeometric function. Use a standard
- // divide by three identity a certain number of times.
- // Here we use division by 3^9 --> (19683 = 3^9).
- static const si_type n_scale = 9;
- static const si_type n_three_pow_scale = static_cast<si_type>(19683L);
- eval_divide(xx, n_three_pow_scale);
- // Now with small arguments, we are ready for a series expansion.
- eval_multiply(t, xx, xx);
- eval_divide(t, si_type(-4));
- T t2;
- t2 = fp_type(1.5);
- hyp0F1(result, t2, t);
- BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific));
- eval_multiply(result, xx);
- // Convert back using multiple angle identity.
- for(boost::int32_t k = static_cast<boost::int32_t>(0); k < n_scale; k++)
- {
- // Rescale the cosine value using the multiple angle identity.
- eval_multiply(t2, result, ui_type(3));
- eval_multiply(t, result, result);
- eval_multiply(t, result);
- eval_multiply(t, ui_type(4));
- eval_subtract(result, t2, t);
- }
- }
- if(b_negate_sin)
- result.negate();
- }
- template <class T>
- void eval_cos(T& result, const T& x)
- {
- BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The cos function is only valid for floating point types.");
- if(&result == &x)
- {
- T temp;
- eval_cos(temp, x);
- result = temp;
- return;
- }
- typedef typename boost::multiprecision::detail::canonical<boost::int32_t, T>::type si_type;
- typedef typename boost::multiprecision::detail::canonical<boost::uint32_t, T>::type ui_type;
- typedef typename mpl::front<typename T::float_types>::type fp_type;
- switch(eval_fpclassify(x))
- {
- case FP_INFINITE:
- case FP_NAN:
- if(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
- result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
- else
- BOOST_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
- return;
- case FP_ZERO:
- result = ui_type(1);
- return;
- default: ;
- }
- // Local copy of the argument
- T xx = x;
- // Analyze and prepare the phase of the argument.
- // Make a local, positive copy of the argument, xx.
- // The argument xx will be reduced to 0 <= xx <= pi/2.
- bool b_negate_cos = false;
- if(eval_get_sign(x) < 0)
- {
- xx.negate();
- }
- T n_pi, t;
- // Remove even multiples of pi.
- if(xx.compare(get_constant_pi<T>()) > 0)
- {
- eval_divide(t, xx, get_constant_pi<T>());
- eval_trunc(n_pi, t);
- BOOST_MATH_INSTRUMENT_CODE(n_pi.str(0, std::ios_base::scientific));
- eval_multiply(t, n_pi, get_constant_pi<T>());
- BOOST_MATH_INSTRUMENT_CODE(t.str(0, std::ios_base::scientific));
- eval_subtract(xx, t);
- BOOST_MATH_INSTRUMENT_CODE(xx.str(0, std::ios_base::scientific));
- // Adjust signs if the multiple of pi is not even.
- t = ui_type(2);
- eval_fmod(t, n_pi, t);
- const bool b_n_pi_is_even = eval_get_sign(t) == 0;
- if(!b_n_pi_is_even)
- {
- b_negate_cos = !b_negate_cos;
- }
- }
- // Reduce the argument to 0 <= xx <= pi/2.
- eval_ldexp(t, get_constant_pi<T>(), -1);
- int com = xx.compare(t);
- if(com > 0)
- {
- eval_subtract(xx, get_constant_pi<T>(), xx);
- b_negate_cos = !b_negate_cos;
- BOOST_MATH_INSTRUMENT_CODE(xx.str(0, std::ios_base::scientific));
- }
- const bool b_zero = eval_get_sign(xx) == 0;
- const bool b_pi_half = com == 0;
- // Check if the reduced argument is very close to 0.
- const bool b_near_zero = xx.compare(fp_type(1e-1)) < 0;
- if(b_zero)
- {
- result = si_type(1);
- }
- else if(b_pi_half)
- {
- result = si_type(0);
- }
- else if(b_near_zero)
- {
- eval_multiply(t, xx, xx);
- eval_divide(t, si_type(-4));
- n_pi = fp_type(0.5f);
- hyp0F1(result, n_pi, t);
- BOOST_MATH_INSTRUMENT_CODE(result.str(0, std::ios_base::scientific));
- }
- else
- {
- eval_subtract(t, xx);
- eval_sin(result, t);
- }
- if(b_negate_cos)
- result.negate();
- }
- template <class T>
- void eval_tan(T& result, const T& x)
- {
- BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The tan function is only valid for floating point types.");
- if(&result == &x)
- {
- T temp;
- eval_tan(temp, x);
- result = temp;
- return;
- }
- T t;
- eval_sin(result, x);
- eval_cos(t, x);
- eval_divide(result, t);
- }
- template <class T>
- void hyp2F1(T& result, const T& a, const T& b, const T& c, const T& x)
- {
- // Compute the series representation of hyperg_2f1 taken from
- // Abramowitz and Stegun 15.1.1.
- // There are no checks on input range or parameter boundaries.
- typedef typename boost::multiprecision::detail::canonical<boost::uint32_t, T>::type ui_type;
- T x_pow_n_div_n_fact(x);
- T pochham_a (a);
- T pochham_b (b);
- T pochham_c (c);
- T ap (a);
- T bp (b);
- T cp (c);
- eval_multiply(result, pochham_a, pochham_b);
- eval_divide(result, pochham_c);
- eval_multiply(result, x_pow_n_div_n_fact);
- eval_add(result, ui_type(1));
- T lim;
- eval_ldexp(lim, result, 1 - boost::multiprecision::detail::digits2<number<T, et_on> >::value);
- if(eval_get_sign(lim) < 0)
- lim.negate();
- ui_type n;
- T term;
- static const unsigned series_limit =
- boost::multiprecision::detail::digits2<number<T, et_on> >::value < 100
- ? 100 : boost::multiprecision::detail::digits2<number<T, et_on> >::value;
- // Series expansion of hyperg_2f1(a, b; c; x).
- for(n = 2; n < series_limit; ++n)
- {
- eval_multiply(x_pow_n_div_n_fact, x);
- eval_divide(x_pow_n_div_n_fact, n);
- eval_increment(ap);
- eval_multiply(pochham_a, ap);
- eval_increment(bp);
- eval_multiply(pochham_b, bp);
- eval_increment(cp);
- eval_multiply(pochham_c, cp);
- eval_multiply(term, pochham_a, pochham_b);
- eval_divide(term, pochham_c);
- eval_multiply(term, x_pow_n_div_n_fact);
- eval_add(result, term);
- if(eval_get_sign(term) < 0)
- term.negate();
- if(lim.compare(term) >= 0)
- break;
- }
- if(n > series_limit)
- BOOST_THROW_EXCEPTION(std::runtime_error("H2F1 failed to converge."));
- }
- template <class T>
- void eval_asin(T& result, const T& x)
- {
- BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The asin function is only valid for floating point types.");
- typedef typename boost::multiprecision::detail::canonical<boost::uint32_t, T>::type ui_type;
- typedef typename mpl::front<typename T::float_types>::type fp_type;
- if(&result == &x)
- {
- T t(x);
- eval_asin(result, t);
- return;
- }
- switch(eval_fpclassify(x))
- {
- case FP_NAN:
- case FP_INFINITE:
- if(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
- result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
- else
- BOOST_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
- return;
- case FP_ZERO:
- result = ui_type(0);
- return;
- default: ;
- }
- const bool b_neg = eval_get_sign(x) < 0;
- T xx(x);
- if(b_neg)
- xx.negate();
- int c = xx.compare(ui_type(1));
- if(c > 0)
- {
- if(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
- result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
- else
- BOOST_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
- return;
- }
- else if(c == 0)
- {
- result = get_constant_pi<T>();
- eval_ldexp(result, result, -1);
- if(b_neg)
- result.negate();
- return;
- }
- if(xx.compare(fp_type(1e-4)) < 0)
- {
- // http://functions.wolfram.com/ElementaryFunctions/ArcSin/26/01/01/
- eval_multiply(xx, xx);
- T t1, t2;
- t1 = fp_type(0.5f);
- t2 = fp_type(1.5f);
- hyp2F1(result, t1, t1, t2, xx);
- eval_multiply(result, x);
- return;
- }
- else if(xx.compare(fp_type(1 - 1e-4f)) > 0)
- {
- T dx1;
- T t1, t2;
- eval_subtract(dx1, ui_type(1), xx);
- t1 = fp_type(0.5f);
- t2 = fp_type(1.5f);
- eval_ldexp(dx1, dx1, -1);
- hyp2F1(result, t1, t1, t2, dx1);
- eval_ldexp(dx1, dx1, 2);
- eval_sqrt(t1, dx1);
- eval_multiply(result, t1);
- eval_ldexp(t1, get_constant_pi<T>(), -1);
- result.negate();
- eval_add(result, t1);
- if(b_neg)
- result.negate();
- return;
- }
- #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
- typedef typename boost::multiprecision::detail::canonical<long double, T>::type guess_type;
- #else
- typedef fp_type guess_type;
- #endif
- // Get initial estimate using standard math function asin.
- guess_type dd;
- eval_convert_to(&dd, xx);
- result = (guess_type)(std::asin(dd));
- unsigned current_digits = std::numeric_limits<guess_type>::digits - 5;
- unsigned target_precision = boost::multiprecision::detail::digits2<number<T, et_on> >::value;
- // Newton-Raphson iteration
- while(current_digits < target_precision)
- {
- T sine, cosine;
- eval_sin(sine, result);
- eval_cos(cosine, result);
- eval_subtract(sine, xx);
- eval_divide(sine, cosine);
- eval_subtract(result, sine);
- current_digits *= 2;
- /*
- T lim;
- eval_ldexp(lim, result, 1 - boost::multiprecision::detail::digits2<number<T, et_on> >::value);
- if(eval_get_sign(s) < 0)
- s.negate();
- if(eval_get_sign(lim) < 0)
- lim.negate();
- if(lim.compare(s) >= 0)
- break;
- */
- }
- if(b_neg)
- result.negate();
- }
- template <class T>
- inline void eval_acos(T& result, const T& x)
- {
- BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The acos function is only valid for floating point types.");
- typedef typename boost::multiprecision::detail::canonical<boost::uint32_t, T>::type ui_type;
- switch(eval_fpclassify(x))
- {
- case FP_NAN:
- case FP_INFINITE:
- if(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
- result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
- else
- BOOST_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
- return;
- case FP_ZERO:
- result = get_constant_pi<T>();
- eval_ldexp(result, result, -1); // divide by two.
- return;
- }
- eval_abs(result, x);
- int c = result.compare(ui_type(1));
- if(c > 0)
- {
- if(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
- result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
- else
- BOOST_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
- return;
- }
- else if(c == 0)
- {
- if(eval_get_sign(x) < 0)
- result = get_constant_pi<T>();
- else
- result = ui_type(0);
- return;
- }
- eval_asin(result, x);
- T t;
- eval_ldexp(t, get_constant_pi<T>(), -1);
- eval_subtract(result, t);
- result.negate();
- }
- template <class T>
- void eval_atan(T& result, const T& x)
- {
- BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The atan function is only valid for floating point types.");
- typedef typename boost::multiprecision::detail::canonical<boost::int32_t, T>::type si_type;
- typedef typename boost::multiprecision::detail::canonical<boost::uint32_t, T>::type ui_type;
- typedef typename mpl::front<typename T::float_types>::type fp_type;
- switch(eval_fpclassify(x))
- {
- case FP_NAN:
- result = x;
- return;
- case FP_ZERO:
- result = ui_type(0);
- return;
- case FP_INFINITE:
- if(eval_get_sign(x) < 0)
- {
- eval_ldexp(result, get_constant_pi<T>(), -1);
- result.negate();
- }
- else
- eval_ldexp(result, get_constant_pi<T>(), -1);
- return;
- default: ;
- }
- const bool b_neg = eval_get_sign(x) < 0;
- T xx(x);
- if(b_neg)
- xx.negate();
- if(xx.compare(fp_type(0.1)) < 0)
- {
- T t1, t2, t3;
- t1 = ui_type(1);
- t2 = fp_type(0.5f);
- t3 = fp_type(1.5f);
- eval_multiply(xx, xx);
- xx.negate();
- hyp2F1(result, t1, t2, t3, xx);
- eval_multiply(result, x);
- return;
- }
- if(xx.compare(fp_type(10)) > 0)
- {
- T t1, t2, t3;
- t1 = fp_type(0.5f);
- t2 = ui_type(1u);
- t3 = fp_type(1.5f);
- eval_multiply(xx, xx);
- eval_divide(xx, si_type(-1), xx);
- hyp2F1(result, t1, t2, t3, xx);
- eval_divide(result, x);
- if(!b_neg)
- result.negate();
- eval_ldexp(t1, get_constant_pi<T>(), -1);
- eval_add(result, t1);
- if(b_neg)
- result.negate();
- return;
- }
- // Get initial estimate using standard math function atan.
- fp_type d;
- eval_convert_to(&d, xx);
- result = fp_type(std::atan(d));
- // Newton-Raphson iteration
- static const boost::int32_t double_digits10_minus_a_few = std::numeric_limits<double>::digits10 - 3;
- T s, c, t;
- for(boost::int32_t digits = double_digits10_minus_a_few; digits <= std::numeric_limits<number<T, et_on> >::digits10; digits *= 2)
- {
- eval_sin(s, result);
- eval_cos(c, result);
- eval_multiply(t, xx, c);
- eval_subtract(t, s);
- eval_multiply(s, t, c);
- eval_add(result, s);
- }
- if(b_neg)
- result.negate();
- }
- template <class T>
- void eval_atan2(T& result, const T& y, const T& x)
- {
- BOOST_STATIC_ASSERT_MSG(number_category<T>::value == number_kind_floating_point, "The atan2 function is only valid for floating point types.");
- if(&result == &y)
- {
- T temp(y);
- eval_atan2(result, temp, x);
- return;
- }
- else if(&result == &x)
- {
- T temp(x);
- eval_atan2(result, y, temp);
- return;
- }
- typedef typename boost::multiprecision::detail::canonical<boost::uint32_t, T>::type ui_type;
- switch(eval_fpclassify(y))
- {
- case FP_NAN:
- result = y;
- return;
- case FP_ZERO:
- {
- int c = eval_get_sign(x);
- if(c < 0)
- result = get_constant_pi<T>();
- else if(c >= 0)
- result = ui_type(0); // Note we allow atan2(0,0) to be zero, even though it's mathematically undefined
- return;
- }
- case FP_INFINITE:
- {
- if(eval_fpclassify(x) == FP_INFINITE)
- {
- if(std::numeric_limits<number<T, et_on> >::has_quiet_NaN)
- result = std::numeric_limits<number<T, et_on> >::quiet_NaN().backend();
- else
- BOOST_THROW_EXCEPTION(std::domain_error("Result is undefined or complex and there is no NaN for this number type."));
- }
- else
- {
- eval_ldexp(result, get_constant_pi<T>(), -1);
- if(eval_get_sign(y) < 0)
- result.negate();
- }
- return;
- }
- }
- switch(eval_fpclassify(x))
- {
- case FP_NAN:
- result = x;
- return;
- case FP_ZERO:
- {
- eval_ldexp(result, get_constant_pi<T>(), -1);
- if(eval_get_sign(y) < 0)
- result.negate();
- return;
- }
- case FP_INFINITE:
- if(eval_get_sign(x) > 0)
- result = ui_type(0);
- else
- result = get_constant_pi<T>();
- if(eval_get_sign(y) < 0)
- result.negate();
- return;
- }
- T xx;
- eval_divide(xx, y, x);
- if(eval_get_sign(xx) < 0)
- xx.negate();
- eval_atan(result, xx);
- // Determine quadrant (sign) based on signs of x, y
- const bool y_neg = eval_get_sign(y) < 0;
- const bool x_neg = eval_get_sign(x) < 0;
- if(y_neg != x_neg)
- result.negate();
- if(x_neg)
- {
- if(y_neg)
- eval_subtract(result, get_constant_pi<T>());
- else
- eval_add(result, get_constant_pi<T>());
- }
- }
- template<class T, class A>
- inline typename enable_if<is_arithmetic<A>, void>::type eval_atan2(T& result, const T& x, const A& a)
- {
- typedef typename boost::multiprecision::detail::canonical<A, T>::type canonical_type;
- typedef typename mpl::if_<is_same<A, canonical_type>, T, canonical_type>::type cast_type;
- cast_type c;
- c = a;
- eval_atan2(result, x, c);
- }
- template<class T, class A>
- inline typename enable_if<is_arithmetic<A>, void>::type eval_atan2(T& result, const A& x, const T& a)
- {
- typedef typename boost::multiprecision::detail::canonical<A, T>::type canonical_type;
- typedef typename mpl::if_<is_same<A, canonical_type>, T, canonical_type>::type cast_type;
- cast_type c;
- c = x;
- eval_atan2(result, c, a);
- }
- #ifdef BOOST_MSVC
- #pragma warning(pop)
- #endif
|