operations.hpp 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322
  1. // Copyright (C) 2004 The Trustees of Indiana University.
  2. // Copyright (C) 2005-2006 Douglas Gregor <doug.gregor -at- gmail.com>
  3. // Use, modification and distribution is subject to the Boost Software
  4. // License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
  5. // http://www.boost.org/LICENSE_1_0.txt)
  6. // Authors: Douglas Gregor
  7. // Andrew Lumsdaine
  8. /** @file operations.hpp
  9. *
  10. * This header provides a mapping from function objects to @c MPI_Op
  11. * constants used in MPI collective operations. It also provides
  12. * several new function object types not present in the standard @c
  13. * <functional> header that have direct mappings to @c MPI_Op.
  14. */
  15. #ifndef BOOST_MPI_IS_MPI_OP_HPP
  16. #define BOOST_MPI_IS_MPI_OP_HPP
  17. #include <boost/mpi/config.hpp>
  18. #include <boost/mpl/bool.hpp>
  19. #include <boost/mpl/if.hpp>
  20. #include <boost/mpl/and.hpp>
  21. #include <boost/mpi/datatype.hpp>
  22. #include <boost/utility/enable_if.hpp>
  23. #include <functional>
  24. namespace boost { namespace mpi {
  25. template<typename Op, typename T> struct is_mpi_op;
  26. /**
  27. * @brief Determine if a function object type is commutative.
  28. *
  29. * This trait determines if an operation @c Op is commutative when
  30. * applied to values of type @c T. Parallel operations such as @c
  31. * reduce and @c prefix_sum can be implemented more efficiently with
  32. * commutative operations. To mark an operation as commutative, users
  33. * should specialize @c is_commutative and derive from the class @c
  34. * mpl::true_.
  35. */
  36. template<typename Op, typename T>
  37. struct is_commutative : public mpl::false_ { };
  38. /**************************************************************************
  39. * Function objects for MPI operations not in <functional> header *
  40. **************************************************************************/
  41. /**
  42. * @brief Compute the maximum of two values.
  43. *
  44. * This binary function object computes the maximum of the two values
  45. * it is given. When used with MPI and a type @c T that has an
  46. * associated, built-in MPI data type, translates to @c MPI_MAX.
  47. */
  48. template<typename T>
  49. struct maximum : public std::binary_function<T, T, T>
  50. {
  51. /** @returns the maximum of x and y. */
  52. const T& operator()(const T& x, const T& y) const
  53. {
  54. return x < y? y : x;
  55. }
  56. };
  57. /**
  58. * @brief Compute the minimum of two values.
  59. *
  60. * This binary function object computes the minimum of the two values
  61. * it is given. When used with MPI and a type @c T that has an
  62. * associated, built-in MPI data type, translates to @c MPI_MIN.
  63. */
  64. template<typename T>
  65. struct minimum : public std::binary_function<T, T, T>
  66. {
  67. /** @returns the minimum of x and y. */
  68. const T& operator()(const T& x, const T& y) const
  69. {
  70. return x < y? x : y;
  71. }
  72. };
  73. /**
  74. * @brief Compute the bitwise AND of two integral values.
  75. *
  76. * This binary function object computes the bitwise AND of the two
  77. * values it is given. When used with MPI and a type @c T that has an
  78. * associated, built-in MPI data type, translates to @c MPI_BAND.
  79. */
  80. template<typename T>
  81. struct bitwise_and : public std::binary_function<T, T, T>
  82. {
  83. /** @returns @c x & y. */
  84. T operator()(const T& x, const T& y) const
  85. {
  86. return x & y;
  87. }
  88. };
  89. /**
  90. * @brief Compute the bitwise OR of two integral values.
  91. *
  92. * This binary function object computes the bitwise OR of the two
  93. * values it is given. When used with MPI and a type @c T that has an
  94. * associated, built-in MPI data type, translates to @c MPI_BOR.
  95. */
  96. template<typename T>
  97. struct bitwise_or : public std::binary_function<T, T, T>
  98. {
  99. /** @returns the @c x | y. */
  100. T operator()(const T& x, const T& y) const
  101. {
  102. return x | y;
  103. }
  104. };
  105. /**
  106. * @brief Compute the logical exclusive OR of two integral values.
  107. *
  108. * This binary function object computes the logical exclusive of the
  109. * two values it is given. When used with MPI and a type @c T that has
  110. * an associated, built-in MPI data type, translates to @c MPI_LXOR.
  111. */
  112. template<typename T>
  113. struct logical_xor : public std::binary_function<T, T, T>
  114. {
  115. /** @returns the logical exclusive OR of x and y. */
  116. T operator()(const T& x, const T& y) const
  117. {
  118. return (x || y) && !(x && y);
  119. }
  120. };
  121. /**
  122. * @brief Compute the bitwise exclusive OR of two integral values.
  123. *
  124. * This binary function object computes the bitwise exclusive OR of
  125. * the two values it is given. When used with MPI and a type @c T that
  126. * has an associated, built-in MPI data type, translates to @c
  127. * MPI_BXOR.
  128. */
  129. template<typename T>
  130. struct bitwise_xor : public std::binary_function<T, T, T>
  131. {
  132. /** @returns @c x ^ y. */
  133. T operator()(const T& x, const T& y) const
  134. {
  135. return x ^ y;
  136. }
  137. };
  138. /**************************************************************************
  139. * MPI_Op queries *
  140. **************************************************************************/
  141. /**
  142. * @brief Determine if a function object has an associated @c MPI_Op.
  143. *
  144. * This trait determines if a function object type @c Op, when used
  145. * with argument type @c T, has an associated @c MPI_Op. If so, @c
  146. * is_mpi_op<Op,T> will derive from @c mpl::false_ and will
  147. * contain a static member function @c op that takes no arguments but
  148. * returns the associated @c MPI_Op value. For instance, @c
  149. * is_mpi_op<std::plus<int>,int>::op() returns @c MPI_SUM.
  150. *
  151. * Users may specialize @c is_mpi_op for any other class templates
  152. * that map onto operations that have @c MPI_Op equivalences, such as
  153. * bitwise OR, logical and, or maximum. However, users are encouraged
  154. * to use the standard function objects in the @c functional and @c
  155. * boost/mpi/operations.hpp headers whenever possible. For
  156. * function objects that are class templates with a single template
  157. * parameter, it may be easier to specialize @c is_builtin_mpi_op.
  158. */
  159. template<typename Op, typename T>
  160. struct is_mpi_op : public mpl::false_ { };
  161. /// INTERNAL ONLY
  162. template<typename T>
  163. struct is_mpi_op<maximum<T>, T>
  164. : public boost::mpl::or_<is_mpi_integer_datatype<T>,
  165. is_mpi_floating_point_datatype<T> >
  166. {
  167. static MPI_Op op() { return MPI_MAX; }
  168. };
  169. /// INTERNAL ONLY
  170. template<typename T>
  171. struct is_mpi_op<minimum<T>, T>
  172. : public boost::mpl::or_<is_mpi_integer_datatype<T>,
  173. is_mpi_floating_point_datatype<T> >
  174. {
  175. static MPI_Op op() { return MPI_MIN; }
  176. };
  177. /// INTERNAL ONLY
  178. template<typename T>
  179. struct is_mpi_op<std::plus<T>, T>
  180. : public boost::mpl::or_<is_mpi_integer_datatype<T>,
  181. is_mpi_floating_point_datatype<T>,
  182. is_mpi_complex_datatype<T> >
  183. {
  184. static MPI_Op op() { return MPI_SUM; }
  185. };
  186. /// INTERNAL ONLY
  187. template<typename T>
  188. struct is_mpi_op<std::multiplies<T>, T>
  189. : public boost::mpl::or_<is_mpi_integer_datatype<T>,
  190. is_mpi_floating_point_datatype<T>,
  191. is_mpi_complex_datatype<T> >
  192. {
  193. static MPI_Op op() { return MPI_PROD; }
  194. };
  195. /// INTERNAL ONLY
  196. template<typename T>
  197. struct is_mpi_op<std::logical_and<T>, T>
  198. : public boost::mpl::or_<is_mpi_integer_datatype<T>,
  199. is_mpi_logical_datatype<T> >
  200. {
  201. static MPI_Op op() { return MPI_LAND; }
  202. };
  203. /// INTERNAL ONLY
  204. template<typename T>
  205. struct is_mpi_op<std::logical_or<T>, T>
  206. : public boost::mpl::or_<is_mpi_integer_datatype<T>,
  207. is_mpi_logical_datatype<T> >
  208. {
  209. static MPI_Op op() { return MPI_LOR; }
  210. };
  211. /// INTERNAL ONLY
  212. template<typename T>
  213. struct is_mpi_op<logical_xor<T>, T>
  214. : public boost::mpl::or_<is_mpi_integer_datatype<T>,
  215. is_mpi_logical_datatype<T> >
  216. {
  217. static MPI_Op op() { return MPI_LXOR; }
  218. };
  219. /// INTERNAL ONLY
  220. template<typename T>
  221. struct is_mpi_op<bitwise_and<T>, T>
  222. : public boost::mpl::or_<is_mpi_integer_datatype<T>,
  223. is_mpi_byte_datatype<T> >
  224. {
  225. static MPI_Op op() { return MPI_BAND; }
  226. };
  227. /// INTERNAL ONLY
  228. template<typename T>
  229. struct is_mpi_op<bitwise_or<T>, T>
  230. : public boost::mpl::or_<is_mpi_integer_datatype<T>,
  231. is_mpi_byte_datatype<T> >
  232. {
  233. static MPI_Op op() { return MPI_BOR; }
  234. };
  235. /// INTERNAL ONLY
  236. template<typename T>
  237. struct is_mpi_op<bitwise_xor<T>, T>
  238. : public boost::mpl::or_<is_mpi_integer_datatype<T>,
  239. is_mpi_byte_datatype<T> >
  240. {
  241. static MPI_Op op() { return MPI_BXOR; }
  242. };
  243. namespace detail {
  244. // A helper class used to create user-defined MPI_Ops
  245. template<typename Op, typename T>
  246. class user_op
  247. {
  248. public:
  249. explicit user_op(Op& op)
  250. {
  251. BOOST_MPI_CHECK_RESULT(MPI_Op_create,
  252. (&user_op<Op, T>::perform,
  253. is_commutative<Op, T>::value,
  254. &mpi_op));
  255. op_ptr = &op;
  256. }
  257. ~user_op()
  258. {
  259. if (std::uncaught_exception()) {
  260. // Ignore failure cases: there are obviously other problems
  261. // already, and we don't want to cause program termination if
  262. // MPI_Op_free fails.
  263. MPI_Op_free(&mpi_op);
  264. } else {
  265. BOOST_MPI_CHECK_RESULT(MPI_Op_free, (&mpi_op));
  266. }
  267. }
  268. MPI_Op& get_mpi_op()
  269. {
  270. return mpi_op;
  271. }
  272. private:
  273. MPI_Op mpi_op;
  274. static Op* op_ptr;
  275. static void BOOST_MPI_CALLING_CONVENTION perform(void* vinvec, void* voutvec, int* plen, MPI_Datatype*)
  276. {
  277. T* invec = static_cast<T*>(vinvec);
  278. T* outvec = static_cast<T*>(voutvec);
  279. std::transform(invec, invec + *plen, outvec, outvec, *op_ptr);
  280. }
  281. };
  282. template<typename Op, typename T> Op* user_op<Op, T>::op_ptr = 0;
  283. } // end namespace detail
  284. } } // end namespace boost::mpi
  285. #endif // BOOST_MPI_GET_MPI_OP_HPP