spsc_queue.hpp 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981
  1. // lock-free single-producer/single-consumer ringbuffer
  2. // this algorithm is implemented in various projects (linux kernel)
  3. //
  4. // Copyright (C) 2009-2013 Tim Blechmann
  5. //
  6. // Distributed under the Boost Software License, Version 1.0. (See
  7. // accompanying file LICENSE_1_0.txt or copy at
  8. // http://www.boost.org/LICENSE_1_0.txt)
  9. #ifndef BOOST_LOCKFREE_SPSC_QUEUE_HPP_INCLUDED
  10. #define BOOST_LOCKFREE_SPSC_QUEUE_HPP_INCLUDED
  11. #include <algorithm>
  12. #include <memory>
  13. #include <boost/aligned_storage.hpp>
  14. #include <boost/assert.hpp>
  15. #include <boost/static_assert.hpp>
  16. #include <boost/utility.hpp>
  17. #include <boost/utility/enable_if.hpp>
  18. #include <boost/config.hpp> // for BOOST_LIKELY
  19. #include <boost/type_traits/has_trivial_destructor.hpp>
  20. #include <boost/type_traits/is_convertible.hpp>
  21. #include <boost/lockfree/detail/atomic.hpp>
  22. #include <boost/lockfree/detail/copy_payload.hpp>
  23. #include <boost/lockfree/detail/parameter.hpp>
  24. #include <boost/lockfree/detail/prefix.hpp>
  25. #ifdef BOOST_HAS_PRAGMA_ONCE
  26. #pragma once
  27. #endif
  28. namespace boost {
  29. namespace lockfree {
  30. namespace detail {
  31. typedef parameter::parameters<boost::parameter::optional<tag::capacity>,
  32. boost::parameter::optional<tag::allocator>
  33. > ringbuffer_signature;
  34. template <typename T>
  35. class ringbuffer_base
  36. {
  37. #ifndef BOOST_DOXYGEN_INVOKED
  38. protected:
  39. typedef std::size_t size_t;
  40. static const int padding_size = BOOST_LOCKFREE_CACHELINE_BYTES - sizeof(size_t);
  41. atomic<size_t> write_index_;
  42. char padding1[padding_size]; /* force read_index and write_index to different cache lines */
  43. atomic<size_t> read_index_;
  44. BOOST_DELETED_FUNCTION(ringbuffer_base(ringbuffer_base const&))
  45. BOOST_DELETED_FUNCTION(ringbuffer_base& operator= (ringbuffer_base const&))
  46. protected:
  47. ringbuffer_base(void):
  48. write_index_(0), read_index_(0)
  49. {}
  50. static size_t next_index(size_t arg, size_t max_size)
  51. {
  52. size_t ret = arg + 1;
  53. while (BOOST_UNLIKELY(ret >= max_size))
  54. ret -= max_size;
  55. return ret;
  56. }
  57. static size_t read_available(size_t write_index, size_t read_index, size_t max_size)
  58. {
  59. if (write_index >= read_index)
  60. return write_index - read_index;
  61. const size_t ret = write_index + max_size - read_index;
  62. return ret;
  63. }
  64. static size_t write_available(size_t write_index, size_t read_index, size_t max_size)
  65. {
  66. size_t ret = read_index - write_index - 1;
  67. if (write_index >= read_index)
  68. ret += max_size;
  69. return ret;
  70. }
  71. size_t read_available(size_t max_size) const
  72. {
  73. size_t write_index = write_index_.load(memory_order_acquire);
  74. const size_t read_index = read_index_.load(memory_order_relaxed);
  75. return read_available(write_index, read_index, max_size);
  76. }
  77. size_t write_available(size_t max_size) const
  78. {
  79. size_t write_index = write_index_.load(memory_order_relaxed);
  80. const size_t read_index = read_index_.load(memory_order_acquire);
  81. return write_available(write_index, read_index, max_size);
  82. }
  83. bool push(T const & t, T * buffer, size_t max_size)
  84. {
  85. const size_t write_index = write_index_.load(memory_order_relaxed); // only written from push thread
  86. const size_t next = next_index(write_index, max_size);
  87. if (next == read_index_.load(memory_order_acquire))
  88. return false; /* ringbuffer is full */
  89. new (buffer + write_index) T(t); // copy-construct
  90. write_index_.store(next, memory_order_release);
  91. return true;
  92. }
  93. size_t push(const T * input_buffer, size_t input_count, T * internal_buffer, size_t max_size)
  94. {
  95. return push(input_buffer, input_buffer + input_count, internal_buffer, max_size) - input_buffer;
  96. }
  97. template <typename ConstIterator>
  98. ConstIterator push(ConstIterator begin, ConstIterator end, T * internal_buffer, size_t max_size)
  99. {
  100. // FIXME: avoid std::distance
  101. const size_t write_index = write_index_.load(memory_order_relaxed); // only written from push thread
  102. const size_t read_index = read_index_.load(memory_order_acquire);
  103. const size_t avail = write_available(write_index, read_index, max_size);
  104. if (avail == 0)
  105. return begin;
  106. size_t input_count = std::distance(begin, end);
  107. input_count = (std::min)(input_count, avail);
  108. size_t new_write_index = write_index + input_count;
  109. const ConstIterator last = boost::next(begin, input_count);
  110. if (write_index + input_count > max_size) {
  111. /* copy data in two sections */
  112. const size_t count0 = max_size - write_index;
  113. const ConstIterator midpoint = boost::next(begin, count0);
  114. std::uninitialized_copy(begin, midpoint, internal_buffer + write_index);
  115. std::uninitialized_copy(midpoint, last, internal_buffer);
  116. new_write_index -= max_size;
  117. } else {
  118. std::uninitialized_copy(begin, last, internal_buffer + write_index);
  119. if (new_write_index == max_size)
  120. new_write_index = 0;
  121. }
  122. write_index_.store(new_write_index, memory_order_release);
  123. return last;
  124. }
  125. template <typename Functor>
  126. bool consume_one(Functor & functor, T * buffer, size_t max_size)
  127. {
  128. const size_t write_index = write_index_.load(memory_order_acquire);
  129. const size_t read_index = read_index_.load(memory_order_relaxed); // only written from pop thread
  130. if ( empty(write_index, read_index) )
  131. return false;
  132. T & object_to_consume = buffer[read_index];
  133. functor( object_to_consume );
  134. object_to_consume.~T();
  135. size_t next = next_index(read_index, max_size);
  136. read_index_.store(next, memory_order_release);
  137. return true;
  138. }
  139. template <typename Functor>
  140. bool consume_one(Functor const & functor, T * buffer, size_t max_size)
  141. {
  142. const size_t write_index = write_index_.load(memory_order_acquire);
  143. const size_t read_index = read_index_.load(memory_order_relaxed); // only written from pop thread
  144. if ( empty(write_index, read_index) )
  145. return false;
  146. T & object_to_consume = buffer[read_index];
  147. functor( object_to_consume );
  148. object_to_consume.~T();
  149. size_t next = next_index(read_index, max_size);
  150. read_index_.store(next, memory_order_release);
  151. return true;
  152. }
  153. template <typename Functor>
  154. size_t consume_all (Functor const & functor, T * internal_buffer, size_t max_size)
  155. {
  156. const size_t write_index = write_index_.load(memory_order_acquire);
  157. const size_t read_index = read_index_.load(memory_order_relaxed); // only written from pop thread
  158. const size_t avail = read_available(write_index, read_index, max_size);
  159. if (avail == 0)
  160. return 0;
  161. const size_t output_count = avail;
  162. size_t new_read_index = read_index + output_count;
  163. if (read_index + output_count > max_size) {
  164. /* copy data in two sections */
  165. const size_t count0 = max_size - read_index;
  166. const size_t count1 = output_count - count0;
  167. run_functor_and_delete(internal_buffer + read_index, internal_buffer + max_size, functor);
  168. run_functor_and_delete(internal_buffer, internal_buffer + count1, functor);
  169. new_read_index -= max_size;
  170. } else {
  171. run_functor_and_delete(internal_buffer + read_index, internal_buffer + read_index + output_count, functor);
  172. if (new_read_index == max_size)
  173. new_read_index = 0;
  174. }
  175. read_index_.store(new_read_index, memory_order_release);
  176. return output_count;
  177. }
  178. template <typename Functor>
  179. size_t consume_all (Functor & functor, T * internal_buffer, size_t max_size)
  180. {
  181. const size_t write_index = write_index_.load(memory_order_acquire);
  182. const size_t read_index = read_index_.load(memory_order_relaxed); // only written from pop thread
  183. const size_t avail = read_available(write_index, read_index, max_size);
  184. if (avail == 0)
  185. return 0;
  186. const size_t output_count = avail;
  187. size_t new_read_index = read_index + output_count;
  188. if (read_index + output_count > max_size) {
  189. /* copy data in two sections */
  190. const size_t count0 = max_size - read_index;
  191. const size_t count1 = output_count - count0;
  192. run_functor_and_delete(internal_buffer + read_index, internal_buffer + max_size, functor);
  193. run_functor_and_delete(internal_buffer, internal_buffer + count1, functor);
  194. new_read_index -= max_size;
  195. } else {
  196. run_functor_and_delete(internal_buffer + read_index, internal_buffer + read_index + output_count, functor);
  197. if (new_read_index == max_size)
  198. new_read_index = 0;
  199. }
  200. read_index_.store(new_read_index, memory_order_release);
  201. return output_count;
  202. }
  203. size_t pop (T * output_buffer, size_t output_count, T * internal_buffer, size_t max_size)
  204. {
  205. const size_t write_index = write_index_.load(memory_order_acquire);
  206. const size_t read_index = read_index_.load(memory_order_relaxed); // only written from pop thread
  207. const size_t avail = read_available(write_index, read_index, max_size);
  208. if (avail == 0)
  209. return 0;
  210. output_count = (std::min)(output_count, avail);
  211. size_t new_read_index = read_index + output_count;
  212. if (read_index + output_count > max_size) {
  213. /* copy data in two sections */
  214. const size_t count0 = max_size - read_index;
  215. const size_t count1 = output_count - count0;
  216. copy_and_delete(internal_buffer + read_index, internal_buffer + max_size, output_buffer);
  217. copy_and_delete(internal_buffer, internal_buffer + count1, output_buffer + count0);
  218. new_read_index -= max_size;
  219. } else {
  220. copy_and_delete(internal_buffer + read_index, internal_buffer + read_index + output_count, output_buffer);
  221. if (new_read_index == max_size)
  222. new_read_index = 0;
  223. }
  224. read_index_.store(new_read_index, memory_order_release);
  225. return output_count;
  226. }
  227. template <typename OutputIterator>
  228. size_t pop_to_output_iterator (OutputIterator it, T * internal_buffer, size_t max_size)
  229. {
  230. const size_t write_index = write_index_.load(memory_order_acquire);
  231. const size_t read_index = read_index_.load(memory_order_relaxed); // only written from pop thread
  232. const size_t avail = read_available(write_index, read_index, max_size);
  233. if (avail == 0)
  234. return 0;
  235. size_t new_read_index = read_index + avail;
  236. if (read_index + avail > max_size) {
  237. /* copy data in two sections */
  238. const size_t count0 = max_size - read_index;
  239. const size_t count1 = avail - count0;
  240. it = copy_and_delete(internal_buffer + read_index, internal_buffer + max_size, it);
  241. copy_and_delete(internal_buffer, internal_buffer + count1, it);
  242. new_read_index -= max_size;
  243. } else {
  244. copy_and_delete(internal_buffer + read_index, internal_buffer + read_index + avail, it);
  245. if (new_read_index == max_size)
  246. new_read_index = 0;
  247. }
  248. read_index_.store(new_read_index, memory_order_release);
  249. return avail;
  250. }
  251. const T& front(const T * internal_buffer) const
  252. {
  253. const size_t read_index = read_index_.load(memory_order_relaxed); // only written from pop thread
  254. return *(internal_buffer + read_index);
  255. }
  256. T& front(T * internal_buffer)
  257. {
  258. const size_t read_index = read_index_.load(memory_order_relaxed); // only written from pop thread
  259. return *(internal_buffer + read_index);
  260. }
  261. #endif
  262. public:
  263. /** reset the ringbuffer
  264. *
  265. * \note Not thread-safe
  266. * */
  267. void reset(void)
  268. {
  269. if ( !boost::has_trivial_destructor<T>::value ) {
  270. // make sure to call all destructors!
  271. T dummy_element;
  272. while (pop(dummy_element))
  273. {}
  274. } else {
  275. write_index_.store(0, memory_order_relaxed);
  276. read_index_.store(0, memory_order_release);
  277. }
  278. }
  279. /** Check if the ringbuffer is empty
  280. *
  281. * \return true, if the ringbuffer is empty, false otherwise
  282. * \note Due to the concurrent nature of the ringbuffer the result may be inaccurate.
  283. * */
  284. bool empty(void)
  285. {
  286. return empty(write_index_.load(memory_order_relaxed), read_index_.load(memory_order_relaxed));
  287. }
  288. /**
  289. * \return true, if implementation is lock-free.
  290. *
  291. * */
  292. bool is_lock_free(void) const
  293. {
  294. return write_index_.is_lock_free() && read_index_.is_lock_free();
  295. }
  296. private:
  297. bool empty(size_t write_index, size_t read_index)
  298. {
  299. return write_index == read_index;
  300. }
  301. template< class OutputIterator >
  302. OutputIterator copy_and_delete( T * first, T * last, OutputIterator out )
  303. {
  304. if (boost::has_trivial_destructor<T>::value) {
  305. return std::copy(first, last, out); // will use memcpy if possible
  306. } else {
  307. for (; first != last; ++first, ++out) {
  308. *out = *first;
  309. first->~T();
  310. }
  311. return out;
  312. }
  313. }
  314. template< class Functor >
  315. void run_functor_and_delete( T * first, T * last, Functor & functor )
  316. {
  317. for (; first != last; ++first) {
  318. functor(*first);
  319. first->~T();
  320. }
  321. }
  322. template< class Functor >
  323. void run_functor_and_delete( T * first, T * last, Functor const & functor )
  324. {
  325. for (; first != last; ++first) {
  326. functor(*first);
  327. first->~T();
  328. }
  329. }
  330. };
  331. template <typename T, std::size_t MaxSize>
  332. class compile_time_sized_ringbuffer:
  333. public ringbuffer_base<T>
  334. {
  335. typedef std::size_t size_type;
  336. static const std::size_t max_size = MaxSize + 1;
  337. typedef typename boost::aligned_storage<max_size * sizeof(T),
  338. boost::alignment_of<T>::value
  339. >::type storage_type;
  340. storage_type storage_;
  341. T * data()
  342. {
  343. return static_cast<T*>(storage_.address());
  344. }
  345. const T * data() const
  346. {
  347. return static_cast<const T*>(storage_.address());
  348. }
  349. protected:
  350. size_type max_number_of_elements() const
  351. {
  352. return max_size;
  353. }
  354. public:
  355. bool push(T const & t)
  356. {
  357. return ringbuffer_base<T>::push(t, data(), max_size);
  358. }
  359. template <typename Functor>
  360. bool consume_one(Functor & f)
  361. {
  362. return ringbuffer_base<T>::consume_one(f, data(), max_size);
  363. }
  364. template <typename Functor>
  365. bool consume_one(Functor const & f)
  366. {
  367. return ringbuffer_base<T>::consume_one(f, data(), max_size);
  368. }
  369. template <typename Functor>
  370. size_type consume_all(Functor & f)
  371. {
  372. return ringbuffer_base<T>::consume_all(f, data(), max_size);
  373. }
  374. template <typename Functor>
  375. size_type consume_all(Functor const & f)
  376. {
  377. return ringbuffer_base<T>::consume_all(f, data(), max_size);
  378. }
  379. size_type push(T const * t, size_type size)
  380. {
  381. return ringbuffer_base<T>::push(t, size, data(), max_size);
  382. }
  383. template <size_type size>
  384. size_type push(T const (&t)[size])
  385. {
  386. return push(t, size);
  387. }
  388. template <typename ConstIterator>
  389. ConstIterator push(ConstIterator begin, ConstIterator end)
  390. {
  391. return ringbuffer_base<T>::push(begin, end, data(), max_size);
  392. }
  393. size_type pop(T * ret, size_type size)
  394. {
  395. return ringbuffer_base<T>::pop(ret, size, data(), max_size);
  396. }
  397. template <typename OutputIterator>
  398. size_type pop_to_output_iterator(OutputIterator it)
  399. {
  400. return ringbuffer_base<T>::pop_to_output_iterator(it, data(), max_size);
  401. }
  402. const T& front(void) const
  403. {
  404. return ringbuffer_base<T>::front(data());
  405. }
  406. T& front(void)
  407. {
  408. return ringbuffer_base<T>::front(data());
  409. }
  410. };
  411. template <typename T, typename Alloc>
  412. class runtime_sized_ringbuffer:
  413. public ringbuffer_base<T>,
  414. private Alloc
  415. {
  416. typedef std::size_t size_type;
  417. size_type max_elements_;
  418. typedef typename Alloc::pointer pointer;
  419. pointer array_;
  420. protected:
  421. size_type max_number_of_elements() const
  422. {
  423. return max_elements_;
  424. }
  425. public:
  426. explicit runtime_sized_ringbuffer(size_type max_elements):
  427. max_elements_(max_elements + 1)
  428. {
  429. array_ = Alloc::allocate(max_elements_);
  430. }
  431. template <typename U>
  432. runtime_sized_ringbuffer(typename Alloc::template rebind<U>::other const & alloc, size_type max_elements):
  433. Alloc(alloc), max_elements_(max_elements + 1)
  434. {
  435. array_ = Alloc::allocate(max_elements_);
  436. }
  437. runtime_sized_ringbuffer(Alloc const & alloc, size_type max_elements):
  438. Alloc(alloc), max_elements_(max_elements + 1)
  439. {
  440. array_ = Alloc::allocate(max_elements_);
  441. }
  442. ~runtime_sized_ringbuffer(void)
  443. {
  444. // destroy all remaining items
  445. T out;
  446. while (pop(&out, 1)) {}
  447. Alloc::deallocate(array_, max_elements_);
  448. }
  449. bool push(T const & t)
  450. {
  451. return ringbuffer_base<T>::push(t, &*array_, max_elements_);
  452. }
  453. template <typename Functor>
  454. bool consume_one(Functor & f)
  455. {
  456. return ringbuffer_base<T>::consume_one(f, &*array_, max_elements_);
  457. }
  458. template <typename Functor>
  459. bool consume_one(Functor const & f)
  460. {
  461. return ringbuffer_base<T>::consume_one(f, &*array_, max_elements_);
  462. }
  463. template <typename Functor>
  464. size_type consume_all(Functor & f)
  465. {
  466. return ringbuffer_base<T>::consume_all(f, &*array_, max_elements_);
  467. }
  468. template <typename Functor>
  469. size_type consume_all(Functor const & f)
  470. {
  471. return ringbuffer_base<T>::consume_all(f, &*array_, max_elements_);
  472. }
  473. size_type push(T const * t, size_type size)
  474. {
  475. return ringbuffer_base<T>::push(t, size, &*array_, max_elements_);
  476. }
  477. template <size_type size>
  478. size_type push(T const (&t)[size])
  479. {
  480. return push(t, size);
  481. }
  482. template <typename ConstIterator>
  483. ConstIterator push(ConstIterator begin, ConstIterator end)
  484. {
  485. return ringbuffer_base<T>::push(begin, end, &*array_, max_elements_);
  486. }
  487. size_type pop(T * ret, size_type size)
  488. {
  489. return ringbuffer_base<T>::pop(ret, size, &*array_, max_elements_);
  490. }
  491. template <typename OutputIterator>
  492. size_type pop_to_output_iterator(OutputIterator it)
  493. {
  494. return ringbuffer_base<T>::pop_to_output_iterator(it, &*array_, max_elements_);
  495. }
  496. const T& front(void) const
  497. {
  498. return ringbuffer_base<T>::front(&*array_);
  499. }
  500. T& front(void)
  501. {
  502. return ringbuffer_base<T>::front(&*array_);
  503. }
  504. };
  505. template <typename T, typename A0, typename A1>
  506. struct make_ringbuffer
  507. {
  508. typedef typename ringbuffer_signature::bind<A0, A1>::type bound_args;
  509. typedef extract_capacity<bound_args> extract_capacity_t;
  510. static const bool runtime_sized = !extract_capacity_t::has_capacity;
  511. static const size_t capacity = extract_capacity_t::capacity;
  512. typedef extract_allocator<bound_args, T> extract_allocator_t;
  513. typedef typename extract_allocator_t::type allocator;
  514. // allocator argument is only sane, for run-time sized ringbuffers
  515. BOOST_STATIC_ASSERT((mpl::if_<mpl::bool_<!runtime_sized>,
  516. mpl::bool_<!extract_allocator_t::has_allocator>,
  517. mpl::true_
  518. >::type::value));
  519. typedef typename mpl::if_c<runtime_sized,
  520. runtime_sized_ringbuffer<T, allocator>,
  521. compile_time_sized_ringbuffer<T, capacity>
  522. >::type ringbuffer_type;
  523. };
  524. } /* namespace detail */
  525. /** The spsc_queue class provides a single-writer/single-reader fifo queue, pushing and popping is wait-free.
  526. *
  527. * \b Policies:
  528. * - \c boost::lockfree::capacity<>, optional <br>
  529. * If this template argument is passed to the options, the size of the ringbuffer is set at compile-time.
  530. *
  531. * - \c boost::lockfree::allocator<>, defaults to \c boost::lockfree::allocator<std::allocator<T>> <br>
  532. * Specifies the allocator that is used to allocate the ringbuffer. This option is only valid, if the ringbuffer is configured
  533. * to be sized at run-time
  534. *
  535. * \b Requirements:
  536. * - T must have a default constructor
  537. * - T must be copyable
  538. * */
  539. #ifndef BOOST_DOXYGEN_INVOKED
  540. template <typename T,
  541. class A0 = boost::parameter::void_,
  542. class A1 = boost::parameter::void_>
  543. #else
  544. template <typename T, ...Options>
  545. #endif
  546. class spsc_queue:
  547. public detail::make_ringbuffer<T, A0, A1>::ringbuffer_type
  548. {
  549. private:
  550. #ifndef BOOST_DOXYGEN_INVOKED
  551. typedef typename detail::make_ringbuffer<T, A0, A1>::ringbuffer_type base_type;
  552. static const bool runtime_sized = detail::make_ringbuffer<T, A0, A1>::runtime_sized;
  553. typedef typename detail::make_ringbuffer<T, A0, A1>::allocator allocator_arg;
  554. struct implementation_defined
  555. {
  556. typedef allocator_arg allocator;
  557. typedef std::size_t size_type;
  558. };
  559. #endif
  560. public:
  561. typedef T value_type;
  562. typedef typename implementation_defined::allocator allocator;
  563. typedef typename implementation_defined::size_type size_type;
  564. /** Constructs a spsc_queue
  565. *
  566. * \pre spsc_queue must be configured to be sized at compile-time
  567. */
  568. // @{
  569. spsc_queue(void)
  570. {
  571. BOOST_ASSERT(!runtime_sized);
  572. }
  573. template <typename U>
  574. explicit spsc_queue(typename allocator::template rebind<U>::other const &)
  575. {
  576. // just for API compatibility: we don't actually need an allocator
  577. BOOST_STATIC_ASSERT(!runtime_sized);
  578. }
  579. explicit spsc_queue(allocator const &)
  580. {
  581. // just for API compatibility: we don't actually need an allocator
  582. BOOST_ASSERT(!runtime_sized);
  583. }
  584. // @}
  585. /** Constructs a spsc_queue for element_count elements
  586. *
  587. * \pre spsc_queue must be configured to be sized at run-time
  588. */
  589. // @{
  590. explicit spsc_queue(size_type element_count):
  591. base_type(element_count)
  592. {
  593. BOOST_ASSERT(runtime_sized);
  594. }
  595. template <typename U>
  596. spsc_queue(size_type element_count, typename allocator::template rebind<U>::other const & alloc):
  597. base_type(alloc, element_count)
  598. {
  599. BOOST_STATIC_ASSERT(runtime_sized);
  600. }
  601. spsc_queue(size_type element_count, allocator_arg const & alloc):
  602. base_type(alloc, element_count)
  603. {
  604. BOOST_ASSERT(runtime_sized);
  605. }
  606. // @}
  607. /** Pushes object t to the ringbuffer.
  608. *
  609. * \pre only one thread is allowed to push data to the spsc_queue
  610. * \post object will be pushed to the spsc_queue, unless it is full.
  611. * \return true, if the push operation is successful.
  612. *
  613. * \note Thread-safe and wait-free
  614. * */
  615. bool push(T const & t)
  616. {
  617. return base_type::push(t);
  618. }
  619. /** Pops one object from ringbuffer.
  620. *
  621. * \pre only one thread is allowed to pop data to the spsc_queue
  622. * \post if ringbuffer is not empty, object will be discarded.
  623. * \return true, if the pop operation is successful, false if ringbuffer was empty.
  624. *
  625. * \note Thread-safe and wait-free
  626. */
  627. bool pop ()
  628. {
  629. detail::consume_noop consume_functor;
  630. return consume_one( consume_functor );
  631. }
  632. /** Pops one object from ringbuffer.
  633. *
  634. * \pre only one thread is allowed to pop data to the spsc_queue
  635. * \post if ringbuffer is not empty, object will be copied to ret.
  636. * \return true, if the pop operation is successful, false if ringbuffer was empty.
  637. *
  638. * \note Thread-safe and wait-free
  639. */
  640. template <typename U>
  641. typename boost::enable_if<typename is_convertible<T, U>::type, bool>::type
  642. pop (U & ret)
  643. {
  644. detail::consume_via_copy<U> consume_functor(ret);
  645. return consume_one( consume_functor );
  646. }
  647. /** Pushes as many objects from the array t as there is space.
  648. *
  649. * \pre only one thread is allowed to push data to the spsc_queue
  650. * \return number of pushed items
  651. *
  652. * \note Thread-safe and wait-free
  653. */
  654. size_type push(T const * t, size_type size)
  655. {
  656. return base_type::push(t, size);
  657. }
  658. /** Pushes as many objects from the array t as there is space available.
  659. *
  660. * \pre only one thread is allowed to push data to the spsc_queue
  661. * \return number of pushed items
  662. *
  663. * \note Thread-safe and wait-free
  664. */
  665. template <size_type size>
  666. size_type push(T const (&t)[size])
  667. {
  668. return push(t, size);
  669. }
  670. /** Pushes as many objects from the range [begin, end) as there is space .
  671. *
  672. * \pre only one thread is allowed to push data to the spsc_queue
  673. * \return iterator to the first element, which has not been pushed
  674. *
  675. * \note Thread-safe and wait-free
  676. */
  677. template <typename ConstIterator>
  678. ConstIterator push(ConstIterator begin, ConstIterator end)
  679. {
  680. return base_type::push(begin, end);
  681. }
  682. /** Pops a maximum of size objects from ringbuffer.
  683. *
  684. * \pre only one thread is allowed to pop data to the spsc_queue
  685. * \return number of popped items
  686. *
  687. * \note Thread-safe and wait-free
  688. * */
  689. size_type pop(T * ret, size_type size)
  690. {
  691. return base_type::pop(ret, size);
  692. }
  693. /** Pops a maximum of size objects from spsc_queue.
  694. *
  695. * \pre only one thread is allowed to pop data to the spsc_queue
  696. * \return number of popped items
  697. *
  698. * \note Thread-safe and wait-free
  699. * */
  700. template <size_type size>
  701. size_type pop(T (&ret)[size])
  702. {
  703. return pop(ret, size);
  704. }
  705. /** Pops objects to the output iterator it
  706. *
  707. * \pre only one thread is allowed to pop data to the spsc_queue
  708. * \return number of popped items
  709. *
  710. * \note Thread-safe and wait-free
  711. * */
  712. template <typename OutputIterator>
  713. typename boost::disable_if<typename is_convertible<T, OutputIterator>::type, size_type>::type
  714. pop(OutputIterator it)
  715. {
  716. return base_type::pop_to_output_iterator(it);
  717. }
  718. /** consumes one element via a functor
  719. *
  720. * pops one element from the queue and applies the functor on this object
  721. *
  722. * \returns true, if one element was consumed
  723. *
  724. * \note Thread-safe and non-blocking, if functor is thread-safe and non-blocking
  725. * */
  726. template <typename Functor>
  727. bool consume_one(Functor & f)
  728. {
  729. return base_type::consume_one(f);
  730. }
  731. /// \copydoc boost::lockfree::spsc_queue::consume_one(Functor & rhs)
  732. template <typename Functor>
  733. bool consume_one(Functor const & f)
  734. {
  735. return base_type::consume_one(f);
  736. }
  737. /** consumes all elements via a functor
  738. *
  739. * sequentially pops all elements from the queue and applies the functor on each object
  740. *
  741. * \returns number of elements that are consumed
  742. *
  743. * \note Thread-safe and non-blocking, if functor is thread-safe and non-blocking
  744. * */
  745. template <typename Functor>
  746. size_type consume_all(Functor & f)
  747. {
  748. return base_type::consume_all(f);
  749. }
  750. /// \copydoc boost::lockfree::spsc_queue::consume_all(Functor & rhs)
  751. template <typename Functor>
  752. size_type consume_all(Functor const & f)
  753. {
  754. return base_type::consume_all(f);
  755. }
  756. /** get number of elements that are available for read
  757. *
  758. * \return number of available elements that can be popped from the spsc_queue
  759. *
  760. * \note Thread-safe and wait-free, should only be called from the consumer thread
  761. * */
  762. size_type read_available() const
  763. {
  764. return base_type::read_available(base_type::max_number_of_elements());
  765. }
  766. /** get write space to write elements
  767. *
  768. * \return number of elements that can be pushed to the spsc_queue
  769. *
  770. * \note Thread-safe and wait-free, should only be called from the producer thread
  771. * */
  772. size_type write_available() const
  773. {
  774. return base_type::write_available(base_type::max_number_of_elements());
  775. }
  776. /** get reference to element in the front of the queue
  777. *
  778. * Availability of front element can be checked using read_available().
  779. *
  780. * \pre only a consuming thread is allowed to check front element
  781. * \pre read_available() > 0. If ringbuffer is empty, it's undefined behaviour to invoke this method.
  782. * \return reference to the first element in the queue
  783. *
  784. * \note Thread-safe and wait-free
  785. */
  786. const T& front() const
  787. {
  788. BOOST_ASSERT(read_available() > 0);
  789. return base_type::front();
  790. }
  791. /// \copydoc boost::lockfree::spsc_queue::front() const
  792. T& front()
  793. {
  794. BOOST_ASSERT(read_available() > 0);
  795. return base_type::front();
  796. }
  797. /** reset the ringbuffer
  798. *
  799. * \note Not thread-safe
  800. * */
  801. void reset(void)
  802. {
  803. if ( !boost::has_trivial_destructor<T>::value ) {
  804. // make sure to call all destructors!
  805. T dummy_element;
  806. while (pop(dummy_element))
  807. {}
  808. } else {
  809. base_type::write_index_.store(0, memory_order_relaxed);
  810. base_type::read_index_.store(0, memory_order_release);
  811. }
  812. }
  813. };
  814. } /* namespace lockfree */
  815. } /* namespace boost */
  816. #endif /* BOOST_LOCKFREE_SPSC_QUEUE_HPP_INCLUDED */