queue.hpp 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548
  1. // lock-free queue from
  2. // Michael, M. M. and Scott, M. L.,
  3. // "simple, fast and practical non-blocking and blocking concurrent queue algorithms"
  4. //
  5. // Copyright (C) 2008-2013 Tim Blechmann
  6. //
  7. // Distributed under the Boost Software License, Version 1.0. (See
  8. // accompanying file LICENSE_1_0.txt or copy at
  9. // http://www.boost.org/LICENSE_1_0.txt)
  10. #ifndef BOOST_LOCKFREE_FIFO_HPP_INCLUDED
  11. #define BOOST_LOCKFREE_FIFO_HPP_INCLUDED
  12. #include <boost/assert.hpp>
  13. #include <boost/static_assert.hpp>
  14. #include <boost/type_traits/has_trivial_assign.hpp>
  15. #include <boost/type_traits/has_trivial_destructor.hpp>
  16. #include <boost/config.hpp> // for BOOST_LIKELY
  17. #include <boost/lockfree/detail/atomic.hpp>
  18. #include <boost/lockfree/detail/copy_payload.hpp>
  19. #include <boost/lockfree/detail/freelist.hpp>
  20. #include <boost/lockfree/detail/parameter.hpp>
  21. #include <boost/lockfree/detail/tagged_ptr.hpp>
  22. #ifdef BOOST_HAS_PRAGMA_ONCE
  23. #pragma once
  24. #endif
  25. #if defined(_MSC_VER)
  26. #pragma warning(push)
  27. #pragma warning(disable: 4324) // structure was padded due to __declspec(align())
  28. #endif
  29. namespace boost {
  30. namespace lockfree {
  31. namespace detail {
  32. typedef parameter::parameters<boost::parameter::optional<tag::allocator>,
  33. boost::parameter::optional<tag::capacity>
  34. > queue_signature;
  35. } /* namespace detail */
  36. /** The queue class provides a multi-writer/multi-reader queue, pushing and popping is lock-free,
  37. * construction/destruction has to be synchronized. It uses a freelist for memory management,
  38. * freed nodes are pushed to the freelist and not returned to the OS before the queue is destroyed.
  39. *
  40. * \b Policies:
  41. * - \ref boost::lockfree::fixed_sized, defaults to \c boost::lockfree::fixed_sized<false> \n
  42. * Can be used to completely disable dynamic memory allocations during push in order to ensure lockfree behavior. \n
  43. * If the data structure is configured as fixed-sized, the internal nodes are stored inside an array and they are addressed
  44. * by array indexing. This limits the possible size of the queue to the number of elements that can be addressed by the index
  45. * type (usually 2**16-2), but on platforms that lack double-width compare-and-exchange instructions, this is the best way
  46. * to achieve lock-freedom.
  47. *
  48. * - \ref boost::lockfree::capacity, optional \n
  49. * If this template argument is passed to the options, the size of the queue is set at compile-time.\n
  50. * It this option implies \c fixed_sized<true>
  51. *
  52. * - \ref boost::lockfree::allocator, defaults to \c boost::lockfree::allocator<std::allocator<void>> \n
  53. * Specifies the allocator that is used for the internal freelist
  54. *
  55. * \b Requirements:
  56. * - T must have a copy constructor
  57. * - T must have a trivial assignment operator
  58. * - T must have a trivial destructor
  59. *
  60. * */
  61. #ifndef BOOST_DOXYGEN_INVOKED
  62. template <typename T,
  63. class A0 = boost::parameter::void_,
  64. class A1 = boost::parameter::void_,
  65. class A2 = boost::parameter::void_>
  66. #else
  67. template <typename T, ...Options>
  68. #endif
  69. class queue
  70. {
  71. private:
  72. #ifndef BOOST_DOXYGEN_INVOKED
  73. #ifdef BOOST_HAS_TRIVIAL_DESTRUCTOR
  74. BOOST_STATIC_ASSERT((boost::has_trivial_destructor<T>::value));
  75. #endif
  76. #ifdef BOOST_HAS_TRIVIAL_ASSIGN
  77. BOOST_STATIC_ASSERT((boost::has_trivial_assign<T>::value));
  78. #endif
  79. typedef typename detail::queue_signature::bind<A0, A1, A2>::type bound_args;
  80. static const bool has_capacity = detail::extract_capacity<bound_args>::has_capacity;
  81. static const size_t capacity = detail::extract_capacity<bound_args>::capacity + 1; // the queue uses one dummy node
  82. static const bool fixed_sized = detail::extract_fixed_sized<bound_args>::value;
  83. static const bool node_based = !(has_capacity || fixed_sized);
  84. static const bool compile_time_sized = has_capacity;
  85. struct BOOST_LOCKFREE_CACHELINE_ALIGNMENT node
  86. {
  87. typedef typename detail::select_tagged_handle<node, node_based>::tagged_handle_type tagged_node_handle;
  88. typedef typename detail::select_tagged_handle<node, node_based>::handle_type handle_type;
  89. node(T const & v, handle_type null_handle):
  90. data(v)//, next(tagged_node_handle(0, 0))
  91. {
  92. /* increment tag to avoid ABA problem */
  93. tagged_node_handle old_next = next.load(memory_order_relaxed);
  94. tagged_node_handle new_next (null_handle, old_next.get_next_tag());
  95. next.store(new_next, memory_order_release);
  96. }
  97. node (handle_type null_handle):
  98. next(tagged_node_handle(null_handle, 0))
  99. {}
  100. node(void)
  101. {}
  102. atomic<tagged_node_handle> next;
  103. T data;
  104. };
  105. typedef typename detail::extract_allocator<bound_args, node>::type node_allocator;
  106. typedef typename detail::select_freelist<node, node_allocator, compile_time_sized, fixed_sized, capacity>::type pool_t;
  107. typedef typename pool_t::tagged_node_handle tagged_node_handle;
  108. typedef typename detail::select_tagged_handle<node, node_based>::handle_type handle_type;
  109. void initialize(void)
  110. {
  111. node * n = pool.template construct<true, false>(pool.null_handle());
  112. tagged_node_handle dummy_node(pool.get_handle(n), 0);
  113. head_.store(dummy_node, memory_order_relaxed);
  114. tail_.store(dummy_node, memory_order_release);
  115. }
  116. struct implementation_defined
  117. {
  118. typedef node_allocator allocator;
  119. typedef std::size_t size_type;
  120. };
  121. #endif
  122. BOOST_DELETED_FUNCTION(queue(queue const&))
  123. BOOST_DELETED_FUNCTION(queue& operator= (queue const&))
  124. public:
  125. typedef T value_type;
  126. typedef typename implementation_defined::allocator allocator;
  127. typedef typename implementation_defined::size_type size_type;
  128. /**
  129. * \return true, if implementation is lock-free.
  130. *
  131. * \warning It only checks, if the queue head and tail nodes and the freelist can be modified in a lock-free manner.
  132. * On most platforms, the whole implementation is lock-free, if this is true. Using c++0x-style atomics, there is
  133. * no possibility to provide a completely accurate implementation, because one would need to test every internal
  134. * node, which is impossible if further nodes will be allocated from the operating system.
  135. * */
  136. bool is_lock_free (void) const
  137. {
  138. return head_.is_lock_free() && tail_.is_lock_free() && pool.is_lock_free();
  139. }
  140. //! Construct queue
  141. // @{
  142. queue(void):
  143. head_(tagged_node_handle(0, 0)),
  144. tail_(tagged_node_handle(0, 0)),
  145. pool(node_allocator(), capacity)
  146. {
  147. BOOST_ASSERT(has_capacity);
  148. initialize();
  149. }
  150. template <typename U>
  151. explicit queue(typename node_allocator::template rebind<U>::other const & alloc):
  152. head_(tagged_node_handle(0, 0)),
  153. tail_(tagged_node_handle(0, 0)),
  154. pool(alloc, capacity)
  155. {
  156. BOOST_STATIC_ASSERT(has_capacity);
  157. initialize();
  158. }
  159. explicit queue(allocator const & alloc):
  160. head_(tagged_node_handle(0, 0)),
  161. tail_(tagged_node_handle(0, 0)),
  162. pool(alloc, capacity)
  163. {
  164. BOOST_ASSERT(has_capacity);
  165. initialize();
  166. }
  167. // @}
  168. //! Construct queue, allocate n nodes for the freelist.
  169. // @{
  170. explicit queue(size_type n):
  171. head_(tagged_node_handle(0, 0)),
  172. tail_(tagged_node_handle(0, 0)),
  173. pool(node_allocator(), n + 1)
  174. {
  175. BOOST_ASSERT(!has_capacity);
  176. initialize();
  177. }
  178. template <typename U>
  179. queue(size_type n, typename node_allocator::template rebind<U>::other const & alloc):
  180. head_(tagged_node_handle(0, 0)),
  181. tail_(tagged_node_handle(0, 0)),
  182. pool(alloc, n + 1)
  183. {
  184. BOOST_STATIC_ASSERT(!has_capacity);
  185. initialize();
  186. }
  187. // @}
  188. /** \copydoc boost::lockfree::stack::reserve
  189. * */
  190. void reserve(size_type n)
  191. {
  192. pool.template reserve<true>(n);
  193. }
  194. /** \copydoc boost::lockfree::stack::reserve_unsafe
  195. * */
  196. void reserve_unsafe(size_type n)
  197. {
  198. pool.template reserve<false>(n);
  199. }
  200. /** Destroys queue, free all nodes from freelist.
  201. * */
  202. ~queue(void)
  203. {
  204. T dummy;
  205. while(unsynchronized_pop(dummy))
  206. {}
  207. pool.template destruct<false>(head_.load(memory_order_relaxed));
  208. }
  209. /** Check if the queue is empty
  210. *
  211. * \return true, if the queue is empty, false otherwise
  212. * \note The result is only accurate, if no other thread modifies the queue. Therefore it is rarely practical to use this
  213. * value in program logic.
  214. * */
  215. bool empty(void) const
  216. {
  217. return pool.get_handle(head_.load()) == pool.get_handle(tail_.load());
  218. }
  219. /** Pushes object t to the queue.
  220. *
  221. * \post object will be pushed to the queue, if internal node can be allocated
  222. * \returns true, if the push operation is successful.
  223. *
  224. * \note Thread-safe. If internal memory pool is exhausted and the memory pool is not fixed-sized, a new node will be allocated
  225. * from the OS. This may not be lock-free.
  226. * */
  227. bool push(T const & t)
  228. {
  229. return do_push<false>(t);
  230. }
  231. /** Pushes object t to the queue.
  232. *
  233. * \post object will be pushed to the queue, if internal node can be allocated
  234. * \returns true, if the push operation is successful.
  235. *
  236. * \note Thread-safe and non-blocking. If internal memory pool is exhausted, operation will fail
  237. * \throws if memory allocator throws
  238. * */
  239. bool bounded_push(T const & t)
  240. {
  241. return do_push<true>(t);
  242. }
  243. private:
  244. #ifndef BOOST_DOXYGEN_INVOKED
  245. template <bool Bounded>
  246. bool do_push(T const & t)
  247. {
  248. node * n = pool.template construct<true, Bounded>(t, pool.null_handle());
  249. handle_type node_handle = pool.get_handle(n);
  250. if (n == NULL)
  251. return false;
  252. for (;;) {
  253. tagged_node_handle tail = tail_.load(memory_order_acquire);
  254. node * tail_node = pool.get_pointer(tail);
  255. tagged_node_handle next = tail_node->next.load(memory_order_acquire);
  256. node * next_ptr = pool.get_pointer(next);
  257. tagged_node_handle tail2 = tail_.load(memory_order_acquire);
  258. if (BOOST_LIKELY(tail == tail2)) {
  259. if (next_ptr == 0) {
  260. tagged_node_handle new_tail_next(node_handle, next.get_next_tag());
  261. if ( tail_node->next.compare_exchange_weak(next, new_tail_next) ) {
  262. tagged_node_handle new_tail(node_handle, tail.get_next_tag());
  263. tail_.compare_exchange_strong(tail, new_tail);
  264. return true;
  265. }
  266. }
  267. else {
  268. tagged_node_handle new_tail(pool.get_handle(next_ptr), tail.get_next_tag());
  269. tail_.compare_exchange_strong(tail, new_tail);
  270. }
  271. }
  272. }
  273. }
  274. #endif
  275. public:
  276. /** Pushes object t to the queue.
  277. *
  278. * \post object will be pushed to the queue, if internal node can be allocated
  279. * \returns true, if the push operation is successful.
  280. *
  281. * \note Not Thread-safe. If internal memory pool is exhausted and the memory pool is not fixed-sized, a new node will be allocated
  282. * from the OS. This may not be lock-free.
  283. * \throws if memory allocator throws
  284. * */
  285. bool unsynchronized_push(T const & t)
  286. {
  287. node * n = pool.template construct<false, false>(t, pool.null_handle());
  288. if (n == NULL)
  289. return false;
  290. for (;;) {
  291. tagged_node_handle tail = tail_.load(memory_order_relaxed);
  292. tagged_node_handle next = tail->next.load(memory_order_relaxed);
  293. node * next_ptr = next.get_ptr();
  294. if (next_ptr == 0) {
  295. tail->next.store(tagged_node_handle(n, next.get_next_tag()), memory_order_relaxed);
  296. tail_.store(tagged_node_handle(n, tail.get_next_tag()), memory_order_relaxed);
  297. return true;
  298. }
  299. else
  300. tail_.store(tagged_node_handle(next_ptr, tail.get_next_tag()), memory_order_relaxed);
  301. }
  302. }
  303. /** Pops object from queue.
  304. *
  305. * \post if pop operation is successful, object will be copied to ret.
  306. * \returns true, if the pop operation is successful, false if queue was empty.
  307. *
  308. * \note Thread-safe and non-blocking
  309. * */
  310. bool pop (T & ret)
  311. {
  312. return pop<T>(ret);
  313. }
  314. /** Pops object from queue.
  315. *
  316. * \pre type U must be constructible by T and copyable, or T must be convertible to U
  317. * \post if pop operation is successful, object will be copied to ret.
  318. * \returns true, if the pop operation is successful, false if queue was empty.
  319. *
  320. * \note Thread-safe and non-blocking
  321. * */
  322. template <typename U>
  323. bool pop (U & ret)
  324. {
  325. for (;;) {
  326. tagged_node_handle head = head_.load(memory_order_acquire);
  327. node * head_ptr = pool.get_pointer(head);
  328. tagged_node_handle tail = tail_.load(memory_order_acquire);
  329. tagged_node_handle next = head_ptr->next.load(memory_order_acquire);
  330. node * next_ptr = pool.get_pointer(next);
  331. tagged_node_handle head2 = head_.load(memory_order_acquire);
  332. if (BOOST_LIKELY(head == head2)) {
  333. if (pool.get_handle(head) == pool.get_handle(tail)) {
  334. if (next_ptr == 0)
  335. return false;
  336. tagged_node_handle new_tail(pool.get_handle(next), tail.get_next_tag());
  337. tail_.compare_exchange_strong(tail, new_tail);
  338. } else {
  339. if (next_ptr == 0)
  340. /* this check is not part of the original algorithm as published by michael and scott
  341. *
  342. * however we reuse the tagged_ptr part for the freelist and clear the next part during node
  343. * allocation. we can observe a null-pointer here.
  344. * */
  345. continue;
  346. detail::copy_payload(next_ptr->data, ret);
  347. tagged_node_handle new_head(pool.get_handle(next), head.get_next_tag());
  348. if (head_.compare_exchange_weak(head, new_head)) {
  349. pool.template destruct<true>(head);
  350. return true;
  351. }
  352. }
  353. }
  354. }
  355. }
  356. /** Pops object from queue.
  357. *
  358. * \post if pop operation is successful, object will be copied to ret.
  359. * \returns true, if the pop operation is successful, false if queue was empty.
  360. *
  361. * \note Not thread-safe, but non-blocking
  362. *
  363. * */
  364. bool unsynchronized_pop (T & ret)
  365. {
  366. return unsynchronized_pop<T>(ret);
  367. }
  368. /** Pops object from queue.
  369. *
  370. * \pre type U must be constructible by T and copyable, or T must be convertible to U
  371. * \post if pop operation is successful, object will be copied to ret.
  372. * \returns true, if the pop operation is successful, false if queue was empty.
  373. *
  374. * \note Not thread-safe, but non-blocking
  375. *
  376. * */
  377. template <typename U>
  378. bool unsynchronized_pop (U & ret)
  379. {
  380. for (;;) {
  381. tagged_node_handle head = head_.load(memory_order_relaxed);
  382. node * head_ptr = pool.get_pointer(head);
  383. tagged_node_handle tail = tail_.load(memory_order_relaxed);
  384. tagged_node_handle next = head_ptr->next.load(memory_order_relaxed);
  385. node * next_ptr = pool.get_pointer(next);
  386. if (pool.get_handle(head) == pool.get_handle(tail)) {
  387. if (next_ptr == 0)
  388. return false;
  389. tagged_node_handle new_tail(pool.get_handle(next), tail.get_next_tag());
  390. tail_.store(new_tail);
  391. } else {
  392. if (next_ptr == 0)
  393. /* this check is not part of the original algorithm as published by michael and scott
  394. *
  395. * however we reuse the tagged_ptr part for the freelist and clear the next part during node
  396. * allocation. we can observe a null-pointer here.
  397. * */
  398. continue;
  399. detail::copy_payload(next_ptr->data, ret);
  400. tagged_node_handle new_head(pool.get_handle(next), head.get_next_tag());
  401. head_.store(new_head);
  402. pool.template destruct<false>(head);
  403. return true;
  404. }
  405. }
  406. }
  407. /** consumes one element via a functor
  408. *
  409. * pops one element from the queue and applies the functor on this object
  410. *
  411. * \returns true, if one element was consumed
  412. *
  413. * \note Thread-safe and non-blocking, if functor is thread-safe and non-blocking
  414. * */
  415. template <typename Functor>
  416. bool consume_one(Functor & f)
  417. {
  418. T element;
  419. bool success = pop(element);
  420. if (success)
  421. f(element);
  422. return success;
  423. }
  424. /// \copydoc boost::lockfree::queue::consume_one(Functor & rhs)
  425. template <typename Functor>
  426. bool consume_one(Functor const & f)
  427. {
  428. T element;
  429. bool success = pop(element);
  430. if (success)
  431. f(element);
  432. return success;
  433. }
  434. /** consumes all elements via a functor
  435. *
  436. * sequentially pops all elements from the queue and applies the functor on each object
  437. *
  438. * \returns number of elements that are consumed
  439. *
  440. * \note Thread-safe and non-blocking, if functor is thread-safe and non-blocking
  441. * */
  442. template <typename Functor>
  443. size_t consume_all(Functor & f)
  444. {
  445. size_t element_count = 0;
  446. while (consume_one(f))
  447. element_count += 1;
  448. return element_count;
  449. }
  450. /// \copydoc boost::lockfree::queue::consume_all(Functor & rhs)
  451. template <typename Functor>
  452. size_t consume_all(Functor const & f)
  453. {
  454. size_t element_count = 0;
  455. while (consume_one(f))
  456. element_count += 1;
  457. return element_count;
  458. }
  459. private:
  460. #ifndef BOOST_DOXYGEN_INVOKED
  461. atomic<tagged_node_handle> head_;
  462. static const int padding_size = BOOST_LOCKFREE_CACHELINE_BYTES - sizeof(tagged_node_handle);
  463. char padding1[padding_size];
  464. atomic<tagged_node_handle> tail_;
  465. char padding2[padding_size];
  466. pool_t pool;
  467. #endif
  468. };
  469. } /* namespace lockfree */
  470. } /* namespace boost */
  471. #if defined(_MSC_VER)
  472. #pragma warning(pop)
  473. #endif
  474. #endif /* BOOST_LOCKFREE_FIFO_HPP_INCLUDED */