vector.hpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761
  1. //---------------------------------------------------------------------------//
  2. // Copyright (c) 2013 Kyle Lutz <kyle.r.lutz@gmail.com>
  3. //
  4. // Distributed under the Boost Software License, Version 1.0
  5. // See accompanying file LICENSE_1_0.txt or copy at
  6. // http://www.boost.org/LICENSE_1_0.txt
  7. //
  8. // See http://boostorg.github.com/compute for more information.
  9. //---------------------------------------------------------------------------//
  10. #ifndef BOOST_COMPUTE_CONTAINER_VECTOR_HPP
  11. #define BOOST_COMPUTE_CONTAINER_VECTOR_HPP
  12. #include <vector>
  13. #include <cstddef>
  14. #include <iterator>
  15. #include <exception>
  16. #include <boost/throw_exception.hpp>
  17. #include <boost/compute/config.hpp>
  18. #ifndef BOOST_COMPUTE_NO_HDR_INITIALIZER_LIST
  19. #include <initializer_list>
  20. #endif
  21. #include <boost/compute/buffer.hpp>
  22. #include <boost/compute/device.hpp>
  23. #include <boost/compute/system.hpp>
  24. #include <boost/compute/context.hpp>
  25. #include <boost/compute/command_queue.hpp>
  26. #include <boost/compute/algorithm/copy.hpp>
  27. #include <boost/compute/algorithm/copy_n.hpp>
  28. #include <boost/compute/algorithm/fill_n.hpp>
  29. #include <boost/compute/allocator/buffer_allocator.hpp>
  30. #include <boost/compute/iterator/buffer_iterator.hpp>
  31. #include <boost/compute/type_traits/detail/capture_traits.hpp>
  32. #include <boost/compute/detail/buffer_value.hpp>
  33. #include <boost/compute/detail/iterator_range_size.hpp>
  34. namespace boost {
  35. namespace compute {
  36. /// \class vector
  37. /// \brief A resizable array of values.
  38. ///
  39. /// The vector<T> class stores a dynamic array of values. Internally, the data
  40. /// is stored in an OpenCL buffer object.
  41. ///
  42. /// The vector class is the prefered container for storing and accessing data
  43. /// on a compute device. In most cases it should be used instead of directly
  44. /// dealing with buffer objects. If the undelying buffer is needed, it can be
  45. /// accessed with the get_buffer() method.
  46. ///
  47. /// The internal storage is allocated in a specific OpenCL context which is
  48. /// passed as an argument to the constructor when the vector is created.
  49. ///
  50. /// For example, to create a vector on the device containing space for ten
  51. /// \c int values:
  52. /// \code
  53. /// boost::compute::vector<int> vec(10, context);
  54. /// \endcode
  55. ///
  56. /// Allocation and data transfer can also be performed in a single step:
  57. /// \code
  58. /// // values on the host
  59. /// int data[] = { 1, 2, 3, 4 };
  60. ///
  61. /// // create a vector of size four and copy the values from data
  62. /// boost::compute::vector<int> vec(data, data + 4, queue);
  63. /// \endcode
  64. ///
  65. /// The Boost.Compute \c vector class provides a STL-like API and is modeled
  66. /// after the \c std::vector class from the C++ standard library. It can be
  67. /// used with any of the STL-like algorithms provided by Boost.Compute
  68. /// including \c copy(), \c transform(), and \c sort() (among many others).
  69. ///
  70. /// For example:
  71. /// \code
  72. /// // a vector on a compute device
  73. /// boost::compute::vector<float> vec = ...
  74. ///
  75. /// // copy data to the vector from a host std:vector
  76. /// boost::compute::copy(host_vec.begin(), host_vec.end(), vec.begin(), queue);
  77. ///
  78. /// // copy data from the vector to a host std::vector
  79. /// boost::compute::copy(vec.begin(), vec.end(), host_vec.begin(), queue);
  80. ///
  81. /// // sort the values in the vector
  82. /// boost::compute::sort(vec.begin(), vec.end(), queue);
  83. ///
  84. /// // calculate the sum of the values in the vector (also see reduce())
  85. /// float sum = boost::compute::accumulate(vec.begin(), vec.end(), 0, queue);
  86. ///
  87. /// // reverse the values in the vector
  88. /// boost::compute::reverse(vec.begin(), vec.end(), queue);
  89. ///
  90. /// // fill the vector with ones
  91. /// boost::compute::fill(vec.begin(), vec.end(), 1, queue);
  92. /// \endcode
  93. ///
  94. /// \see \ref array "array<T, N>", buffer
  95. template<class T, class Alloc = buffer_allocator<T> >
  96. class vector
  97. {
  98. public:
  99. typedef T value_type;
  100. typedef Alloc allocator_type;
  101. typedef typename allocator_type::size_type size_type;
  102. typedef typename allocator_type::difference_type difference_type;
  103. typedef detail::buffer_value<T> reference;
  104. typedef const detail::buffer_value<T> const_reference;
  105. typedef typename allocator_type::pointer pointer;
  106. typedef typename allocator_type::const_pointer const_pointer;
  107. typedef buffer_iterator<T> iterator;
  108. typedef buffer_iterator<T> const_iterator;
  109. typedef std::reverse_iterator<iterator> reverse_iterator;
  110. typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
  111. /// Creates an empty vector in \p context.
  112. explicit vector(const context &context = system::default_context())
  113. : m_size(0),
  114. m_allocator(context)
  115. {
  116. m_data = m_allocator.allocate(_minimum_capacity());
  117. }
  118. /// Creates a vector with space for \p count elements in \p context.
  119. ///
  120. /// Note that unlike \c std::vector's constructor, this will not initialize
  121. /// the values in the container. Either call the vector constructor which
  122. /// takes a value to initialize with or use the fill() algorithm to set
  123. /// the initial values.
  124. ///
  125. /// For example:
  126. /// \code
  127. /// // create a vector on the device with space for ten ints
  128. /// boost::compute::vector<int> vec(10, context);
  129. /// \endcode
  130. explicit vector(size_type count,
  131. const context &context = system::default_context())
  132. : m_size(count),
  133. m_allocator(context)
  134. {
  135. m_data = m_allocator.allocate((std::max)(count, _minimum_capacity()));
  136. }
  137. /// Creates a vector with space for \p count elements and sets each equal
  138. /// to \p value.
  139. ///
  140. /// For example:
  141. /// \code
  142. /// // creates a vector with four values set to nine (e.g. [9, 9, 9, 9]).
  143. /// boost::compute::vector<int> vec(4, 9, queue);
  144. /// \endcode
  145. vector(size_type count,
  146. const T &value,
  147. command_queue &queue = system::default_queue())
  148. : m_size(count),
  149. m_allocator(queue.get_context())
  150. {
  151. m_data = m_allocator.allocate((std::max)(count, _minimum_capacity()));
  152. ::boost::compute::fill_n(begin(), count, value, queue);
  153. }
  154. /// Creates a vector with space for the values in the range [\p first,
  155. /// \p last) and copies them into the vector with \p queue.
  156. ///
  157. /// For example:
  158. /// \code
  159. /// // values on the host
  160. /// int data[] = { 1, 2, 3, 4 };
  161. ///
  162. /// // create a vector of size four and copy the values from data
  163. /// boost::compute::vector<int> vec(data, data + 4, queue);
  164. /// \endcode
  165. template<class InputIterator>
  166. vector(InputIterator first,
  167. InputIterator last,
  168. command_queue &queue = system::default_queue())
  169. : m_size(detail::iterator_range_size(first, last)),
  170. m_allocator(queue.get_context())
  171. {
  172. m_data = m_allocator.allocate((std::max)(m_size, _minimum_capacity()));
  173. ::boost::compute::copy(first, last, begin(), queue);
  174. }
  175. /// Creates a new vector and copies the values from \p other.
  176. vector(const vector &other,
  177. command_queue &queue = system::default_queue())
  178. : m_size(other.m_size),
  179. m_allocator(other.m_allocator)
  180. {
  181. m_data = m_allocator.allocate((std::max)(m_size, _minimum_capacity()));
  182. if(!other.empty()){
  183. ::boost::compute::copy(other.begin(), other.end(), begin(), queue);
  184. queue.finish();
  185. }
  186. }
  187. /// Creates a new vector and copies the values from \p other.
  188. template<class OtherAlloc>
  189. vector(const vector<T, OtherAlloc> &other,
  190. command_queue &queue = system::default_queue())
  191. : m_size(other.size()),
  192. m_allocator(queue.get_context())
  193. {
  194. m_data = m_allocator.allocate((std::max)(m_size, _minimum_capacity()));
  195. if(!other.empty()){
  196. ::boost::compute::copy(other.begin(), other.end(), begin(), queue);
  197. queue.finish();
  198. }
  199. }
  200. /// Creates a new vector and copies the values from \p vector.
  201. template<class OtherAlloc>
  202. vector(const std::vector<T, OtherAlloc> &vector,
  203. command_queue &queue = system::default_queue())
  204. : m_size(vector.size()),
  205. m_allocator(queue.get_context())
  206. {
  207. m_data = m_allocator.allocate((std::max)(m_size, _minimum_capacity()));
  208. ::boost::compute::copy(vector.begin(), vector.end(), begin(), queue);
  209. }
  210. #ifndef BOOST_COMPUTE_NO_HDR_INITIALIZER_LIST
  211. vector(std::initializer_list<T> list,
  212. command_queue &queue = system::default_queue())
  213. : m_size(list.size()),
  214. m_allocator(queue.get_context())
  215. {
  216. m_data = m_allocator.allocate((std::max)(m_size, _minimum_capacity()));
  217. ::boost::compute::copy(list.begin(), list.end(), begin(), queue);
  218. }
  219. #endif // BOOST_COMPUTE_NO_HDR_INITIALIZER_LIST
  220. vector& operator=(const vector &other)
  221. {
  222. if(this != &other){
  223. command_queue queue = default_queue();
  224. resize(other.size(), queue);
  225. ::boost::compute::copy(other.begin(), other.end(), begin(), queue);
  226. queue.finish();
  227. }
  228. return *this;
  229. }
  230. template<class OtherAlloc>
  231. vector& operator=(const std::vector<T, OtherAlloc> &vector)
  232. {
  233. command_queue queue = default_queue();
  234. resize(vector.size(), queue);
  235. ::boost::compute::copy(vector.begin(), vector.end(), begin(), queue);
  236. queue.finish();
  237. return *this;
  238. }
  239. #ifndef BOOST_COMPUTE_NO_RVALUE_REFERENCES
  240. /// Move-constructs a new vector from \p other.
  241. vector(vector&& other)
  242. : m_data(std::move(other.m_data)),
  243. m_size(other.m_size),
  244. m_allocator(std::move(other.m_allocator))
  245. {
  246. other.m_size = 0;
  247. }
  248. /// Move-assigns the data from \p other to \c *this.
  249. vector& operator=(vector&& other)
  250. {
  251. if(m_size){
  252. m_allocator.deallocate(m_data, m_size);
  253. }
  254. m_data = std::move(other.m_data);
  255. m_size = other.m_size;
  256. m_allocator = std::move(other.m_allocator);
  257. other.m_size = 0;
  258. return *this;
  259. }
  260. #endif // BOOST_COMPUTE_NO_RVALUE_REFERENCES
  261. /// Destroys the vector object.
  262. ~vector()
  263. {
  264. if(m_size){
  265. m_allocator.deallocate(m_data, m_size);
  266. }
  267. }
  268. iterator begin()
  269. {
  270. return ::boost::compute::make_buffer_iterator<T>(m_data.get_buffer(), 0);
  271. }
  272. const_iterator begin() const
  273. {
  274. return ::boost::compute::make_buffer_iterator<T>(m_data.get_buffer(), 0);
  275. }
  276. const_iterator cbegin() const
  277. {
  278. return begin();
  279. }
  280. iterator end()
  281. {
  282. return ::boost::compute::make_buffer_iterator<T>(m_data.get_buffer(), m_size);
  283. }
  284. const_iterator end() const
  285. {
  286. return ::boost::compute::make_buffer_iterator<T>(m_data.get_buffer(), m_size);
  287. }
  288. const_iterator cend() const
  289. {
  290. return end();
  291. }
  292. reverse_iterator rbegin()
  293. {
  294. return reverse_iterator(end() - 1);
  295. }
  296. const_reverse_iterator rbegin() const
  297. {
  298. return reverse_iterator(end() - 1);
  299. }
  300. const_reverse_iterator crbegin() const
  301. {
  302. return rbegin();
  303. }
  304. reverse_iterator rend()
  305. {
  306. return reverse_iterator(begin() - 1);
  307. }
  308. const_reverse_iterator rend() const
  309. {
  310. return reverse_iterator(begin() - 1);
  311. }
  312. const_reverse_iterator crend() const
  313. {
  314. return rend();
  315. }
  316. /// Returns the number of elements in the vector.
  317. size_type size() const
  318. {
  319. return m_size;
  320. }
  321. size_type max_size() const
  322. {
  323. return m_allocator.max_size();
  324. }
  325. /// Resizes the vector to \p size.
  326. void resize(size_type size, command_queue &queue)
  327. {
  328. if(size < capacity()){
  329. m_size = size;
  330. }
  331. else {
  332. // allocate new buffer
  333. pointer new_data =
  334. m_allocator.allocate(
  335. static_cast<size_type>(
  336. static_cast<float>(size) * _growth_factor()
  337. )
  338. );
  339. // copy old values to the new buffer
  340. ::boost::compute::copy(m_data, m_data + m_size, new_data, queue);
  341. // free old memory
  342. m_allocator.deallocate(m_data, m_size);
  343. // set new data and size
  344. m_data = new_data;
  345. m_size = size;
  346. }
  347. }
  348. /// \overload
  349. void resize(size_type size)
  350. {
  351. command_queue queue = default_queue();
  352. resize(size, queue);
  353. queue.finish();
  354. }
  355. /// Returns \c true if the vector is empty.
  356. bool empty() const
  357. {
  358. return m_size == 0;
  359. }
  360. /// Returns the capacity of the vector.
  361. size_type capacity() const
  362. {
  363. return m_data.get_buffer().size() / sizeof(T);
  364. }
  365. void reserve(size_type size, command_queue &queue)
  366. {
  367. (void) size;
  368. (void) queue;
  369. }
  370. void reserve(size_type size)
  371. {
  372. command_queue queue = default_queue();
  373. reserve(size, queue);
  374. queue.finish();
  375. }
  376. void shrink_to_fit(command_queue &queue)
  377. {
  378. (void) queue;
  379. }
  380. void shrink_to_fit()
  381. {
  382. command_queue queue = default_queue();
  383. shrink_to_fit(queue);
  384. queue.finish();
  385. }
  386. reference operator[](size_type index)
  387. {
  388. return *(begin() + static_cast<difference_type>(index));
  389. }
  390. const_reference operator[](size_type index) const
  391. {
  392. return *(begin() + static_cast<difference_type>(index));
  393. }
  394. reference at(size_type index)
  395. {
  396. if(index >= size()){
  397. BOOST_THROW_EXCEPTION(std::out_of_range("index out of range"));
  398. }
  399. return operator[](index);
  400. }
  401. const_reference at(size_type index) const
  402. {
  403. if(index >= size()){
  404. BOOST_THROW_EXCEPTION(std::out_of_range("index out of range"));
  405. }
  406. return operator[](index);
  407. }
  408. reference front()
  409. {
  410. return *begin();
  411. }
  412. const_reference front() const
  413. {
  414. return *begin();
  415. }
  416. reference back()
  417. {
  418. return *(end() - static_cast<difference_type>(1));
  419. }
  420. const_reference back() const
  421. {
  422. return *(end() - static_cast<difference_type>(1));
  423. }
  424. template<class InputIterator>
  425. void assign(InputIterator first,
  426. InputIterator last,
  427. command_queue &queue)
  428. {
  429. // resize vector for new contents
  430. resize(detail::iterator_range_size(first, last), queue);
  431. // copy values into the vector
  432. ::boost::compute::copy(first, last, begin(), queue);
  433. }
  434. template<class InputIterator>
  435. void assign(InputIterator first, InputIterator last)
  436. {
  437. command_queue queue = default_queue();
  438. assign(first, last, queue);
  439. queue.finish();
  440. }
  441. void assign(size_type n, const T &value, command_queue &queue)
  442. {
  443. // resize vector for new contents
  444. resize(n, queue);
  445. // fill vector with value
  446. ::boost::compute::fill_n(begin(), n, value, queue);
  447. }
  448. void assign(size_type n, const T &value)
  449. {
  450. command_queue queue = default_queue();
  451. assign(n, value, queue);
  452. queue.finish();
  453. }
  454. /// Inserts \p value at the end of the vector (resizing if neccessary).
  455. ///
  456. /// Note that calling \c push_back() to insert data values one at a time
  457. /// is inefficient as there is a non-trivial overhead in performing a data
  458. /// transfer to the device. It is usually better to store a set of values
  459. /// on the host (for example, in a \c std::vector) and then transfer them
  460. /// in bulk using the \c insert() method or the copy() algorithm.
  461. void push_back(const T &value, command_queue &queue)
  462. {
  463. insert(end(), value, queue);
  464. }
  465. /// \overload
  466. void push_back(const T &value)
  467. {
  468. command_queue queue = default_queue();
  469. push_back(value, queue);
  470. queue.finish();
  471. }
  472. void pop_back(command_queue &queue)
  473. {
  474. resize(size() - 1, queue);
  475. }
  476. void pop_back()
  477. {
  478. command_queue queue = default_queue();
  479. pop_back(queue);
  480. queue.finish();
  481. }
  482. iterator insert(iterator position, const T &value, command_queue &queue)
  483. {
  484. if(position == end()){
  485. resize(m_size + 1, queue);
  486. position = begin() + position.get_index();
  487. ::boost::compute::copy_n(&value, 1, position, queue);
  488. }
  489. else {
  490. ::boost::compute::vector<T, Alloc> tmp(position, end(), queue);
  491. resize(m_size + 1, queue);
  492. position = begin() + position.get_index();
  493. ::boost::compute::copy_n(&value, 1, position, queue);
  494. ::boost::compute::copy(tmp.begin(), tmp.end(), position + 1, queue);
  495. }
  496. return position + 1;
  497. }
  498. iterator insert(iterator position, const T &value)
  499. {
  500. command_queue queue = default_queue();
  501. iterator iter = insert(position, value, queue);
  502. queue.finish();
  503. return iter;
  504. }
  505. void insert(iterator position,
  506. size_type count,
  507. const T &value,
  508. command_queue &queue)
  509. {
  510. ::boost::compute::vector<T, Alloc> tmp(position, end(), queue);
  511. resize(size() + count, queue);
  512. position = begin() + position.get_index();
  513. ::boost::compute::fill_n(position, count, value, queue);
  514. ::boost::compute::copy(
  515. tmp.begin(),
  516. tmp.end(),
  517. position + static_cast<difference_type>(count),
  518. queue
  519. );
  520. }
  521. void insert(iterator position, size_type count, const T &value)
  522. {
  523. command_queue queue = default_queue();
  524. insert(position, count, value, queue);
  525. queue.finish();
  526. }
  527. /// Inserts the values in the range [\p first, \p last) into the vector at
  528. /// \p position using \p queue.
  529. template<class InputIterator>
  530. void insert(iterator position,
  531. InputIterator first,
  532. InputIterator last,
  533. command_queue &queue)
  534. {
  535. ::boost::compute::vector<T, Alloc> tmp(position, end(), queue);
  536. size_type count = detail::iterator_range_size(first, last);
  537. resize(size() + count, queue);
  538. position = begin() + position.get_index();
  539. ::boost::compute::copy(first, last, position, queue);
  540. ::boost::compute::copy(
  541. tmp.begin(),
  542. tmp.end(),
  543. position + static_cast<difference_type>(count),
  544. queue
  545. );
  546. }
  547. /// \overload
  548. template<class InputIterator>
  549. void insert(iterator position, InputIterator first, InputIterator last)
  550. {
  551. command_queue queue = default_queue();
  552. insert(position, first, last, queue);
  553. queue.finish();
  554. }
  555. iterator erase(iterator position, command_queue &queue)
  556. {
  557. return erase(position, position + 1, queue);
  558. }
  559. iterator erase(iterator position)
  560. {
  561. command_queue queue = default_queue();
  562. iterator iter = erase(position, queue);
  563. queue.finish();
  564. return iter;
  565. }
  566. iterator erase(iterator first, iterator last, command_queue &queue)
  567. {
  568. if(last != end()){
  569. ::boost::compute::vector<T, Alloc> tmp(last, end(), queue);
  570. ::boost::compute::copy(tmp.begin(), tmp.end(), first, queue);
  571. }
  572. difference_type count = std::distance(first, last);
  573. resize(size() - static_cast<size_type>(count), queue);
  574. return begin() + first.get_index() + count;
  575. }
  576. iterator erase(iterator first, iterator last)
  577. {
  578. command_queue queue = default_queue();
  579. iterator iter = erase(first, last, queue);
  580. queue.finish();
  581. return iter;
  582. }
  583. /// Swaps the contents of \c *this with \p other.
  584. void swap(vector &other)
  585. {
  586. std::swap(m_data, other.m_data);
  587. std::swap(m_size, other.m_size);
  588. std::swap(m_allocator, other.m_allocator);
  589. }
  590. /// Removes all elements from the vector.
  591. void clear()
  592. {
  593. m_size = 0;
  594. }
  595. allocator_type get_allocator() const
  596. {
  597. return m_allocator;
  598. }
  599. /// Returns the underlying buffer.
  600. const buffer& get_buffer() const
  601. {
  602. return m_data.get_buffer();
  603. }
  604. /// \internal_
  605. ///
  606. /// Returns a command queue usable to issue commands for the vector's
  607. /// memory buffer. This is used when a member function is called without
  608. /// specifying an existing command queue to use.
  609. command_queue default_queue() const
  610. {
  611. const context &context = m_allocator.get_context();
  612. command_queue queue(context, context.get_device());
  613. return queue;
  614. }
  615. private:
  616. /// \internal_
  617. BOOST_CONSTEXPR size_type _minimum_capacity() const { return 4; }
  618. /// \internal_
  619. BOOST_CONSTEXPR float _growth_factor() const { return 1.5; }
  620. private:
  621. pointer m_data;
  622. size_type m_size;
  623. allocator_type m_allocator;
  624. };
  625. namespace detail {
  626. // set_kernel_arg specialization for vector<T>
  627. template<class T, class Alloc>
  628. struct set_kernel_arg<vector<T, Alloc> >
  629. {
  630. void operator()(kernel &kernel_, size_t index, const vector<T, Alloc> &vector)
  631. {
  632. kernel_.set_arg(index, vector.get_buffer());
  633. }
  634. };
  635. // for capturing vector<T> with BOOST_COMPUTE_CLOSURE()
  636. template<class T, class Alloc>
  637. struct capture_traits<vector<T, Alloc> >
  638. {
  639. static std::string type_name()
  640. {
  641. return std::string("__global ") + ::boost::compute::type_name<T>() + "*";
  642. }
  643. };
  644. // meta_kernel streaming operator for vector<T>
  645. template<class T, class Alloc>
  646. meta_kernel& operator<<(meta_kernel &k, const vector<T, Alloc> &vector)
  647. {
  648. return k << k.get_buffer_identifier<T>(vector.get_buffer());
  649. }
  650. } // end detail namespace
  651. } // end compute namespace
  652. } // end boost namespace
  653. #endif // BOOST_COMPUTE_CONTAINER_VECTOR_HPP