mxs_spi.c 8.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363
  1. /*
  2. * Freescale i.MX28 SPI driver
  3. *
  4. * Copyright (C) 2011 Marek Vasut <marek.vasut@gmail.com>
  5. * on behalf of DENX Software Engineering GmbH
  6. *
  7. * SPDX-License-Identifier: GPL-2.0+
  8. *
  9. * NOTE: This driver only supports the SPI-controller chipselects,
  10. * GPIO driven chipselects are not supported.
  11. */
  12. #include <common.h>
  13. #include <malloc.h>
  14. #include <memalign.h>
  15. #include <spi.h>
  16. #include <linux/errno.h>
  17. #include <asm/io.h>
  18. #include <asm/arch/clock.h>
  19. #include <asm/arch/imx-regs.h>
  20. #include <asm/arch/sys_proto.h>
  21. #include <asm/imx-common/dma.h>
  22. #define MXS_SPI_MAX_TIMEOUT 1000000
  23. #define MXS_SPI_PORT_OFFSET 0x2000
  24. #define MXS_SSP_CHIPSELECT_MASK 0x00300000
  25. #define MXS_SSP_CHIPSELECT_SHIFT 20
  26. #define MXSSSP_SMALL_TRANSFER 512
  27. struct mxs_spi_slave {
  28. struct spi_slave slave;
  29. uint32_t max_khz;
  30. uint32_t mode;
  31. struct mxs_ssp_regs *regs;
  32. };
  33. static inline struct mxs_spi_slave *to_mxs_slave(struct spi_slave *slave)
  34. {
  35. return container_of(slave, struct mxs_spi_slave, slave);
  36. }
  37. void spi_init(void)
  38. {
  39. }
  40. int spi_cs_is_valid(unsigned int bus, unsigned int cs)
  41. {
  42. /* MXS SPI: 4 ports and 3 chip selects maximum */
  43. if (!mxs_ssp_bus_id_valid(bus) || cs > 2)
  44. return 0;
  45. else
  46. return 1;
  47. }
  48. struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
  49. unsigned int max_hz, unsigned int mode)
  50. {
  51. struct mxs_spi_slave *mxs_slave;
  52. if (!spi_cs_is_valid(bus, cs)) {
  53. printf("mxs_spi: invalid bus %d / chip select %d\n", bus, cs);
  54. return NULL;
  55. }
  56. mxs_slave = spi_alloc_slave(struct mxs_spi_slave, bus, cs);
  57. if (!mxs_slave)
  58. return NULL;
  59. if (mxs_dma_init_channel(MXS_DMA_CHANNEL_AHB_APBH_SSP0 + bus))
  60. goto err_init;
  61. mxs_slave->max_khz = max_hz / 1000;
  62. mxs_slave->mode = mode;
  63. mxs_slave->regs = mxs_ssp_regs_by_bus(bus);
  64. return &mxs_slave->slave;
  65. err_init:
  66. free(mxs_slave);
  67. return NULL;
  68. }
  69. void spi_free_slave(struct spi_slave *slave)
  70. {
  71. struct mxs_spi_slave *mxs_slave = to_mxs_slave(slave);
  72. free(mxs_slave);
  73. }
  74. int spi_claim_bus(struct spi_slave *slave)
  75. {
  76. struct mxs_spi_slave *mxs_slave = to_mxs_slave(slave);
  77. struct mxs_ssp_regs *ssp_regs = mxs_slave->regs;
  78. uint32_t reg = 0;
  79. mxs_reset_block(&ssp_regs->hw_ssp_ctrl0_reg);
  80. writel((slave->cs << MXS_SSP_CHIPSELECT_SHIFT) |
  81. SSP_CTRL0_BUS_WIDTH_ONE_BIT,
  82. &ssp_regs->hw_ssp_ctrl0);
  83. reg = SSP_CTRL1_SSP_MODE_SPI | SSP_CTRL1_WORD_LENGTH_EIGHT_BITS;
  84. reg |= (mxs_slave->mode & SPI_CPOL) ? SSP_CTRL1_POLARITY : 0;
  85. reg |= (mxs_slave->mode & SPI_CPHA) ? SSP_CTRL1_PHASE : 0;
  86. writel(reg, &ssp_regs->hw_ssp_ctrl1);
  87. writel(0, &ssp_regs->hw_ssp_cmd0);
  88. mxs_set_ssp_busclock(slave->bus, mxs_slave->max_khz);
  89. return 0;
  90. }
  91. void spi_release_bus(struct spi_slave *slave)
  92. {
  93. }
  94. static void mxs_spi_start_xfer(struct mxs_ssp_regs *ssp_regs)
  95. {
  96. writel(SSP_CTRL0_LOCK_CS, &ssp_regs->hw_ssp_ctrl0_set);
  97. writel(SSP_CTRL0_IGNORE_CRC, &ssp_regs->hw_ssp_ctrl0_clr);
  98. }
  99. static void mxs_spi_end_xfer(struct mxs_ssp_regs *ssp_regs)
  100. {
  101. writel(SSP_CTRL0_LOCK_CS, &ssp_regs->hw_ssp_ctrl0_clr);
  102. writel(SSP_CTRL0_IGNORE_CRC, &ssp_regs->hw_ssp_ctrl0_set);
  103. }
  104. static int mxs_spi_xfer_pio(struct mxs_spi_slave *slave,
  105. char *data, int length, int write, unsigned long flags)
  106. {
  107. struct mxs_ssp_regs *ssp_regs = slave->regs;
  108. if (flags & SPI_XFER_BEGIN)
  109. mxs_spi_start_xfer(ssp_regs);
  110. while (length--) {
  111. /* We transfer 1 byte */
  112. #if defined(CONFIG_MX23)
  113. writel(SSP_CTRL0_XFER_COUNT_MASK, &ssp_regs->hw_ssp_ctrl0_clr);
  114. writel(1, &ssp_regs->hw_ssp_ctrl0_set);
  115. #elif defined(CONFIG_MX28)
  116. writel(1, &ssp_regs->hw_ssp_xfer_size);
  117. #endif
  118. if ((flags & SPI_XFER_END) && !length)
  119. mxs_spi_end_xfer(ssp_regs);
  120. if (write)
  121. writel(SSP_CTRL0_READ, &ssp_regs->hw_ssp_ctrl0_clr);
  122. else
  123. writel(SSP_CTRL0_READ, &ssp_regs->hw_ssp_ctrl0_set);
  124. writel(SSP_CTRL0_RUN, &ssp_regs->hw_ssp_ctrl0_set);
  125. if (mxs_wait_mask_set(&ssp_regs->hw_ssp_ctrl0_reg,
  126. SSP_CTRL0_RUN, MXS_SPI_MAX_TIMEOUT)) {
  127. printf("MXS SPI: Timeout waiting for start\n");
  128. return -ETIMEDOUT;
  129. }
  130. if (write)
  131. writel(*data++, &ssp_regs->hw_ssp_data);
  132. writel(SSP_CTRL0_DATA_XFER, &ssp_regs->hw_ssp_ctrl0_set);
  133. if (!write) {
  134. if (mxs_wait_mask_clr(&ssp_regs->hw_ssp_status_reg,
  135. SSP_STATUS_FIFO_EMPTY, MXS_SPI_MAX_TIMEOUT)) {
  136. printf("MXS SPI: Timeout waiting for data\n");
  137. return -ETIMEDOUT;
  138. }
  139. *data = readl(&ssp_regs->hw_ssp_data);
  140. data++;
  141. }
  142. if (mxs_wait_mask_clr(&ssp_regs->hw_ssp_ctrl0_reg,
  143. SSP_CTRL0_RUN, MXS_SPI_MAX_TIMEOUT)) {
  144. printf("MXS SPI: Timeout waiting for finish\n");
  145. return -ETIMEDOUT;
  146. }
  147. }
  148. return 0;
  149. }
  150. static int mxs_spi_xfer_dma(struct mxs_spi_slave *slave,
  151. char *data, int length, int write, unsigned long flags)
  152. {
  153. const int xfer_max_sz = 0xff00;
  154. const int desc_count = DIV_ROUND_UP(length, xfer_max_sz) + 1;
  155. struct mxs_ssp_regs *ssp_regs = slave->regs;
  156. struct mxs_dma_desc *dp;
  157. uint32_t ctrl0;
  158. uint32_t cache_data_count;
  159. const uint32_t dstart = (uint32_t)data;
  160. int dmach;
  161. int tl;
  162. int ret = 0;
  163. #if defined(CONFIG_MX23)
  164. const int mxs_spi_pio_words = 1;
  165. #elif defined(CONFIG_MX28)
  166. const int mxs_spi_pio_words = 4;
  167. #endif
  168. ALLOC_CACHE_ALIGN_BUFFER(struct mxs_dma_desc, desc, desc_count);
  169. memset(desc, 0, sizeof(struct mxs_dma_desc) * desc_count);
  170. ctrl0 = readl(&ssp_regs->hw_ssp_ctrl0);
  171. ctrl0 |= SSP_CTRL0_DATA_XFER;
  172. if (flags & SPI_XFER_BEGIN)
  173. ctrl0 |= SSP_CTRL0_LOCK_CS;
  174. if (!write)
  175. ctrl0 |= SSP_CTRL0_READ;
  176. if (length % ARCH_DMA_MINALIGN)
  177. cache_data_count = roundup(length, ARCH_DMA_MINALIGN);
  178. else
  179. cache_data_count = length;
  180. /* Flush data to DRAM so DMA can pick them up */
  181. if (write)
  182. flush_dcache_range(dstart, dstart + cache_data_count);
  183. /* Invalidate the area, so no writeback into the RAM races with DMA */
  184. invalidate_dcache_range(dstart, dstart + cache_data_count);
  185. dmach = MXS_DMA_CHANNEL_AHB_APBH_SSP0 + slave->slave.bus;
  186. dp = desc;
  187. while (length) {
  188. dp->address = (dma_addr_t)dp;
  189. dp->cmd.address = (dma_addr_t)data;
  190. /*
  191. * This is correct, even though it does indeed look insane.
  192. * I hereby have to, wholeheartedly, thank Freescale Inc.,
  193. * for always inventing insane hardware and keeping me busy
  194. * and employed ;-)
  195. */
  196. if (write)
  197. dp->cmd.data = MXS_DMA_DESC_COMMAND_DMA_READ;
  198. else
  199. dp->cmd.data = MXS_DMA_DESC_COMMAND_DMA_WRITE;
  200. /*
  201. * The DMA controller can transfer large chunks (64kB) at
  202. * time by setting the transfer length to 0. Setting tl to
  203. * 0x10000 will overflow below and make .data contain 0.
  204. * Otherwise, 0xff00 is the transfer maximum.
  205. */
  206. if (length >= 0x10000)
  207. tl = 0x10000;
  208. else
  209. tl = min(length, xfer_max_sz);
  210. dp->cmd.data |=
  211. ((tl & 0xffff) << MXS_DMA_DESC_BYTES_OFFSET) |
  212. (mxs_spi_pio_words << MXS_DMA_DESC_PIO_WORDS_OFFSET) |
  213. MXS_DMA_DESC_HALT_ON_TERMINATE |
  214. MXS_DMA_DESC_TERMINATE_FLUSH;
  215. data += tl;
  216. length -= tl;
  217. if (!length) {
  218. dp->cmd.data |= MXS_DMA_DESC_IRQ | MXS_DMA_DESC_DEC_SEM;
  219. if (flags & SPI_XFER_END) {
  220. ctrl0 &= ~SSP_CTRL0_LOCK_CS;
  221. ctrl0 |= SSP_CTRL0_IGNORE_CRC;
  222. }
  223. }
  224. /*
  225. * Write CTRL0, CMD0, CMD1 and XFER_SIZE registers in
  226. * case of MX28, write only CTRL0 in case of MX23 due
  227. * to the difference in register layout. It is utterly
  228. * essential that the XFER_SIZE register is written on
  229. * a per-descriptor basis with the same size as is the
  230. * descriptor!
  231. */
  232. dp->cmd.pio_words[0] = ctrl0;
  233. #ifdef CONFIG_MX28
  234. dp->cmd.pio_words[1] = 0;
  235. dp->cmd.pio_words[2] = 0;
  236. dp->cmd.pio_words[3] = tl;
  237. #endif
  238. mxs_dma_desc_append(dmach, dp);
  239. dp++;
  240. }
  241. if (mxs_dma_go(dmach))
  242. ret = -EINVAL;
  243. /* The data arrived into DRAM, invalidate cache over them */
  244. if (!write)
  245. invalidate_dcache_range(dstart, dstart + cache_data_count);
  246. return ret;
  247. }
  248. int spi_xfer(struct spi_slave *slave, unsigned int bitlen,
  249. const void *dout, void *din, unsigned long flags)
  250. {
  251. struct mxs_spi_slave *mxs_slave = to_mxs_slave(slave);
  252. struct mxs_ssp_regs *ssp_regs = mxs_slave->regs;
  253. int len = bitlen / 8;
  254. char dummy;
  255. int write = 0;
  256. char *data = NULL;
  257. int dma = 1;
  258. if (bitlen == 0) {
  259. if (flags & SPI_XFER_END) {
  260. din = (void *)&dummy;
  261. len = 1;
  262. } else
  263. return 0;
  264. }
  265. /* Half-duplex only */
  266. if (din && dout)
  267. return -EINVAL;
  268. /* No data */
  269. if (!din && !dout)
  270. return 0;
  271. if (dout) {
  272. data = (char *)dout;
  273. write = 1;
  274. } else if (din) {
  275. data = (char *)din;
  276. write = 0;
  277. }
  278. /*
  279. * Check for alignment, if the buffer is aligned, do DMA transfer,
  280. * PIO otherwise. This is a temporary workaround until proper bounce
  281. * buffer is in place.
  282. */
  283. if (dma) {
  284. if (((uint32_t)data) & (ARCH_DMA_MINALIGN - 1))
  285. dma = 0;
  286. if (((uint32_t)len) & (ARCH_DMA_MINALIGN - 1))
  287. dma = 0;
  288. }
  289. if (!dma || (len < MXSSSP_SMALL_TRANSFER)) {
  290. writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_clr);
  291. return mxs_spi_xfer_pio(mxs_slave, data, len, write, flags);
  292. } else {
  293. writel(SSP_CTRL1_DMA_ENABLE, &ssp_regs->hw_ssp_ctrl1_set);
  294. return mxs_spi_xfer_dma(mxs_slave, data, len, write, flags);
  295. }
  296. }