cf_qspi.c 9.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354
  1. /*
  2. * Freescale Coldfire Queued SPI driver
  3. *
  4. * NOTE:
  5. * This driver is written to transfer 8 bit at-a-time and uses the dedicated
  6. * SPI slave select pins as bit-banged GPIO to work with spi_flash subsystem.
  7. *
  8. * Copyright (C) 2011 Ruggedcom, Inc.
  9. * Richard Retanubun (richardretanubun@freescale.com)
  10. *
  11. * SPDX-License-Identifier: GPL-2.0+
  12. */
  13. #include <common.h>
  14. #include <malloc.h>
  15. #include <spi.h>
  16. #include <asm/immap.h>
  17. #include <asm/io.h>
  18. DECLARE_GLOBAL_DATA_PTR;
  19. #define to_cf_qspi_slave(s) container_of(s, struct cf_qspi_slave, slave)
  20. struct cf_qspi_slave {
  21. struct spi_slave slave; /* Specific bus:cs ID for each device */
  22. qspi_t *regs; /* Pointer to SPI controller registers */
  23. u16 qmr; /* QMR: Queued Mode Register */
  24. u16 qwr; /* QWR: Queued Wrap Register */
  25. u16 qcr; /* QCR: Queued Command Ram */
  26. };
  27. /* Register write wrapper functions */
  28. static void write_qmr(volatile qspi_t *qspi, u16 val) { qspi->mr = val; }
  29. static void write_qdlyr(volatile qspi_t *qspi, u16 val) { qspi->dlyr = val; }
  30. static void write_qwr(volatile qspi_t *qspi, u16 val) { qspi->wr = val; }
  31. static void write_qir(volatile qspi_t *qspi, u16 val) { qspi->ir = val; }
  32. static void write_qar(volatile qspi_t *qspi, u16 val) { qspi->ar = val; }
  33. static void write_qdr(volatile qspi_t *qspi, u16 val) { qspi->dr = val; }
  34. /* Register read wrapper functions */
  35. static u16 read_qdlyr(volatile qspi_t *qspi) { return qspi->dlyr; }
  36. static u16 read_qwr(volatile qspi_t *qspi) { return qspi->wr; }
  37. static u16 read_qir(volatile qspi_t *qspi) { return qspi->ir; }
  38. static u16 read_qdr(volatile qspi_t *qspi) { return qspi->dr; }
  39. /* These call points may be different for each ColdFire CPU */
  40. extern void cfspi_port_conf(void);
  41. static void cfspi_cs_activate(uint bus, uint cs, uint cs_active_high);
  42. static void cfspi_cs_deactivate(uint bus, uint cs, uint cs_active_high);
  43. int spi_claim_bus(struct spi_slave *slave)
  44. {
  45. return 0;
  46. }
  47. void spi_release_bus(struct spi_slave *slave)
  48. {
  49. }
  50. __attribute__((weak))
  51. void spi_init(void)
  52. {
  53. cfspi_port_conf();
  54. }
  55. __attribute__((weak))
  56. void spi_cs_activate(struct spi_slave *slave)
  57. {
  58. struct cf_qspi_slave *dev = to_cf_qspi_slave(slave);
  59. cfspi_cs_activate(slave->bus, slave->cs, !(dev->qwr & QSPI_QWR_CSIV));
  60. }
  61. __attribute__((weak))
  62. void spi_cs_deactivate(struct spi_slave *slave)
  63. {
  64. struct cf_qspi_slave *dev = to_cf_qspi_slave(slave);
  65. cfspi_cs_deactivate(slave->bus, slave->cs, !(dev->qwr & QSPI_QWR_CSIV));
  66. }
  67. __attribute__((weak))
  68. int spi_cs_is_valid(unsigned int bus, unsigned int cs)
  69. {
  70. /* Only 1 bus and 4 chipselect per controller */
  71. if (bus == 0 && (cs >= 0 && cs < 4))
  72. return 1;
  73. else
  74. return 0;
  75. }
  76. void spi_free_slave(struct spi_slave *slave)
  77. {
  78. struct cf_qspi_slave *dev = to_cf_qspi_slave(slave);
  79. free(dev);
  80. }
  81. /* Translate information given by spi_setup_slave to members of cf_qspi_slave */
  82. struct spi_slave *spi_setup_slave(unsigned int bus, unsigned int cs,
  83. unsigned int max_hz, unsigned int mode)
  84. {
  85. struct cf_qspi_slave *dev = NULL;
  86. if (!spi_cs_is_valid(bus, cs))
  87. return NULL;
  88. dev = spi_alloc_slave(struct cf_qspi_slave, bus, cs);
  89. if (!dev)
  90. return NULL;
  91. /* Initialize to known value */
  92. dev->regs = (qspi_t *)MMAP_QSPI;
  93. dev->qmr = 0;
  94. dev->qwr = 0;
  95. dev->qcr = 0;
  96. /* Map max_hz to QMR[BAUD] */
  97. if (max_hz == 0) /* Go as fast as possible */
  98. dev->qmr = 2u;
  99. else /* Get the closest baud rate */
  100. dev->qmr = clamp(((gd->bus_clk >> 2) + max_hz - 1)/max_hz,
  101. 2lu, 255lu);
  102. /* Map mode to QMR[CPOL] and QMR[CPHA] */
  103. if (mode & SPI_CPOL)
  104. dev->qmr |= QSPI_QMR_CPOL;
  105. if (mode & SPI_CPHA)
  106. dev->qmr |= QSPI_QMR_CPHA;
  107. /* Hardcode bit length to 8 bit per transter */
  108. dev->qmr |= QSPI_QMR_BITS_8;
  109. /* Set QMR[MSTR] to enable QSPI as master */
  110. dev->qmr |= QSPI_QMR_MSTR;
  111. /*
  112. * Set QCR and QWR to default values for spi flash operation.
  113. * If more custom QCR and QRW are needed, overload mode variable
  114. */
  115. dev->qcr = (QSPI_QDR_CONT | QSPI_QDR_BITSE);
  116. if (!(mode & SPI_CS_HIGH))
  117. dev->qwr |= QSPI_QWR_CSIV;
  118. return &dev->slave;
  119. }
  120. /* Transfer 8 bit at a time */
  121. int spi_xfer(struct spi_slave *slave, unsigned int bitlen, const void *dout,
  122. void *din, unsigned long flags)
  123. {
  124. struct cf_qspi_slave *dev = to_cf_qspi_slave(slave);
  125. volatile qspi_t *qspi = dev->regs;
  126. u8 *txbuf = (u8 *)dout;
  127. u8 *rxbuf = (u8 *)din;
  128. u32 count = DIV_ROUND_UP(bitlen, 8);
  129. u32 n, i = 0;
  130. /* Sanitize arguments */
  131. if (slave == NULL) {
  132. printf("%s: NULL slave ptr\n", __func__);
  133. return -1;
  134. }
  135. if (flags & SPI_XFER_BEGIN)
  136. spi_cs_activate(slave);
  137. /* There is something to send, lets process it. spi_xfer is also called
  138. * just to toggle chip select, so bitlen of 0 is valid */
  139. if (count > 0) {
  140. /*
  141. * NOTE: Since chip select is driven as a bit-bang-ed GPIO
  142. * using spi_cs_activate() and spi_cs_deactivate(),
  143. * the chip select settings inside the controller
  144. * (i.e. QCR[CONT] and QWR[CSIV]) are moot. The bits are set to
  145. * keep the controller settings consistent with the actual
  146. * operation of the bus.
  147. */
  148. /* Write the slave device's settings for the controller.*/
  149. write_qmr(qspi, dev->qmr);
  150. write_qwr(qspi, dev->qwr);
  151. /* Limit transfer to 16 at a time */
  152. n = min(count, 16u);
  153. do {
  154. /* Setup queue end point */
  155. write_qwr(qspi, ((read_qwr(qspi) & QSPI_QWR_ENDQP_MASK)
  156. | QSPI_QWR_ENDQP((n-1))));
  157. /* Write Command RAM */
  158. write_qar(qspi, QSPI_QAR_CMD);
  159. for (i = 0; i < n; ++i)
  160. write_qdr(qspi, dev->qcr);
  161. /* Write TxBuf, if none given, fill with ZEROes */
  162. write_qar(qspi, QSPI_QAR_TRANS);
  163. if (txbuf) {
  164. for (i = 0; i < n; ++i)
  165. write_qdr(qspi, *txbuf++);
  166. } else {
  167. for (i = 0; i < n; ++i)
  168. write_qdr(qspi, 0);
  169. }
  170. /* Clear QIR[SPIF] by writing a 1 to it */
  171. write_qir(qspi, read_qir(qspi) | QSPI_QIR_SPIF);
  172. /* Set QDLYR[SPE] to start sending */
  173. write_qdlyr(qspi, read_qdlyr(qspi) | QSPI_QDLYR_SPE);
  174. /* Poll QIR[SPIF] for transfer completion */
  175. while ((read_qir(qspi) & QSPI_QIR_SPIF) != 1)
  176. udelay(1);
  177. /* If given read RxBuf, load data to it */
  178. if (rxbuf) {
  179. write_qar(qspi, QSPI_QAR_RECV);
  180. for (i = 0; i < n; ++i)
  181. *rxbuf++ = read_qdr(qspi);
  182. }
  183. /* Decrement count */
  184. count -= n;
  185. } while (count);
  186. }
  187. if (flags & SPI_XFER_END)
  188. spi_cs_deactivate(slave);
  189. return 0;
  190. }
  191. /* Each MCF CPU may have different pin assignments for chip selects. */
  192. #if defined(CONFIG_M5271)
  193. /* Assert chip select, val = [1|0] , dir = out, mode = GPIO */
  194. void cfspi_cs_activate(uint bus, uint cs, uint cs_active_high)
  195. {
  196. debug("%s: bus %d cs %d cs_active_high %d\n",
  197. __func__, bus, cs, cs_active_high);
  198. switch (cs) {
  199. case 0: /* QSPI_CS[0] = PQSPI[3] */
  200. if (cs_active_high)
  201. mbar_writeByte(MCF_GPIO_PPDSDR_QSPI, 0x08);
  202. else
  203. mbar_writeByte(MCF_GPIO_PCLRR_QSPI, 0xF7);
  204. mbar_writeByte(MCF_GPIO_PDDR_QSPI,
  205. mbar_readByte(MCF_GPIO_PDDR_QSPI) | 0x08);
  206. mbar_writeByte(MCF_GPIO_PAR_QSPI,
  207. mbar_readByte(MCF_GPIO_PAR_QSPI) & 0xDF);
  208. break;
  209. case 1: /* QSPI_CS[1] = PQSPI[4] */
  210. if (cs_active_high)
  211. mbar_writeByte(MCF_GPIO_PPDSDR_QSPI, 0x10);
  212. else
  213. mbar_writeByte(MCF_GPIO_PCLRR_QSPI, 0xEF);
  214. mbar_writeByte(MCF_GPIO_PDDR_QSPI,
  215. mbar_readByte(MCF_GPIO_PDDR_QSPI) | 0x10);
  216. mbar_writeByte(MCF_GPIO_PAR_QSPI,
  217. mbar_readByte(MCF_GPIO_PAR_QSPI) & 0x3F);
  218. break;
  219. case 2: /* QSPI_CS[2] = PTIMER[7] */
  220. if (cs_active_high)
  221. mbar_writeByte(MCF_GPIO_PPDSDR_TIMER, 0x80);
  222. else
  223. mbar_writeByte(MCF_GPIO_PCLRR_TIMER, 0x7F);
  224. mbar_writeByte(MCF_GPIO_PDDR_TIMER,
  225. mbar_readByte(MCF_GPIO_PDDR_TIMER) | 0x80);
  226. mbar_writeShort(MCF_GPIO_PAR_TIMER,
  227. mbar_readShort(MCF_GPIO_PAR_TIMER) & 0x3FFF);
  228. break;
  229. case 3: /* QSPI_CS[3] = PTIMER[3] */
  230. if (cs_active_high)
  231. mbar_writeByte(MCF_GPIO_PPDSDR_TIMER, 0x08);
  232. else
  233. mbar_writeByte(MCF_GPIO_PCLRR_TIMER, 0xF7);
  234. mbar_writeByte(MCF_GPIO_PDDR_TIMER,
  235. mbar_readByte(MCF_GPIO_PDDR_TIMER) | 0x08);
  236. mbar_writeShort(MCF_GPIO_PAR_TIMER,
  237. mbar_readShort(MCF_GPIO_PAR_TIMER) & 0xFF3F);
  238. break;
  239. }
  240. }
  241. /* Deassert chip select, val = [1|0], dir = in, mode = GPIO
  242. * direction set as IN to undrive the pin, external pullup/pulldown will bring
  243. * bus to deassert state.
  244. */
  245. void cfspi_cs_deactivate(uint bus, uint cs, uint cs_active_high)
  246. {
  247. debug("%s: bus %d cs %d cs_active_high %d\n",
  248. __func__, bus, cs, cs_active_high);
  249. switch (cs) {
  250. case 0: /* QSPI_CS[0] = PQSPI[3] */
  251. if (cs_active_high)
  252. mbar_writeByte(MCF_GPIO_PCLRR_QSPI, 0xF7);
  253. else
  254. mbar_writeByte(MCF_GPIO_PPDSDR_QSPI, 0x08);
  255. mbar_writeByte(MCF_GPIO_PDDR_QSPI,
  256. mbar_readByte(MCF_GPIO_PDDR_QSPI) & 0xF7);
  257. mbar_writeByte(MCF_GPIO_PAR_QSPI,
  258. mbar_readByte(MCF_GPIO_PAR_QSPI) & 0xDF);
  259. break;
  260. case 1: /* QSPI_CS[1] = PQSPI[4] */
  261. if (cs_active_high)
  262. mbar_writeByte(MCF_GPIO_PCLRR_QSPI, 0xEF);
  263. else
  264. mbar_writeByte(MCF_GPIO_PPDSDR_QSPI, 0x10);
  265. mbar_writeByte(MCF_GPIO_PDDR_QSPI,
  266. mbar_readByte(MCF_GPIO_PDDR_QSPI) & 0xEF);
  267. mbar_writeByte(MCF_GPIO_PAR_QSPI,
  268. mbar_readByte(MCF_GPIO_PAR_QSPI) & 0x3F);
  269. break;
  270. case 2: /* QSPI_CS[2] = PTIMER[7] */
  271. if (cs_active_high)
  272. mbar_writeByte(MCF_GPIO_PCLRR_TIMER, 0x7F);
  273. else
  274. mbar_writeByte(MCF_GPIO_PPDSDR_TIMER, 0x80);
  275. mbar_writeByte(MCF_GPIO_PDDR_TIMER,
  276. mbar_readByte(MCF_GPIO_PDDR_TIMER) & 0x7F);
  277. mbar_writeShort(MCF_GPIO_PAR_TIMER,
  278. mbar_readShort(MCF_GPIO_PAR_TIMER) & 0x3FFF);
  279. break;
  280. case 3: /* QSPI_CS[3] = PTIMER[3] */
  281. if (cs_active_high)
  282. mbar_writeByte(MCF_GPIO_PCLRR_TIMER, 0xF7);
  283. else
  284. mbar_writeByte(MCF_GPIO_PPDSDR_TIMER, 0x08);
  285. mbar_writeByte(MCF_GPIO_PDDR_TIMER,
  286. mbar_readByte(MCF_GPIO_PDDR_TIMER) & 0xF7);
  287. mbar_writeShort(MCF_GPIO_PAR_TIMER,
  288. mbar_readShort(MCF_GPIO_PAR_TIMER) & 0xFF3F);
  289. break;
  290. }
  291. }
  292. #endif /* CONFIG_M5271 */