cadence_qspi.c 9.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351
  1. /*
  2. * Copyright (C) 2012
  3. * Altera Corporation <www.altera.com>
  4. *
  5. * SPDX-License-Identifier: GPL-2.0+
  6. */
  7. #include <common.h>
  8. #include <dm.h>
  9. #include <fdtdec.h>
  10. #include <malloc.h>
  11. #include <spi.h>
  12. #include <linux/errno.h>
  13. #include "cadence_qspi.h"
  14. #define CQSPI_STIG_READ 0
  15. #define CQSPI_STIG_WRITE 1
  16. #define CQSPI_INDIRECT_READ 2
  17. #define CQSPI_INDIRECT_WRITE 3
  18. DECLARE_GLOBAL_DATA_PTR;
  19. static int cadence_spi_write_speed(struct udevice *bus, uint hz)
  20. {
  21. struct cadence_spi_platdata *plat = bus->platdata;
  22. struct cadence_spi_priv *priv = dev_get_priv(bus);
  23. cadence_qspi_apb_config_baudrate_div(priv->regbase,
  24. CONFIG_CQSPI_REF_CLK, hz);
  25. /* Reconfigure delay timing if speed is changed. */
  26. cadence_qspi_apb_delay(priv->regbase, CONFIG_CQSPI_REF_CLK, hz,
  27. plat->tshsl_ns, plat->tsd2d_ns,
  28. plat->tchsh_ns, plat->tslch_ns);
  29. return 0;
  30. }
  31. /* Calibration sequence to determine the read data capture delay register */
  32. static int spi_calibration(struct udevice *bus, uint hz)
  33. {
  34. struct cadence_spi_priv *priv = dev_get_priv(bus);
  35. void *base = priv->regbase;
  36. u8 opcode_rdid = 0x9F;
  37. unsigned int idcode = 0, temp = 0;
  38. int err = 0, i, range_lo = -1, range_hi = -1;
  39. /* start with slowest clock (1 MHz) */
  40. cadence_spi_write_speed(bus, 1000000);
  41. /* configure the read data capture delay register to 0 */
  42. cadence_qspi_apb_readdata_capture(base, 1, 0);
  43. /* Enable QSPI */
  44. cadence_qspi_apb_controller_enable(base);
  45. /* read the ID which will be our golden value */
  46. err = cadence_qspi_apb_command_read(base, 1, &opcode_rdid,
  47. 3, (u8 *)&idcode);
  48. if (err) {
  49. puts("SF: Calibration failed (read)\n");
  50. return err;
  51. }
  52. /* use back the intended clock and find low range */
  53. cadence_spi_write_speed(bus, hz);
  54. for (i = 0; i < CQSPI_READ_CAPTURE_MAX_DELAY; i++) {
  55. /* Disable QSPI */
  56. cadence_qspi_apb_controller_disable(base);
  57. /* reconfigure the read data capture delay register */
  58. cadence_qspi_apb_readdata_capture(base, 1, i);
  59. /* Enable back QSPI */
  60. cadence_qspi_apb_controller_enable(base);
  61. /* issue a RDID to get the ID value */
  62. err = cadence_qspi_apb_command_read(base, 1, &opcode_rdid,
  63. 3, (u8 *)&temp);
  64. if (err) {
  65. puts("SF: Calibration failed (read)\n");
  66. return err;
  67. }
  68. /* search for range lo */
  69. if (range_lo == -1 && temp == idcode) {
  70. range_lo = i;
  71. continue;
  72. }
  73. /* search for range hi */
  74. if (range_lo != -1 && temp != idcode) {
  75. range_hi = i - 1;
  76. break;
  77. }
  78. range_hi = i;
  79. }
  80. if (range_lo == -1) {
  81. puts("SF: Calibration failed (low range)\n");
  82. return err;
  83. }
  84. /* Disable QSPI for subsequent initialization */
  85. cadence_qspi_apb_controller_disable(base);
  86. /* configure the final value for read data capture delay register */
  87. cadence_qspi_apb_readdata_capture(base, 1, (range_hi + range_lo) / 2);
  88. debug("SF: Read data capture delay calibrated to %i (%i - %i)\n",
  89. (range_hi + range_lo) / 2, range_lo, range_hi);
  90. /* just to ensure we do once only when speed or chip select change */
  91. priv->qspi_calibrated_hz = hz;
  92. priv->qspi_calibrated_cs = spi_chip_select(bus);
  93. return 0;
  94. }
  95. static int cadence_spi_set_speed(struct udevice *bus, uint hz)
  96. {
  97. struct cadence_spi_platdata *plat = bus->platdata;
  98. struct cadence_spi_priv *priv = dev_get_priv(bus);
  99. int err;
  100. if (hz > plat->max_hz)
  101. hz = plat->max_hz;
  102. /* Disable QSPI */
  103. cadence_qspi_apb_controller_disable(priv->regbase);
  104. /*
  105. * Calibration required for different current SCLK speed, requested
  106. * SCLK speed or chip select
  107. */
  108. if (priv->previous_hz != hz ||
  109. priv->qspi_calibrated_hz != hz ||
  110. priv->qspi_calibrated_cs != spi_chip_select(bus)) {
  111. err = spi_calibration(bus, hz);
  112. if (err)
  113. return err;
  114. /* prevent calibration run when same as previous request */
  115. priv->previous_hz = hz;
  116. }
  117. /* Enable QSPI */
  118. cadence_qspi_apb_controller_enable(priv->regbase);
  119. debug("%s: speed=%d\n", __func__, hz);
  120. return 0;
  121. }
  122. static int cadence_spi_probe(struct udevice *bus)
  123. {
  124. struct cadence_spi_platdata *plat = bus->platdata;
  125. struct cadence_spi_priv *priv = dev_get_priv(bus);
  126. priv->regbase = plat->regbase;
  127. priv->ahbbase = plat->ahbbase;
  128. if (!priv->qspi_is_init) {
  129. cadence_qspi_apb_controller_init(plat);
  130. priv->qspi_is_init = 1;
  131. }
  132. return 0;
  133. }
  134. static int cadence_spi_set_mode(struct udevice *bus, uint mode)
  135. {
  136. struct cadence_spi_priv *priv = dev_get_priv(bus);
  137. /* Disable QSPI */
  138. cadence_qspi_apb_controller_disable(priv->regbase);
  139. /* Set SPI mode */
  140. cadence_qspi_apb_set_clk_mode(priv->regbase, mode);
  141. /* Enable QSPI */
  142. cadence_qspi_apb_controller_enable(priv->regbase);
  143. return 0;
  144. }
  145. static int cadence_spi_xfer(struct udevice *dev, unsigned int bitlen,
  146. const void *dout, void *din, unsigned long flags)
  147. {
  148. struct udevice *bus = dev->parent;
  149. struct cadence_spi_platdata *plat = bus->platdata;
  150. struct cadence_spi_priv *priv = dev_get_priv(bus);
  151. struct dm_spi_slave_platdata *dm_plat = dev_get_parent_platdata(dev);
  152. void *base = priv->regbase;
  153. u8 *cmd_buf = priv->cmd_buf;
  154. size_t data_bytes;
  155. int err = 0;
  156. u32 mode = CQSPI_STIG_WRITE;
  157. if (flags & SPI_XFER_BEGIN) {
  158. /* copy command to local buffer */
  159. priv->cmd_len = bitlen / 8;
  160. memcpy(cmd_buf, dout, priv->cmd_len);
  161. }
  162. if (flags == (SPI_XFER_BEGIN | SPI_XFER_END)) {
  163. /* if start and end bit are set, the data bytes is 0. */
  164. data_bytes = 0;
  165. } else {
  166. data_bytes = bitlen / 8;
  167. }
  168. debug("%s: len=%d [bytes]\n", __func__, data_bytes);
  169. /* Set Chip select */
  170. cadence_qspi_apb_chipselect(base, spi_chip_select(dev),
  171. CONFIG_CQSPI_DECODER);
  172. if ((flags & SPI_XFER_END) || (flags == 0)) {
  173. if (priv->cmd_len == 0) {
  174. printf("QSPI: Error, command is empty.\n");
  175. return -1;
  176. }
  177. if (din && data_bytes) {
  178. /* read */
  179. /* Use STIG if no address. */
  180. if (!CQSPI_IS_ADDR(priv->cmd_len))
  181. mode = CQSPI_STIG_READ;
  182. else
  183. mode = CQSPI_INDIRECT_READ;
  184. } else if (dout && !(flags & SPI_XFER_BEGIN)) {
  185. /* write */
  186. if (!CQSPI_IS_ADDR(priv->cmd_len))
  187. mode = CQSPI_STIG_WRITE;
  188. else
  189. mode = CQSPI_INDIRECT_WRITE;
  190. }
  191. switch (mode) {
  192. case CQSPI_STIG_READ:
  193. err = cadence_qspi_apb_command_read(
  194. base, priv->cmd_len, cmd_buf,
  195. data_bytes, din);
  196. break;
  197. case CQSPI_STIG_WRITE:
  198. err = cadence_qspi_apb_command_write(base,
  199. priv->cmd_len, cmd_buf,
  200. data_bytes, dout);
  201. break;
  202. case CQSPI_INDIRECT_READ:
  203. err = cadence_qspi_apb_indirect_read_setup(plat,
  204. priv->cmd_len, dm_plat->mode, cmd_buf);
  205. if (!err) {
  206. err = cadence_qspi_apb_indirect_read_execute
  207. (plat, data_bytes, din);
  208. }
  209. break;
  210. case CQSPI_INDIRECT_WRITE:
  211. err = cadence_qspi_apb_indirect_write_setup
  212. (plat, priv->cmd_len, cmd_buf);
  213. if (!err) {
  214. err = cadence_qspi_apb_indirect_write_execute
  215. (plat, data_bytes, dout);
  216. }
  217. break;
  218. default:
  219. err = -1;
  220. break;
  221. }
  222. if (flags & SPI_XFER_END) {
  223. /* clear command buffer */
  224. memset(cmd_buf, 0, sizeof(priv->cmd_buf));
  225. priv->cmd_len = 0;
  226. }
  227. }
  228. return err;
  229. }
  230. static int cadence_spi_ofdata_to_platdata(struct udevice *bus)
  231. {
  232. struct cadence_spi_platdata *plat = bus->platdata;
  233. const void *blob = gd->fdt_blob;
  234. int node = bus->of_offset;
  235. int subnode;
  236. u32 data[4];
  237. int ret;
  238. /* 2 base addresses are needed, lets get them from the DT */
  239. ret = fdtdec_get_int_array(blob, node, "reg", data, ARRAY_SIZE(data));
  240. if (ret) {
  241. printf("Error: Can't get base addresses (ret=%d)!\n", ret);
  242. return -ENODEV;
  243. }
  244. plat->regbase = (void *)data[0];
  245. plat->ahbbase = (void *)data[2];
  246. plat->sram_size = fdtdec_get_int(blob, node, "sram-size", 128);
  247. /* All other paramters are embedded in the child node */
  248. subnode = fdt_first_subnode(blob, node);
  249. if (subnode < 0) {
  250. printf("Error: subnode with SPI flash config missing!\n");
  251. return -ENODEV;
  252. }
  253. /* Use 500 KHz as a suitable default */
  254. plat->max_hz = fdtdec_get_uint(blob, subnode, "spi-max-frequency",
  255. 500000);
  256. /* Read other parameters from DT */
  257. plat->page_size = fdtdec_get_int(blob, subnode, "page-size", 256);
  258. plat->block_size = fdtdec_get_int(blob, subnode, "block-size", 16);
  259. plat->tshsl_ns = fdtdec_get_int(blob, subnode, "tshsl-ns", 200);
  260. plat->tsd2d_ns = fdtdec_get_int(blob, subnode, "tsd2d-ns", 255);
  261. plat->tchsh_ns = fdtdec_get_int(blob, subnode, "tchsh-ns", 20);
  262. plat->tslch_ns = fdtdec_get_int(blob, subnode, "tslch-ns", 20);
  263. debug("%s: regbase=%p ahbbase=%p max-frequency=%d page-size=%d\n",
  264. __func__, plat->regbase, plat->ahbbase, plat->max_hz,
  265. plat->page_size);
  266. return 0;
  267. }
  268. static const struct dm_spi_ops cadence_spi_ops = {
  269. .xfer = cadence_spi_xfer,
  270. .set_speed = cadence_spi_set_speed,
  271. .set_mode = cadence_spi_set_mode,
  272. /*
  273. * cs_info is not needed, since we require all chip selects to be
  274. * in the device tree explicitly
  275. */
  276. };
  277. static const struct udevice_id cadence_spi_ids[] = {
  278. { .compatible = "cadence,qspi" },
  279. { }
  280. };
  281. U_BOOT_DRIVER(cadence_spi) = {
  282. .name = "cadence_spi",
  283. .id = UCLASS_SPI,
  284. .of_match = cadence_spi_ids,
  285. .ops = &cadence_spi_ops,
  286. .ofdata_to_platdata = cadence_spi_ofdata_to_platdata,
  287. .platdata_auto_alloc_size = sizeof(struct cadence_spi_platdata),
  288. .priv_auto_alloc_size = sizeof(struct cadence_spi_priv),
  289. .probe = cadence_spi_probe,
  290. };