xilinx_emaclite.c 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639
  1. /*
  2. * (C) Copyright 2007-2009 Michal Simek
  3. * (C) Copyright 2003 Xilinx Inc.
  4. *
  5. * Michal SIMEK <monstr@monstr.eu>
  6. *
  7. * SPDX-License-Identifier: GPL-2.0+
  8. */
  9. #include <common.h>
  10. #include <net.h>
  11. #include <config.h>
  12. #include <dm.h>
  13. #include <console.h>
  14. #include <malloc.h>
  15. #include <asm/io.h>
  16. #include <phy.h>
  17. #include <miiphy.h>
  18. #include <fdtdec.h>
  19. #include <linux/errno.h>
  20. #include <linux/kernel.h>
  21. #include <asm/io.h>
  22. DECLARE_GLOBAL_DATA_PTR;
  23. #define ENET_ADDR_LENGTH 6
  24. #define ETH_FCS_LEN 4 /* Octets in the FCS */
  25. /* Xmit complete */
  26. #define XEL_TSR_XMIT_BUSY_MASK 0x00000001UL
  27. /* Xmit interrupt enable bit */
  28. #define XEL_TSR_XMIT_IE_MASK 0x00000008UL
  29. /* Program the MAC address */
  30. #define XEL_TSR_PROGRAM_MASK 0x00000002UL
  31. /* define for programming the MAC address into the EMAC Lite */
  32. #define XEL_TSR_PROG_MAC_ADDR (XEL_TSR_XMIT_BUSY_MASK | XEL_TSR_PROGRAM_MASK)
  33. /* Transmit packet length upper byte */
  34. #define XEL_TPLR_LENGTH_MASK_HI 0x0000FF00UL
  35. /* Transmit packet length lower byte */
  36. #define XEL_TPLR_LENGTH_MASK_LO 0x000000FFUL
  37. /* Recv complete */
  38. #define XEL_RSR_RECV_DONE_MASK 0x00000001UL
  39. /* Recv interrupt enable bit */
  40. #define XEL_RSR_RECV_IE_MASK 0x00000008UL
  41. /* MDIO Address Register Bit Masks */
  42. #define XEL_MDIOADDR_REGADR_MASK 0x0000001F /* Register Address */
  43. #define XEL_MDIOADDR_PHYADR_MASK 0x000003E0 /* PHY Address */
  44. #define XEL_MDIOADDR_PHYADR_SHIFT 5
  45. #define XEL_MDIOADDR_OP_MASK 0x00000400 /* RD/WR Operation */
  46. /* MDIO Write Data Register Bit Masks */
  47. #define XEL_MDIOWR_WRDATA_MASK 0x0000FFFF /* Data to be Written */
  48. /* MDIO Read Data Register Bit Masks */
  49. #define XEL_MDIORD_RDDATA_MASK 0x0000FFFF /* Data to be Read */
  50. /* MDIO Control Register Bit Masks */
  51. #define XEL_MDIOCTRL_MDIOSTS_MASK 0x00000001 /* MDIO Status Mask */
  52. #define XEL_MDIOCTRL_MDIOEN_MASK 0x00000008 /* MDIO Enable */
  53. struct emaclite_regs {
  54. u32 tx_ping; /* 0x0 - TX Ping buffer */
  55. u32 reserved1[504];
  56. u32 mdioaddr; /* 0x7e4 - MDIO Address Register */
  57. u32 mdiowr; /* 0x7e8 - MDIO Write Data Register */
  58. u32 mdiord;/* 0x7ec - MDIO Read Data Register */
  59. u32 mdioctrl; /* 0x7f0 - MDIO Control Register */
  60. u32 tx_ping_tplr; /* 0x7f4 - Tx packet length */
  61. u32 global_interrupt; /* 0x7f8 - Global interrupt enable */
  62. u32 tx_ping_tsr; /* 0x7fc - Tx status */
  63. u32 tx_pong; /* 0x800 - TX Pong buffer */
  64. u32 reserved2[508];
  65. u32 tx_pong_tplr; /* 0xff4 - Tx packet length */
  66. u32 reserved3; /* 0xff8 */
  67. u32 tx_pong_tsr; /* 0xffc - Tx status */
  68. u32 rx_ping; /* 0x1000 - Receive Buffer */
  69. u32 reserved4[510];
  70. u32 rx_ping_rsr; /* 0x17fc - Rx status */
  71. u32 rx_pong; /* 0x1800 - Receive Buffer */
  72. u32 reserved5[510];
  73. u32 rx_pong_rsr; /* 0x1ffc - Rx status */
  74. };
  75. struct xemaclite {
  76. bool use_rx_pong_buffer_next; /* Next RX buffer to read from */
  77. u32 txpp; /* TX ping pong buffer */
  78. u32 rxpp; /* RX ping pong buffer */
  79. int phyaddr;
  80. struct emaclite_regs *regs;
  81. struct phy_device *phydev;
  82. struct mii_dev *bus;
  83. };
  84. static uchar etherrxbuff[PKTSIZE_ALIGN]; /* Receive buffer */
  85. static void xemaclite_alignedread(u32 *srcptr, void *destptr, u32 bytecount)
  86. {
  87. u32 i;
  88. u32 alignbuffer;
  89. u32 *to32ptr;
  90. u32 *from32ptr;
  91. u8 *to8ptr;
  92. u8 *from8ptr;
  93. from32ptr = (u32 *) srcptr;
  94. /* Word aligned buffer, no correction needed. */
  95. to32ptr = (u32 *) destptr;
  96. while (bytecount > 3) {
  97. *to32ptr++ = *from32ptr++;
  98. bytecount -= 4;
  99. }
  100. to8ptr = (u8 *) to32ptr;
  101. alignbuffer = *from32ptr++;
  102. from8ptr = (u8 *) &alignbuffer;
  103. for (i = 0; i < bytecount; i++)
  104. *to8ptr++ = *from8ptr++;
  105. }
  106. static void xemaclite_alignedwrite(void *srcptr, u32 *destptr, u32 bytecount)
  107. {
  108. u32 i;
  109. u32 alignbuffer;
  110. u32 *to32ptr = (u32 *) destptr;
  111. u32 *from32ptr;
  112. u8 *to8ptr;
  113. u8 *from8ptr;
  114. from32ptr = (u32 *) srcptr;
  115. while (bytecount > 3) {
  116. *to32ptr++ = *from32ptr++;
  117. bytecount -= 4;
  118. }
  119. alignbuffer = 0;
  120. to8ptr = (u8 *) &alignbuffer;
  121. from8ptr = (u8 *) from32ptr;
  122. for (i = 0; i < bytecount; i++)
  123. *to8ptr++ = *from8ptr++;
  124. *to32ptr++ = alignbuffer;
  125. }
  126. static int wait_for_bit(const char *func, u32 *reg, const u32 mask,
  127. bool set, unsigned int timeout)
  128. {
  129. u32 val;
  130. unsigned long start = get_timer(0);
  131. while (1) {
  132. val = __raw_readl(reg);
  133. if (!set)
  134. val = ~val;
  135. if ((val & mask) == mask)
  136. return 0;
  137. if (get_timer(start) > timeout)
  138. break;
  139. if (ctrlc()) {
  140. puts("Abort\n");
  141. return -EINTR;
  142. }
  143. udelay(1);
  144. }
  145. debug("%s: Timeout (reg=%p mask=%08x wait_set=%i)\n",
  146. func, reg, mask, set);
  147. return -ETIMEDOUT;
  148. }
  149. static int mdio_wait(struct emaclite_regs *regs)
  150. {
  151. return wait_for_bit(__func__, &regs->mdioctrl,
  152. XEL_MDIOCTRL_MDIOSTS_MASK, false, 2000);
  153. }
  154. static u32 phyread(struct xemaclite *emaclite, u32 phyaddress, u32 registernum,
  155. u16 *data)
  156. {
  157. struct emaclite_regs *regs = emaclite->regs;
  158. if (mdio_wait(regs))
  159. return 1;
  160. u32 ctrl_reg = __raw_readl(&regs->mdioctrl);
  161. __raw_writel(XEL_MDIOADDR_OP_MASK
  162. | ((phyaddress << XEL_MDIOADDR_PHYADR_SHIFT)
  163. | registernum), &regs->mdioaddr);
  164. __raw_writel(ctrl_reg | XEL_MDIOCTRL_MDIOSTS_MASK, &regs->mdioctrl);
  165. if (mdio_wait(regs))
  166. return 1;
  167. /* Read data */
  168. *data = __raw_readl(&regs->mdiord);
  169. return 0;
  170. }
  171. static u32 phywrite(struct xemaclite *emaclite, u32 phyaddress, u32 registernum,
  172. u16 data)
  173. {
  174. struct emaclite_regs *regs = emaclite->regs;
  175. if (mdio_wait(regs))
  176. return 1;
  177. /*
  178. * Write the PHY address, register number and clear the OP bit in the
  179. * MDIO Address register and then write the value into the MDIO Write
  180. * Data register. Finally, set the Status bit in the MDIO Control
  181. * register to start a MDIO write transaction.
  182. */
  183. u32 ctrl_reg = __raw_readl(&regs->mdioctrl);
  184. __raw_writel(~XEL_MDIOADDR_OP_MASK
  185. & ((phyaddress << XEL_MDIOADDR_PHYADR_SHIFT)
  186. | registernum), &regs->mdioaddr);
  187. __raw_writel(data, &regs->mdiowr);
  188. __raw_writel(ctrl_reg | XEL_MDIOCTRL_MDIOSTS_MASK, &regs->mdioctrl);
  189. if (mdio_wait(regs))
  190. return 1;
  191. return 0;
  192. }
  193. static void emaclite_stop(struct udevice *dev)
  194. {
  195. debug("eth_stop\n");
  196. }
  197. /* Use MII register 1 (MII status register) to detect PHY */
  198. #define PHY_DETECT_REG 1
  199. /* Mask used to verify certain PHY features (or register contents)
  200. * in the register above:
  201. * 0x1000: 10Mbps full duplex support
  202. * 0x0800: 10Mbps half duplex support
  203. * 0x0008: Auto-negotiation support
  204. */
  205. #define PHY_DETECT_MASK 0x1808
  206. static int setup_phy(struct udevice *dev)
  207. {
  208. int i, ret;
  209. u16 phyreg;
  210. struct xemaclite *emaclite = dev_get_priv(dev);
  211. struct phy_device *phydev;
  212. u32 supported = SUPPORTED_10baseT_Half |
  213. SUPPORTED_10baseT_Full |
  214. SUPPORTED_100baseT_Half |
  215. SUPPORTED_100baseT_Full;
  216. if (emaclite->phyaddr != -1) {
  217. phyread(emaclite, emaclite->phyaddr, PHY_DETECT_REG, &phyreg);
  218. if ((phyreg != 0xFFFF) &&
  219. ((phyreg & PHY_DETECT_MASK) == PHY_DETECT_MASK)) {
  220. /* Found a valid PHY address */
  221. debug("Default phy address %d is valid\n",
  222. emaclite->phyaddr);
  223. } else {
  224. debug("PHY address is not setup correctly %d\n",
  225. emaclite->phyaddr);
  226. emaclite->phyaddr = -1;
  227. }
  228. }
  229. if (emaclite->phyaddr == -1) {
  230. /* detect the PHY address */
  231. for (i = 31; i >= 0; i--) {
  232. phyread(emaclite, i, PHY_DETECT_REG, &phyreg);
  233. if ((phyreg != 0xFFFF) &&
  234. ((phyreg & PHY_DETECT_MASK) == PHY_DETECT_MASK)) {
  235. /* Found a valid PHY address */
  236. emaclite->phyaddr = i;
  237. debug("emaclite: Found valid phy address, %d\n",
  238. i);
  239. break;
  240. }
  241. }
  242. }
  243. /* interface - look at tsec */
  244. phydev = phy_connect(emaclite->bus, emaclite->phyaddr, dev,
  245. PHY_INTERFACE_MODE_MII);
  246. /*
  247. * Phy can support 1000baseT but device NOT that's why phydev->supported
  248. * must be setup for 1000baseT. phydev->advertising setups what speeds
  249. * will be used for autonegotiation where 1000baseT must be disabled.
  250. */
  251. phydev->supported = supported | SUPPORTED_1000baseT_Half |
  252. SUPPORTED_1000baseT_Full;
  253. phydev->advertising = supported;
  254. emaclite->phydev = phydev;
  255. phy_config(phydev);
  256. ret = phy_startup(phydev);
  257. if (ret)
  258. return ret;
  259. if (!phydev->link) {
  260. printf("%s: No link.\n", phydev->dev->name);
  261. return 0;
  262. }
  263. /* Do not setup anything */
  264. return 1;
  265. }
  266. static int emaclite_start(struct udevice *dev)
  267. {
  268. struct xemaclite *emaclite = dev_get_priv(dev);
  269. struct eth_pdata *pdata = dev_get_platdata(dev);
  270. struct emaclite_regs *regs = emaclite->regs;
  271. debug("EmacLite Initialization Started\n");
  272. /*
  273. * TX - TX_PING & TX_PONG initialization
  274. */
  275. /* Restart PING TX */
  276. __raw_writel(0, &regs->tx_ping_tsr);
  277. /* Copy MAC address */
  278. xemaclite_alignedwrite(pdata->enetaddr, &regs->tx_ping,
  279. ENET_ADDR_LENGTH);
  280. /* Set the length */
  281. __raw_writel(ENET_ADDR_LENGTH, &regs->tx_ping_tplr);
  282. /* Update the MAC address in the EMAC Lite */
  283. __raw_writel(XEL_TSR_PROG_MAC_ADDR, &regs->tx_ping_tsr);
  284. /* Wait for EMAC Lite to finish with the MAC address update */
  285. while ((__raw_readl(&regs->tx_ping_tsr) &
  286. XEL_TSR_PROG_MAC_ADDR) != 0)
  287. ;
  288. if (emaclite->txpp) {
  289. /* The same operation with PONG TX */
  290. __raw_writel(0, &regs->tx_pong_tsr);
  291. xemaclite_alignedwrite(pdata->enetaddr, &regs->tx_pong,
  292. ENET_ADDR_LENGTH);
  293. __raw_writel(ENET_ADDR_LENGTH, &regs->tx_pong_tplr);
  294. __raw_writel(XEL_TSR_PROG_MAC_ADDR, &regs->tx_pong_tsr);
  295. while ((__raw_readl(&regs->tx_pong_tsr) &
  296. XEL_TSR_PROG_MAC_ADDR) != 0)
  297. ;
  298. }
  299. /*
  300. * RX - RX_PING & RX_PONG initialization
  301. */
  302. /* Write out the value to flush the RX buffer */
  303. __raw_writel(XEL_RSR_RECV_IE_MASK, &regs->rx_ping_rsr);
  304. if (emaclite->rxpp)
  305. __raw_writel(XEL_RSR_RECV_IE_MASK, &regs->rx_pong_rsr);
  306. __raw_writel(XEL_MDIOCTRL_MDIOEN_MASK, &regs->mdioctrl);
  307. if (__raw_readl(&regs->mdioctrl) & XEL_MDIOCTRL_MDIOEN_MASK)
  308. if (!setup_phy(dev))
  309. return -1;
  310. debug("EmacLite Initialization complete\n");
  311. return 0;
  312. }
  313. static int xemaclite_txbufferavailable(struct xemaclite *emaclite)
  314. {
  315. u32 tmp;
  316. struct emaclite_regs *regs = emaclite->regs;
  317. /*
  318. * Read the other buffer register
  319. * and determine if the other buffer is available
  320. */
  321. tmp = ~__raw_readl(&regs->tx_ping_tsr);
  322. if (emaclite->txpp)
  323. tmp |= ~__raw_readl(&regs->tx_pong_tsr);
  324. return !(tmp & XEL_TSR_XMIT_BUSY_MASK);
  325. }
  326. static int emaclite_send(struct udevice *dev, void *ptr, int len)
  327. {
  328. u32 reg;
  329. struct xemaclite *emaclite = dev_get_priv(dev);
  330. struct emaclite_regs *regs = emaclite->regs;
  331. u32 maxtry = 1000;
  332. if (len > PKTSIZE)
  333. len = PKTSIZE;
  334. while (xemaclite_txbufferavailable(emaclite) && maxtry) {
  335. udelay(10);
  336. maxtry--;
  337. }
  338. if (!maxtry) {
  339. printf("Error: Timeout waiting for ethernet TX buffer\n");
  340. /* Restart PING TX */
  341. __raw_writel(0, &regs->tx_ping_tsr);
  342. if (emaclite->txpp) {
  343. __raw_writel(0, &regs->tx_pong_tsr);
  344. }
  345. return -1;
  346. }
  347. /* Determine if the expected buffer address is empty */
  348. reg = __raw_readl(&regs->tx_ping_tsr);
  349. if ((reg & XEL_TSR_XMIT_BUSY_MASK) == 0) {
  350. debug("Send packet from tx_ping buffer\n");
  351. /* Write the frame to the buffer */
  352. xemaclite_alignedwrite(ptr, &regs->tx_ping, len);
  353. __raw_writel(len
  354. & (XEL_TPLR_LENGTH_MASK_HI | XEL_TPLR_LENGTH_MASK_LO),
  355. &regs->tx_ping_tplr);
  356. reg = __raw_readl(&regs->tx_ping_tsr);
  357. reg |= XEL_TSR_XMIT_BUSY_MASK;
  358. __raw_writel(reg, &regs->tx_ping_tsr);
  359. return 0;
  360. }
  361. if (emaclite->txpp) {
  362. /* Determine if the expected buffer address is empty */
  363. reg = __raw_readl(&regs->tx_pong_tsr);
  364. if ((reg & XEL_TSR_XMIT_BUSY_MASK) == 0) {
  365. debug("Send packet from tx_pong buffer\n");
  366. /* Write the frame to the buffer */
  367. xemaclite_alignedwrite(ptr, &regs->tx_pong, len);
  368. __raw_writel(len &
  369. (XEL_TPLR_LENGTH_MASK_HI |
  370. XEL_TPLR_LENGTH_MASK_LO),
  371. &regs->tx_pong_tplr);
  372. reg = __raw_readl(&regs->tx_pong_tsr);
  373. reg |= XEL_TSR_XMIT_BUSY_MASK;
  374. __raw_writel(reg, &regs->tx_pong_tsr);
  375. return 0;
  376. }
  377. }
  378. puts("Error while sending frame\n");
  379. return -1;
  380. }
  381. static int emaclite_recv(struct udevice *dev, int flags, uchar **packetp)
  382. {
  383. u32 length, first_read, reg, attempt = 0;
  384. void *addr, *ack;
  385. struct xemaclite *emaclite = dev->priv;
  386. struct emaclite_regs *regs = emaclite->regs;
  387. struct ethernet_hdr *eth;
  388. struct ip_udp_hdr *ip;
  389. try_again:
  390. if (!emaclite->use_rx_pong_buffer_next) {
  391. reg = __raw_readl(&regs->rx_ping_rsr);
  392. debug("Testing data at rx_ping\n");
  393. if ((reg & XEL_RSR_RECV_DONE_MASK) == XEL_RSR_RECV_DONE_MASK) {
  394. debug("Data found in rx_ping buffer\n");
  395. addr = &regs->rx_ping;
  396. ack = &regs->rx_ping_rsr;
  397. } else {
  398. debug("Data not found in rx_ping buffer\n");
  399. /* Pong buffer is not available - return immediately */
  400. if (!emaclite->rxpp)
  401. return -1;
  402. /* Try pong buffer if this is first attempt */
  403. if (attempt++)
  404. return -1;
  405. emaclite->use_rx_pong_buffer_next =
  406. !emaclite->use_rx_pong_buffer_next;
  407. goto try_again;
  408. }
  409. } else {
  410. reg = __raw_readl(&regs->rx_pong_rsr);
  411. debug("Testing data at rx_pong\n");
  412. if ((reg & XEL_RSR_RECV_DONE_MASK) == XEL_RSR_RECV_DONE_MASK) {
  413. debug("Data found in rx_pong buffer\n");
  414. addr = &regs->rx_pong;
  415. ack = &regs->rx_pong_rsr;
  416. } else {
  417. debug("Data not found in rx_pong buffer\n");
  418. /* Try ping buffer if this is first attempt */
  419. if (attempt++)
  420. return -1;
  421. emaclite->use_rx_pong_buffer_next =
  422. !emaclite->use_rx_pong_buffer_next;
  423. goto try_again;
  424. }
  425. }
  426. /* Read all bytes for ARP packet with 32bit alignment - 48bytes */
  427. first_read = ALIGN(ETHER_HDR_SIZE + ARP_HDR_SIZE + ETH_FCS_LEN, 4);
  428. xemaclite_alignedread(addr, etherrxbuff, first_read);
  429. /* Detect real packet size */
  430. eth = (struct ethernet_hdr *)etherrxbuff;
  431. switch (ntohs(eth->et_protlen)) {
  432. case PROT_ARP:
  433. length = first_read;
  434. debug("ARP Packet %x\n", length);
  435. break;
  436. case PROT_IP:
  437. ip = (struct ip_udp_hdr *)(etherrxbuff + ETHER_HDR_SIZE);
  438. length = ntohs(ip->ip_len);
  439. length += ETHER_HDR_SIZE + ETH_FCS_LEN;
  440. debug("IP Packet %x\n", length);
  441. break;
  442. default:
  443. debug("Other Packet\n");
  444. length = PKTSIZE;
  445. break;
  446. }
  447. /* Read the rest of the packet which is longer then first read */
  448. if (length != first_read)
  449. xemaclite_alignedread(addr + first_read,
  450. etherrxbuff + first_read,
  451. length - first_read);
  452. /* Acknowledge the frame */
  453. reg = __raw_readl(ack);
  454. reg &= ~XEL_RSR_RECV_DONE_MASK;
  455. __raw_writel(reg, ack);
  456. debug("Packet receive from 0x%p, length %dB\n", addr, length);
  457. *packetp = etherrxbuff;
  458. return length;
  459. }
  460. static int emaclite_miiphy_read(struct mii_dev *bus, int addr,
  461. int devad, int reg)
  462. {
  463. u32 ret;
  464. u16 val = 0;
  465. ret = phyread(bus->priv, addr, reg, &val);
  466. debug("emaclite: Read MII 0x%x, 0x%x, 0x%x, %d\n", addr, reg, val, ret);
  467. return val;
  468. }
  469. static int emaclite_miiphy_write(struct mii_dev *bus, int addr, int devad,
  470. int reg, u16 value)
  471. {
  472. debug("emaclite: Write MII 0x%x, 0x%x, 0x%x\n", addr, reg, value);
  473. return phywrite(bus->priv, addr, reg, value);
  474. }
  475. static int emaclite_probe(struct udevice *dev)
  476. {
  477. struct xemaclite *emaclite = dev_get_priv(dev);
  478. int ret;
  479. emaclite->bus = mdio_alloc();
  480. emaclite->bus->read = emaclite_miiphy_read;
  481. emaclite->bus->write = emaclite_miiphy_write;
  482. emaclite->bus->priv = emaclite;
  483. ret = mdio_register_seq(emaclite->bus, dev->seq);
  484. if (ret)
  485. return ret;
  486. return 0;
  487. }
  488. static int emaclite_remove(struct udevice *dev)
  489. {
  490. struct xemaclite *emaclite = dev_get_priv(dev);
  491. free(emaclite->phydev);
  492. mdio_unregister(emaclite->bus);
  493. mdio_free(emaclite->bus);
  494. return 0;
  495. }
  496. static const struct eth_ops emaclite_ops = {
  497. .start = emaclite_start,
  498. .send = emaclite_send,
  499. .recv = emaclite_recv,
  500. .stop = emaclite_stop,
  501. };
  502. static int emaclite_ofdata_to_platdata(struct udevice *dev)
  503. {
  504. struct eth_pdata *pdata = dev_get_platdata(dev);
  505. struct xemaclite *emaclite = dev_get_priv(dev);
  506. int offset = 0;
  507. pdata->iobase = (phys_addr_t)dev_get_addr(dev);
  508. emaclite->regs = (struct emaclite_regs *)ioremap_nocache(pdata->iobase,
  509. 0x10000);
  510. emaclite->phyaddr = -1;
  511. offset = fdtdec_lookup_phandle(gd->fdt_blob, dev->of_offset,
  512. "phy-handle");
  513. if (offset > 0)
  514. emaclite->phyaddr = fdtdec_get_int(gd->fdt_blob, offset,
  515. "reg", -1);
  516. emaclite->txpp = fdtdec_get_int(gd->fdt_blob, dev->of_offset,
  517. "xlnx,tx-ping-pong", 0);
  518. emaclite->rxpp = fdtdec_get_int(gd->fdt_blob, dev->of_offset,
  519. "xlnx,rx-ping-pong", 0);
  520. printf("EMACLITE: %lx, phyaddr %d, %d/%d\n", (ulong)emaclite->regs,
  521. emaclite->phyaddr, emaclite->txpp, emaclite->rxpp);
  522. return 0;
  523. }
  524. static const struct udevice_id emaclite_ids[] = {
  525. { .compatible = "xlnx,xps-ethernetlite-1.00.a" },
  526. { }
  527. };
  528. U_BOOT_DRIVER(emaclite) = {
  529. .name = "emaclite",
  530. .id = UCLASS_ETH,
  531. .of_match = emaclite_ids,
  532. .ofdata_to_platdata = emaclite_ofdata_to_platdata,
  533. .probe = emaclite_probe,
  534. .remove = emaclite_remove,
  535. .ops = &emaclite_ops,
  536. .priv_auto_alloc_size = sizeof(struct xemaclite),
  537. .platdata_auto_alloc_size = sizeof(struct eth_pdata),
  538. };