eepro100.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942
  1. /*
  2. * (C) Copyright 2002
  3. * Wolfgang Denk, DENX Software Engineering, wd@denx.de.
  4. *
  5. * SPDX-License-Identifier: GPL-2.0+
  6. */
  7. #include <common.h>
  8. #include <malloc.h>
  9. #include <net.h>
  10. #include <netdev.h>
  11. #include <asm/io.h>
  12. #include <pci.h>
  13. #include <miiphy.h>
  14. #undef DEBUG
  15. /* Ethernet chip registers.
  16. */
  17. #define SCBStatus 0 /* Rx/Command Unit Status *Word* */
  18. #define SCBIntAckByte 1 /* Rx/Command Unit STAT/ACK byte */
  19. #define SCBCmd 2 /* Rx/Command Unit Command *Word* */
  20. #define SCBIntrCtlByte 3 /* Rx/Command Unit Intr.Control Byte */
  21. #define SCBPointer 4 /* General purpose pointer. */
  22. #define SCBPort 8 /* Misc. commands and operands. */
  23. #define SCBflash 12 /* Flash memory control. */
  24. #define SCBeeprom 14 /* EEPROM memory control. */
  25. #define SCBCtrlMDI 16 /* MDI interface control. */
  26. #define SCBEarlyRx 20 /* Early receive byte count. */
  27. #define SCBGenControl 28 /* 82559 General Control Register */
  28. #define SCBGenStatus 29 /* 82559 General Status register */
  29. /* 82559 SCB status word defnitions
  30. */
  31. #define SCB_STATUS_CX 0x8000 /* CU finished command (transmit) */
  32. #define SCB_STATUS_FR 0x4000 /* frame received */
  33. #define SCB_STATUS_CNA 0x2000 /* CU left active state */
  34. #define SCB_STATUS_RNR 0x1000 /* receiver left ready state */
  35. #define SCB_STATUS_MDI 0x0800 /* MDI read/write cycle done */
  36. #define SCB_STATUS_SWI 0x0400 /* software generated interrupt */
  37. #define SCB_STATUS_FCP 0x0100 /* flow control pause interrupt */
  38. #define SCB_INTACK_MASK 0xFD00 /* all the above */
  39. #define SCB_INTACK_TX (SCB_STATUS_CX | SCB_STATUS_CNA)
  40. #define SCB_INTACK_RX (SCB_STATUS_FR | SCB_STATUS_RNR)
  41. /* System control block commands
  42. */
  43. /* CU Commands */
  44. #define CU_NOP 0x0000
  45. #define CU_START 0x0010
  46. #define CU_RESUME 0x0020
  47. #define CU_STATSADDR 0x0040 /* Load Dump Statistics ctrs addr */
  48. #define CU_SHOWSTATS 0x0050 /* Dump statistics counters. */
  49. #define CU_ADDR_LOAD 0x0060 /* Base address to add to CU commands */
  50. #define CU_DUMPSTATS 0x0070 /* Dump then reset stats counters. */
  51. /* RUC Commands */
  52. #define RUC_NOP 0x0000
  53. #define RUC_START 0x0001
  54. #define RUC_RESUME 0x0002
  55. #define RUC_ABORT 0x0004
  56. #define RUC_ADDR_LOAD 0x0006 /* (seems not to clear on acceptance) */
  57. #define RUC_RESUMENR 0x0007
  58. #define CU_CMD_MASK 0x00f0
  59. #define RU_CMD_MASK 0x0007
  60. #define SCB_M 0x0100 /* 0 = enable interrupt, 1 = disable */
  61. #define SCB_SWI 0x0200 /* 1 - cause device to interrupt */
  62. #define CU_STATUS_MASK 0x00C0
  63. #define RU_STATUS_MASK 0x003C
  64. #define RU_STATUS_IDLE (0<<2)
  65. #define RU_STATUS_SUS (1<<2)
  66. #define RU_STATUS_NORES (2<<2)
  67. #define RU_STATUS_READY (4<<2)
  68. #define RU_STATUS_NO_RBDS_SUS ((1<<2)|(8<<2))
  69. #define RU_STATUS_NO_RBDS_NORES ((2<<2)|(8<<2))
  70. #define RU_STATUS_NO_RBDS_READY ((4<<2)|(8<<2))
  71. /* 82559 Port interface commands.
  72. */
  73. #define I82559_RESET 0x00000000 /* Software reset */
  74. #define I82559_SELFTEST 0x00000001 /* 82559 Selftest command */
  75. #define I82559_SELECTIVE_RESET 0x00000002
  76. #define I82559_DUMP 0x00000003
  77. #define I82559_DUMP_WAKEUP 0x00000007
  78. /* 82559 Eeprom interface.
  79. */
  80. #define EE_SHIFT_CLK 0x01 /* EEPROM shift clock. */
  81. #define EE_CS 0x02 /* EEPROM chip select. */
  82. #define EE_DATA_WRITE 0x04 /* EEPROM chip data in. */
  83. #define EE_WRITE_0 0x01
  84. #define EE_WRITE_1 0x05
  85. #define EE_DATA_READ 0x08 /* EEPROM chip data out. */
  86. #define EE_ENB (0x4800 | EE_CS)
  87. #define EE_CMD_BITS 3
  88. #define EE_DATA_BITS 16
  89. /* The EEPROM commands include the alway-set leading bit.
  90. */
  91. #define EE_EWENB_CMD (4 << addr_len)
  92. #define EE_WRITE_CMD (5 << addr_len)
  93. #define EE_READ_CMD (6 << addr_len)
  94. #define EE_ERASE_CMD (7 << addr_len)
  95. /* Receive frame descriptors.
  96. */
  97. struct RxFD {
  98. volatile u16 status;
  99. volatile u16 control;
  100. volatile u32 link; /* struct RxFD * */
  101. volatile u32 rx_buf_addr; /* void * */
  102. volatile u32 count;
  103. volatile u8 data[PKTSIZE_ALIGN];
  104. };
  105. #define RFD_STATUS_C 0x8000 /* completion of received frame */
  106. #define RFD_STATUS_OK 0x2000 /* frame received with no errors */
  107. #define RFD_CONTROL_EL 0x8000 /* 1=last RFD in RFA */
  108. #define RFD_CONTROL_S 0x4000 /* 1=suspend RU after receiving frame */
  109. #define RFD_CONTROL_H 0x0010 /* 1=RFD is a header RFD */
  110. #define RFD_CONTROL_SF 0x0008 /* 0=simplified, 1=flexible mode */
  111. #define RFD_COUNT_MASK 0x3fff
  112. #define RFD_COUNT_F 0x4000
  113. #define RFD_COUNT_EOF 0x8000
  114. #define RFD_RX_CRC 0x0800 /* crc error */
  115. #define RFD_RX_ALIGNMENT 0x0400 /* alignment error */
  116. #define RFD_RX_RESOURCE 0x0200 /* out of space, no resources */
  117. #define RFD_RX_DMA_OVER 0x0100 /* DMA overrun */
  118. #define RFD_RX_SHORT 0x0080 /* short frame error */
  119. #define RFD_RX_LENGTH 0x0020
  120. #define RFD_RX_ERROR 0x0010 /* receive error */
  121. #define RFD_RX_NO_ADR_MATCH 0x0004 /* no address match */
  122. #define RFD_RX_IA_MATCH 0x0002 /* individual address does not match */
  123. #define RFD_RX_TCO 0x0001 /* TCO indication */
  124. /* Transmit frame descriptors
  125. */
  126. struct TxFD { /* Transmit frame descriptor set. */
  127. volatile u16 status;
  128. volatile u16 command;
  129. volatile u32 link; /* void * */
  130. volatile u32 tx_desc_addr; /* Always points to the tx_buf_addr element. */
  131. volatile s32 count;
  132. volatile u32 tx_buf_addr0; /* void *, frame to be transmitted. */
  133. volatile s32 tx_buf_size0; /* Length of Tx frame. */
  134. volatile u32 tx_buf_addr1; /* void *, frame to be transmitted. */
  135. volatile s32 tx_buf_size1; /* Length of Tx frame. */
  136. };
  137. #define TxCB_CMD_TRANSMIT 0x0004 /* transmit command */
  138. #define TxCB_CMD_SF 0x0008 /* 0=simplified, 1=flexible mode */
  139. #define TxCB_CMD_NC 0x0010 /* 0=CRC insert by controller */
  140. #define TxCB_CMD_I 0x2000 /* generate interrupt on completion */
  141. #define TxCB_CMD_S 0x4000 /* suspend on completion */
  142. #define TxCB_CMD_EL 0x8000 /* last command block in CBL */
  143. #define TxCB_COUNT_MASK 0x3fff
  144. #define TxCB_COUNT_EOF 0x8000
  145. /* The Speedo3 Rx and Tx frame/buffer descriptors.
  146. */
  147. struct descriptor { /* A generic descriptor. */
  148. volatile u16 status;
  149. volatile u16 command;
  150. volatile u32 link; /* struct descriptor * */
  151. unsigned char params[0];
  152. };
  153. #define CONFIG_SYS_CMD_EL 0x8000
  154. #define CONFIG_SYS_CMD_SUSPEND 0x4000
  155. #define CONFIG_SYS_CMD_INT 0x2000
  156. #define CONFIG_SYS_CMD_IAS 0x0001 /* individual address setup */
  157. #define CONFIG_SYS_CMD_CONFIGURE 0x0002 /* configure */
  158. #define CONFIG_SYS_STATUS_C 0x8000
  159. #define CONFIG_SYS_STATUS_OK 0x2000
  160. /* Misc.
  161. */
  162. #define NUM_RX_DESC PKTBUFSRX
  163. #define NUM_TX_DESC 1 /* Number of TX descriptors */
  164. #define TOUT_LOOP 1000000
  165. #define ETH_ALEN 6
  166. static struct RxFD rx_ring[NUM_RX_DESC]; /* RX descriptor ring */
  167. static struct TxFD tx_ring[NUM_TX_DESC]; /* TX descriptor ring */
  168. static int rx_next; /* RX descriptor ring pointer */
  169. static int tx_next; /* TX descriptor ring pointer */
  170. static int tx_threshold;
  171. /*
  172. * The parameters for a CmdConfigure operation.
  173. * There are so many options that it would be difficult to document
  174. * each bit. We mostly use the default or recommended settings.
  175. */
  176. static const char i82557_config_cmd[] = {
  177. 22, 0x08, 0, 0, 0, 0, 0x32, 0x03, 1, /* 1=Use MII 0=Use AUI */
  178. 0, 0x2E, 0, 0x60, 0,
  179. 0xf2, 0x48, 0, 0x40, 0xf2, 0x80, /* 0x40=Force full-duplex */
  180. 0x3f, 0x05,
  181. };
  182. static const char i82558_config_cmd[] = {
  183. 22, 0x08, 0, 1, 0, 0, 0x22, 0x03, 1, /* 1=Use MII 0=Use AUI */
  184. 0, 0x2E, 0, 0x60, 0x08, 0x88,
  185. 0x68, 0, 0x40, 0xf2, 0x84, /* Disable FC */
  186. 0x31, 0x05,
  187. };
  188. static void init_rx_ring (struct eth_device *dev);
  189. static void purge_tx_ring (struct eth_device *dev);
  190. static void read_hw_addr (struct eth_device *dev, bd_t * bis);
  191. static int eepro100_init (struct eth_device *dev, bd_t * bis);
  192. static int eepro100_send(struct eth_device *dev, void *packet, int length);
  193. static int eepro100_recv (struct eth_device *dev);
  194. static void eepro100_halt (struct eth_device *dev);
  195. #if defined(CONFIG_E500)
  196. #define bus_to_phys(a) (a)
  197. #define phys_to_bus(a) (a)
  198. #else
  199. #define bus_to_phys(a) pci_mem_to_phys((pci_dev_t)dev->priv, a)
  200. #define phys_to_bus(a) pci_phys_to_mem((pci_dev_t)dev->priv, a)
  201. #endif
  202. static inline int INW (struct eth_device *dev, u_long addr)
  203. {
  204. return le16_to_cpu(*(volatile u16 *)(addr + (u_long)dev->iobase));
  205. }
  206. static inline void OUTW (struct eth_device *dev, int command, u_long addr)
  207. {
  208. *(volatile u16 *)((addr + (u_long)dev->iobase)) = cpu_to_le16(command);
  209. }
  210. static inline void OUTL (struct eth_device *dev, int command, u_long addr)
  211. {
  212. *(volatile u32 *)((addr + (u_long)dev->iobase)) = cpu_to_le32(command);
  213. }
  214. #if defined(CONFIG_MII) || defined(CONFIG_CMD_MII)
  215. static inline int INL (struct eth_device *dev, u_long addr)
  216. {
  217. return le32_to_cpu(*(volatile u32 *)(addr + (u_long)dev->iobase));
  218. }
  219. static int get_phyreg (struct eth_device *dev, unsigned char addr,
  220. unsigned char reg, unsigned short *value)
  221. {
  222. int cmd;
  223. int timeout = 50;
  224. /* read requested data */
  225. cmd = (2 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
  226. OUTL (dev, cmd, SCBCtrlMDI);
  227. do {
  228. udelay(1000);
  229. cmd = INL (dev, SCBCtrlMDI);
  230. } while (!(cmd & (1 << 28)) && (--timeout));
  231. if (timeout == 0)
  232. return -1;
  233. *value = (unsigned short) (cmd & 0xffff);
  234. return 0;
  235. }
  236. static int set_phyreg (struct eth_device *dev, unsigned char addr,
  237. unsigned char reg, unsigned short value)
  238. {
  239. int cmd;
  240. int timeout = 50;
  241. /* write requested data */
  242. cmd = (1 << 26) | ((addr & 0x1f) << 21) | ((reg & 0x1f) << 16);
  243. OUTL (dev, cmd | value, SCBCtrlMDI);
  244. while (!(INL (dev, SCBCtrlMDI) & (1 << 28)) && (--timeout))
  245. udelay(1000);
  246. if (timeout == 0)
  247. return -1;
  248. return 0;
  249. }
  250. /* Check if given phyaddr is valid, i.e. there is a PHY connected.
  251. * Do this by checking model value field from ID2 register.
  252. */
  253. static struct eth_device* verify_phyaddr (const char *devname,
  254. unsigned char addr)
  255. {
  256. struct eth_device *dev;
  257. unsigned short value;
  258. unsigned char model;
  259. dev = eth_get_dev_by_name(devname);
  260. if (dev == NULL) {
  261. printf("%s: no such device\n", devname);
  262. return NULL;
  263. }
  264. /* read id2 register */
  265. if (get_phyreg(dev, addr, MII_PHYSID2, &value) != 0) {
  266. printf("%s: mii read timeout!\n", devname);
  267. return NULL;
  268. }
  269. /* get model */
  270. model = (unsigned char)((value >> 4) & 0x003f);
  271. if (model == 0) {
  272. printf("%s: no PHY at address %d\n", devname, addr);
  273. return NULL;
  274. }
  275. return dev;
  276. }
  277. static int eepro100_miiphy_read(struct mii_dev *bus, int addr, int devad,
  278. int reg)
  279. {
  280. unsigned short value = 0;
  281. struct eth_device *dev;
  282. dev = verify_phyaddr(bus->name, addr);
  283. if (dev == NULL)
  284. return -1;
  285. if (get_phyreg(dev, addr, reg, &value) != 0) {
  286. printf("%s: mii read timeout!\n", bus->name);
  287. return -1;
  288. }
  289. return value;
  290. }
  291. static int eepro100_miiphy_write(struct mii_dev *bus, int addr, int devad,
  292. int reg, u16 value)
  293. {
  294. struct eth_device *dev;
  295. dev = verify_phyaddr(bus->name, addr);
  296. if (dev == NULL)
  297. return -1;
  298. if (set_phyreg(dev, addr, reg, value) != 0) {
  299. printf("%s: mii write timeout!\n", bus->name);
  300. return -1;
  301. }
  302. return 0;
  303. }
  304. #endif
  305. /* Wait for the chip get the command.
  306. */
  307. static int wait_for_eepro100 (struct eth_device *dev)
  308. {
  309. int i;
  310. for (i = 0; INW (dev, SCBCmd) & (CU_CMD_MASK | RU_CMD_MASK); i++) {
  311. if (i >= TOUT_LOOP) {
  312. return 0;
  313. }
  314. }
  315. return 1;
  316. }
  317. static struct pci_device_id supported[] = {
  318. {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82557},
  319. {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559},
  320. {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82559ER},
  321. {}
  322. };
  323. int eepro100_initialize (bd_t * bis)
  324. {
  325. pci_dev_t devno;
  326. int card_number = 0;
  327. struct eth_device *dev;
  328. u32 iobase, status;
  329. int idx = 0;
  330. while (1) {
  331. /* Find PCI device
  332. */
  333. if ((devno = pci_find_devices (supported, idx++)) < 0) {
  334. break;
  335. }
  336. pci_read_config_dword (devno, PCI_BASE_ADDRESS_0, &iobase);
  337. iobase &= ~0xf;
  338. #ifdef DEBUG
  339. printf ("eepro100: Intel i82559 PCI EtherExpressPro @0x%x\n",
  340. iobase);
  341. #endif
  342. pci_write_config_dword (devno,
  343. PCI_COMMAND,
  344. PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
  345. /* Check if I/O accesses and Bus Mastering are enabled.
  346. */
  347. pci_read_config_dword (devno, PCI_COMMAND, &status);
  348. if (!(status & PCI_COMMAND_MEMORY)) {
  349. printf ("Error: Can not enable MEM access.\n");
  350. continue;
  351. }
  352. if (!(status & PCI_COMMAND_MASTER)) {
  353. printf ("Error: Can not enable Bus Mastering.\n");
  354. continue;
  355. }
  356. dev = (struct eth_device *) malloc (sizeof *dev);
  357. if (!dev) {
  358. printf("eepro100: Can not allocate memory\n");
  359. break;
  360. }
  361. memset(dev, 0, sizeof(*dev));
  362. sprintf (dev->name, "i82559#%d", card_number);
  363. dev->priv = (void *) devno; /* this have to come before bus_to_phys() */
  364. dev->iobase = bus_to_phys (iobase);
  365. dev->init = eepro100_init;
  366. dev->halt = eepro100_halt;
  367. dev->send = eepro100_send;
  368. dev->recv = eepro100_recv;
  369. eth_register (dev);
  370. #if defined (CONFIG_MII) || defined(CONFIG_CMD_MII)
  371. /* register mii command access routines */
  372. int retval;
  373. struct mii_dev *mdiodev = mdio_alloc();
  374. if (!mdiodev)
  375. return -ENOMEM;
  376. strncpy(mdiodev->name, dev->name, MDIO_NAME_LEN);
  377. mdiodev->read = eepro100_miiphy_read;
  378. mdiodev->write = eepro100_miiphy_write;
  379. retval = mdio_register(mdiodev);
  380. if (retval < 0)
  381. return retval;
  382. #endif
  383. card_number++;
  384. /* Set the latency timer for value.
  385. */
  386. pci_write_config_byte (devno, PCI_LATENCY_TIMER, 0x20);
  387. udelay (10 * 1000);
  388. read_hw_addr (dev, bis);
  389. }
  390. return card_number;
  391. }
  392. static int eepro100_init (struct eth_device *dev, bd_t * bis)
  393. {
  394. int i, status = -1;
  395. int tx_cur;
  396. struct descriptor *ias_cmd, *cfg_cmd;
  397. /* Reset the ethernet controller
  398. */
  399. OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
  400. udelay (20);
  401. OUTL (dev, I82559_RESET, SCBPort);
  402. udelay (20);
  403. if (!wait_for_eepro100 (dev)) {
  404. printf ("Error: Can not reset ethernet controller.\n");
  405. goto Done;
  406. }
  407. OUTL (dev, 0, SCBPointer);
  408. OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
  409. if (!wait_for_eepro100 (dev)) {
  410. printf ("Error: Can not reset ethernet controller.\n");
  411. goto Done;
  412. }
  413. OUTL (dev, 0, SCBPointer);
  414. OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
  415. /* Initialize Rx and Tx rings.
  416. */
  417. init_rx_ring (dev);
  418. purge_tx_ring (dev);
  419. /* Tell the adapter where the RX ring is located.
  420. */
  421. if (!wait_for_eepro100 (dev)) {
  422. printf ("Error: Can not reset ethernet controller.\n");
  423. goto Done;
  424. }
  425. OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
  426. OUTW (dev, SCB_M | RUC_START, SCBCmd);
  427. /* Send the Configure frame */
  428. tx_cur = tx_next;
  429. tx_next = ((tx_next + 1) % NUM_TX_DESC);
  430. cfg_cmd = (struct descriptor *) &tx_ring[tx_cur];
  431. cfg_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_CONFIGURE));
  432. cfg_cmd->status = 0;
  433. cfg_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
  434. memcpy (cfg_cmd->params, i82558_config_cmd,
  435. sizeof (i82558_config_cmd));
  436. if (!wait_for_eepro100 (dev)) {
  437. printf ("Error---CONFIG_SYS_CMD_CONFIGURE: Can not reset ethernet controller.\n");
  438. goto Done;
  439. }
  440. OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
  441. OUTW (dev, SCB_M | CU_START, SCBCmd);
  442. for (i = 0;
  443. !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
  444. i++) {
  445. if (i >= TOUT_LOOP) {
  446. printf ("%s: Tx error buffer not ready\n", dev->name);
  447. goto Done;
  448. }
  449. }
  450. if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
  451. printf ("TX error status = 0x%08X\n",
  452. le16_to_cpu (tx_ring[tx_cur].status));
  453. goto Done;
  454. }
  455. /* Send the Individual Address Setup frame
  456. */
  457. tx_cur = tx_next;
  458. tx_next = ((tx_next + 1) % NUM_TX_DESC);
  459. ias_cmd = (struct descriptor *) &tx_ring[tx_cur];
  460. ias_cmd->command = cpu_to_le16 ((CONFIG_SYS_CMD_SUSPEND | CONFIG_SYS_CMD_IAS));
  461. ias_cmd->status = 0;
  462. ias_cmd->link = cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
  463. memcpy (ias_cmd->params, dev->enetaddr, 6);
  464. /* Tell the adapter where the TX ring is located.
  465. */
  466. if (!wait_for_eepro100 (dev)) {
  467. printf ("Error: Can not reset ethernet controller.\n");
  468. goto Done;
  469. }
  470. OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
  471. OUTW (dev, SCB_M | CU_START, SCBCmd);
  472. for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
  473. i++) {
  474. if (i >= TOUT_LOOP) {
  475. printf ("%s: Tx error buffer not ready\n",
  476. dev->name);
  477. goto Done;
  478. }
  479. }
  480. if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
  481. printf ("TX error status = 0x%08X\n",
  482. le16_to_cpu (tx_ring[tx_cur].status));
  483. goto Done;
  484. }
  485. status = 0;
  486. Done:
  487. return status;
  488. }
  489. static int eepro100_send(struct eth_device *dev, void *packet, int length)
  490. {
  491. int i, status = -1;
  492. int tx_cur;
  493. if (length <= 0) {
  494. printf ("%s: bad packet size: %d\n", dev->name, length);
  495. goto Done;
  496. }
  497. tx_cur = tx_next;
  498. tx_next = (tx_next + 1) % NUM_TX_DESC;
  499. tx_ring[tx_cur].command = cpu_to_le16 ( TxCB_CMD_TRANSMIT |
  500. TxCB_CMD_SF |
  501. TxCB_CMD_S |
  502. TxCB_CMD_EL );
  503. tx_ring[tx_cur].status = 0;
  504. tx_ring[tx_cur].count = cpu_to_le32 (tx_threshold);
  505. tx_ring[tx_cur].link =
  506. cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_next]));
  507. tx_ring[tx_cur].tx_desc_addr =
  508. cpu_to_le32 (phys_to_bus ((u32) & tx_ring[tx_cur].tx_buf_addr0));
  509. tx_ring[tx_cur].tx_buf_addr0 =
  510. cpu_to_le32 (phys_to_bus ((u_long) packet));
  511. tx_ring[tx_cur].tx_buf_size0 = cpu_to_le32 (length);
  512. if (!wait_for_eepro100 (dev)) {
  513. printf ("%s: Tx error ethernet controller not ready.\n",
  514. dev->name);
  515. goto Done;
  516. }
  517. /* Send the packet.
  518. */
  519. OUTL (dev, phys_to_bus ((u32) & tx_ring[tx_cur]), SCBPointer);
  520. OUTW (dev, SCB_M | CU_START, SCBCmd);
  521. for (i = 0; !(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_C);
  522. i++) {
  523. if (i >= TOUT_LOOP) {
  524. printf ("%s: Tx error buffer not ready\n", dev->name);
  525. goto Done;
  526. }
  527. }
  528. if (!(le16_to_cpu (tx_ring[tx_cur].status) & CONFIG_SYS_STATUS_OK)) {
  529. printf ("TX error status = 0x%08X\n",
  530. le16_to_cpu (tx_ring[tx_cur].status));
  531. goto Done;
  532. }
  533. status = length;
  534. Done:
  535. return status;
  536. }
  537. static int eepro100_recv (struct eth_device *dev)
  538. {
  539. u16 status, stat;
  540. int rx_prev, length = 0;
  541. stat = INW (dev, SCBStatus);
  542. OUTW (dev, stat & SCB_STATUS_RNR, SCBStatus);
  543. for (;;) {
  544. status = le16_to_cpu (rx_ring[rx_next].status);
  545. if (!(status & RFD_STATUS_C)) {
  546. break;
  547. }
  548. /* Valid frame status.
  549. */
  550. if ((status & RFD_STATUS_OK)) {
  551. /* A valid frame received.
  552. */
  553. length = le32_to_cpu (rx_ring[rx_next].count) & 0x3fff;
  554. /* Pass the packet up to the protocol
  555. * layers.
  556. */
  557. net_process_received_packet((u8 *)rx_ring[rx_next].data,
  558. length);
  559. } else {
  560. /* There was an error.
  561. */
  562. printf ("RX error status = 0x%08X\n", status);
  563. }
  564. rx_ring[rx_next].control = cpu_to_le16 (RFD_CONTROL_S);
  565. rx_ring[rx_next].status = 0;
  566. rx_ring[rx_next].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
  567. rx_prev = (rx_next + NUM_RX_DESC - 1) % NUM_RX_DESC;
  568. rx_ring[rx_prev].control = 0;
  569. /* Update entry information.
  570. */
  571. rx_next = (rx_next + 1) % NUM_RX_DESC;
  572. }
  573. if (stat & SCB_STATUS_RNR) {
  574. printf ("%s: Receiver is not ready, restart it !\n", dev->name);
  575. /* Reinitialize Rx ring.
  576. */
  577. init_rx_ring (dev);
  578. if (!wait_for_eepro100 (dev)) {
  579. printf ("Error: Can not restart ethernet controller.\n");
  580. goto Done;
  581. }
  582. OUTL (dev, phys_to_bus ((u32) & rx_ring[rx_next]), SCBPointer);
  583. OUTW (dev, SCB_M | RUC_START, SCBCmd);
  584. }
  585. Done:
  586. return length;
  587. }
  588. static void eepro100_halt (struct eth_device *dev)
  589. {
  590. /* Reset the ethernet controller
  591. */
  592. OUTL (dev, I82559_SELECTIVE_RESET, SCBPort);
  593. udelay (20);
  594. OUTL (dev, I82559_RESET, SCBPort);
  595. udelay (20);
  596. if (!wait_for_eepro100 (dev)) {
  597. printf ("Error: Can not reset ethernet controller.\n");
  598. goto Done;
  599. }
  600. OUTL (dev, 0, SCBPointer);
  601. OUTW (dev, SCB_M | RUC_ADDR_LOAD, SCBCmd);
  602. if (!wait_for_eepro100 (dev)) {
  603. printf ("Error: Can not reset ethernet controller.\n");
  604. goto Done;
  605. }
  606. OUTL (dev, 0, SCBPointer);
  607. OUTW (dev, SCB_M | CU_ADDR_LOAD, SCBCmd);
  608. Done:
  609. return;
  610. }
  611. /* SROM Read.
  612. */
  613. static int read_eeprom (struct eth_device *dev, int location, int addr_len)
  614. {
  615. unsigned short retval = 0;
  616. int read_cmd = location | EE_READ_CMD;
  617. int i;
  618. OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
  619. OUTW (dev, EE_ENB, SCBeeprom);
  620. /* Shift the read command bits out. */
  621. for (i = 12; i >= 0; i--) {
  622. short dataval = (read_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
  623. OUTW (dev, EE_ENB | dataval, SCBeeprom);
  624. udelay (1);
  625. OUTW (dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
  626. udelay (1);
  627. }
  628. OUTW (dev, EE_ENB, SCBeeprom);
  629. for (i = 15; i >= 0; i--) {
  630. OUTW (dev, EE_ENB | EE_SHIFT_CLK, SCBeeprom);
  631. udelay (1);
  632. retval = (retval << 1) |
  633. ((INW (dev, SCBeeprom) & EE_DATA_READ) ? 1 : 0);
  634. OUTW (dev, EE_ENB, SCBeeprom);
  635. udelay (1);
  636. }
  637. /* Terminate the EEPROM access. */
  638. OUTW (dev, EE_ENB & ~EE_CS, SCBeeprom);
  639. return retval;
  640. }
  641. #ifdef CONFIG_EEPRO100_SROM_WRITE
  642. int eepro100_write_eeprom (struct eth_device* dev, int location, int addr_len, unsigned short data)
  643. {
  644. unsigned short dataval;
  645. int enable_cmd = 0x3f | EE_EWENB_CMD;
  646. int write_cmd = location | EE_WRITE_CMD;
  647. int i;
  648. unsigned long datalong, tmplong;
  649. OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
  650. udelay(1);
  651. OUTW(dev, EE_ENB, SCBeeprom);
  652. /* Shift the enable command bits out. */
  653. for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
  654. {
  655. dataval = (enable_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
  656. OUTW(dev, EE_ENB | dataval, SCBeeprom);
  657. udelay(1);
  658. OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
  659. udelay(1);
  660. }
  661. OUTW(dev, EE_ENB, SCBeeprom);
  662. udelay(1);
  663. OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
  664. udelay(1);
  665. OUTW(dev, EE_ENB, SCBeeprom);
  666. /* Shift the write command bits out. */
  667. for (i = (addr_len+EE_CMD_BITS-1); i >= 0; i--)
  668. {
  669. dataval = (write_cmd & (1 << i)) ? EE_DATA_WRITE : 0;
  670. OUTW(dev, EE_ENB | dataval, SCBeeprom);
  671. udelay(1);
  672. OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
  673. udelay(1);
  674. }
  675. /* Write the data */
  676. datalong= (unsigned long) ((((data) & 0x00ff) << 8) | ( (data) >> 8));
  677. for (i = 0; i< EE_DATA_BITS; i++)
  678. {
  679. /* Extract and move data bit to bit DI */
  680. dataval = ((datalong & 0x8000)>>13) ? EE_DATA_WRITE : 0;
  681. OUTW(dev, EE_ENB | dataval, SCBeeprom);
  682. udelay(1);
  683. OUTW(dev, EE_ENB | dataval | EE_SHIFT_CLK, SCBeeprom);
  684. udelay(1);
  685. OUTW(dev, EE_ENB | dataval, SCBeeprom);
  686. udelay(1);
  687. datalong = datalong << 1; /* Adjust significant data bit*/
  688. }
  689. /* Finish up command (toggle CS) */
  690. OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
  691. udelay(1); /* delay for more than 250 ns */
  692. OUTW(dev, EE_ENB, SCBeeprom);
  693. /* Wait for programming ready (D0 = 1) */
  694. tmplong = 10;
  695. do
  696. {
  697. dataval = INW(dev, SCBeeprom);
  698. if (dataval & EE_DATA_READ)
  699. break;
  700. udelay(10000);
  701. }
  702. while (-- tmplong);
  703. if (tmplong == 0)
  704. {
  705. printf ("Write i82559 eeprom timed out (100 ms waiting for data ready.\n");
  706. return -1;
  707. }
  708. /* Terminate the EEPROM access. */
  709. OUTW(dev, EE_ENB & ~EE_CS, SCBeeprom);
  710. return 0;
  711. }
  712. #endif
  713. static void init_rx_ring (struct eth_device *dev)
  714. {
  715. int i;
  716. for (i = 0; i < NUM_RX_DESC; i++) {
  717. rx_ring[i].status = 0;
  718. rx_ring[i].control =
  719. (i == NUM_RX_DESC - 1) ? cpu_to_le16 (RFD_CONTROL_S) : 0;
  720. rx_ring[i].link =
  721. cpu_to_le32 (phys_to_bus
  722. ((u32) & rx_ring[(i + 1) % NUM_RX_DESC]));
  723. rx_ring[i].rx_buf_addr = 0xffffffff;
  724. rx_ring[i].count = cpu_to_le32 (PKTSIZE_ALIGN << 16);
  725. }
  726. rx_next = 0;
  727. }
  728. static void purge_tx_ring (struct eth_device *dev)
  729. {
  730. int i;
  731. tx_next = 0;
  732. tx_threshold = 0x01208000;
  733. for (i = 0; i < NUM_TX_DESC; i++) {
  734. tx_ring[i].status = 0;
  735. tx_ring[i].command = 0;
  736. tx_ring[i].link = 0;
  737. tx_ring[i].tx_desc_addr = 0;
  738. tx_ring[i].count = 0;
  739. tx_ring[i].tx_buf_addr0 = 0;
  740. tx_ring[i].tx_buf_size0 = 0;
  741. tx_ring[i].tx_buf_addr1 = 0;
  742. tx_ring[i].tx_buf_size1 = 0;
  743. }
  744. }
  745. static void read_hw_addr (struct eth_device *dev, bd_t * bis)
  746. {
  747. u16 sum = 0;
  748. int i, j;
  749. int addr_len = read_eeprom (dev, 0, 6) == 0xffff ? 8 : 6;
  750. for (j = 0, i = 0; i < 0x40; i++) {
  751. u16 value = read_eeprom (dev, i, addr_len);
  752. sum += value;
  753. if (i < 3) {
  754. dev->enetaddr[j++] = value;
  755. dev->enetaddr[j++] = value >> 8;
  756. }
  757. }
  758. if (sum != 0xBABA) {
  759. memset (dev->enetaddr, 0, ETH_ALEN);
  760. #ifdef DEBUG
  761. printf ("%s: Invalid EEPROM checksum %#4.4x, "
  762. "check settings before activating this device!\n",
  763. dev->name, sum);
  764. #endif
  765. }
  766. }